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What is the Explanation

We already studies

DIS

Now we consider

Drell-Yan Process
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Important for Tevatron and LHC
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A Drell-Yan Example: Discovery of J/Psi
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Drell-Yan W

>

hadron

e'e — 2 jets
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Drell-Yan and e*e have an interesting historical relation

very narrow width

The Process: p+Be - e"e X O long lifetime

80
242 Evenfs*{: L——

70 L SPECTROMETER

o At normal current
6o | [J-10% current

at BNL AGS

VoLuME 33, NuMBER 23

PHYSICAL REVIEW LETTERS 2 DEcEl

EVENTS /25 MeV

Experimental Observation of a Heavy Particle J+4

J. J. Aubert, U. Becker, P, J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen

J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan 1

Labovatary fov Necleay Science and Department of Physics, Massachusells Mslitute of Technolog
Cambyidge, Massachuseifs 02139

and

Y. Y. Lee ezl
Brookkaven National Lehovatory, Upton, New York 11973 02‘5 ° 2.75 3.0 3, 2 =
[Recelved 12 November 1874) .

I
3.5
mg+e-[Gev]

We roport the observation of a heavy partiele J, with mass m = 3.1 GeV and width ap-
proximately zern, The observation was made from the reaction p+ Be—e ¥+ ™ + x by
measuring the ¢ o™ mass spectrum with a precise pair speetrometer atl the Brookhaven
Mational Laboratory’s 30-GeV alternating-gradient synchrotron,

FIG, 2, Mass spectrum showlng the existence of J,
Results from two spectrometer settings are plotted
showing that the peak is independent of spectrometer
currents, The run at reduced current was taken two

months later than the normal run.

This experiment is part of a large program to dally with a thin Al foil. The beam spol
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We'll look at Drell-Yan

Specifically W/Z production

Side Note: From pp -y /Z /W, we can obtain pp - y/Z/W - 'l

Schematically:

For example:

do o do, _ . o
" > = — = X
szdt(qq ) dt(qq Y') -

Kinematics 1n the

hadronic CMS




Kinematics for Drell-Yan Kinematics for Drell-Yan
P, = £2S (1,00,41)  P?=0 Trade {x1,x2} variables for {7, y}
P, = £§ (1,0,0,—1)  P2=0 . 1 I (&
_ Y = —
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Cross distribution CI'O.SS y q.9
section functions section
Rapidity & Longitudinal Momentum Distributions Kinematics for W/ Z / Higgs Production 12
VS=14TeV  /S=1.96TeV
CqeL . _ 1 E12+PL 1 M, % :
The rapidity is definedas: y = — In{—————
E,—p,

Partonic CMS has longitudinal momentum w.r.t. the hadron frame

p12:(p1+p2):(E12’ anapL)
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p = \/E(x —Xx,) = ﬂx
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X, is a measure of the longitudinal momentum
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Kinematics for W production at Tevatron & LHC

Kinematics in a Hadron-Hadron Interaction:

LO W' Luminosities
tot

LO W' Luminosities
tot

The CMS of the parton-parton system is moving

Tevatron ud I LHC =

0.1+

0.1F

0.01+

0.01F

longitudinally relative to the hadron-hadron system

How do we measure the W-boson mass?

ut+d-w —e'v
Can't measure W directly

Can't measure V directly
Can't measure longitudinal momentum

We can measure the P_ of the lepton

2
_ _ A M
do = [ds, [ dv, [ drlq(x)3(x)+q(x)q(x)] & 8(r—=
do dL A dL
29 L 5(r) L _te
dTt dTt dr f f
The Jacobian Peak Drell-Yan Cross Section and the Scaling Form
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We find a peak at P "> =M /2




e*e Ratio of hadrons to muons
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NLO correction

e‘e” to 3 particles final state

P,
ee SN
1111.972
o
P,
. Define the energy fractions £ : T; = B — 2pi - q
NLO corrections a2 s
Energy Conservation: Z T, =2
Range of x: x; C [0,1]

Exercise: show 3-body phase space is flat in dx dx,




3-Particle Phase Space 3-Particle Configurations
5, | noexa o
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Differential Cross Section

Infrared Safe Observables

. P What do we do about soft and
€ q collinear singularities????
D;
o
P,

Introduce the concept of “Infrared Safe Observable”

The soft and collinear singularities will cancel
ONLY
if the physical observables are appropriately defined.

Observables must satisfy the following requirements:

Soft

D

if ps, — 0

On—i—l(pla 7pn7ps) —_— On(pla 7pn)

Collinear

4_—”

if pa || o

On+1<p17 «++y Pay Pb, 7pn) — On(pb .-y Da 1 Db, 7pn>

Infrared Safe Observables

Examples: Infrared Safe Observables

Soft
\\
if ps — 0 \
On—i-l(pla 7pn7ps) E— On(pla apn)
Collinear

—_—'

if py H Db
O’fH-l(pl) «vvsyPa s Pb, "'7pn) E— On(plp -~y Pa +pba ap’n)

Infrared Safe Observables:

* Event shape distributions
* Jet Cross sections

Un-Safe Infrared Observables:

* Momentum of the hardest particle
* (affected by collinear splitting)

* 100% isolated particles
* (affected by soft emissions)

* Particle multiplicity
* (affected by both soft & collinear emissions)




Infrared Safe Observables: Define Jets

Infrared Safe Observables: Define Jets

Soft
_
if p, — 0
On—i—l(pla 7pn7ps) B On(pla 7pn)
Collinear
e -
if p, H Py

On—l—l(p17 sy Pay Pb, 7pn) — OTL(pl? -eyPa + Db, 7pn)

R? = (An)* + (Ag)?

Jet Cone

Raw Jet P; [GeV/ic]
- JetClu R=0.7

| D=1.0
- K, D=07

A¢

<) -

Event 18606895 Run 185777

R? = (An)* + (Ag)?

Let's examine this
definition a bit more closely

Pseudo-Rapidit
.0 N seudo-Rapidity
9(° 0 n=—- ln[tan(@/Q)]
40.4° 1
15.4° 2
57° 3
2.1° 4

/ ~0.8° 5




DO Detector Schematic

ATLAS Detector Schematic
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homework

HOMEWORK: Jet Cone Definition

A

PROBLEM #2: In a Tevatron detec-
tor, consider two particles traveling in the
transverse direction:

Y {E,100,0,1}
s = {E,100,1,0}

where the componets are expresedn in GeV
units. E is defined such that the particles
are massless.

a) Compute E.

b) For each particle, compute the pseu-
dorapidity n and azimuthal angle ¢.

¢) Explain how the above exercise justi-
fies the correct jet radius definition to be:

VP

In particular, why is the above correct and

= /1% + 2¢2, for example, incorrect.




HOMEWORK: Light-Cone Coordinates & Boosts

Rapidity vs. Pseudo-Rapidity

Pu:{Ptapa:aPyaPz} n o
D —
By =APe, Pr, P} P ={P, By} y_lln[E+kz} |
1 2 E—k,
P.=—(FP+P i
75 (P P)
1) Compute the metric g, in the light-cone frame, ‘ ‘ A ‘ y
— N -3 -2 -1 1 2 3
and compute Py - Ps in terms of the light-cone
components. -1t
2) Compute the boost matrix B for a boost along
the z-axis, and show the light-cone vector trans- “t n = — Inftan(6/2)]
forms in a particularly simple manner.
3) Show that a boost along the z-axis uniformily i
shifts the rapidity of a vector by a constant amount. == {0,0.1,0.2...}
HOMEWORK: Rapidity vs. Pseudo-Rapidity Infrared Safe Observables: Define Jets
PROBLEM #1: Consider the rapidity y
and the pseudo-rapidity 7: 3 J Ct COIIC
_ l 1 E+ Pr n >
y=3 (E - PT)
9 1
n=-—In {tan (5)}
a) Make a parametric plot of {y,n}as a - - i I
function of m/E where m is the mas of the
particle.
b) Show that in the limit m — 0 that Problem:
y—. The cone definition is simple,
c¢) Make a table of 7 for # = [0°,180°] in BUT : R2 = (AT])2 —+ (A¢)2

steps of 5 degrees.
d) Make a table of # for n = [0, 10] i

it is too simple

See talk by

Such configurations can be mis- Ken Hatakeyama

identified as a 3-jet event

(Jets)




End of lecture 4: Recap

* Drell-Yan: Tremendous discovery potential

* Need to compute 2 initial hadrons
* ¢'e processes:

* Total Cross Section:

* Differential Cross Section: singularities
* Infrared Safe Observables

* Stable under soft and collinear emissions
* Jet definition

* Cone definition is simple:

e ...1t1s TOO simple

Final Thoughts
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Can you find the Nobel Prize???
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Dimensional Regularization.
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and Resummation.
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all this possible.
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