

We already studies

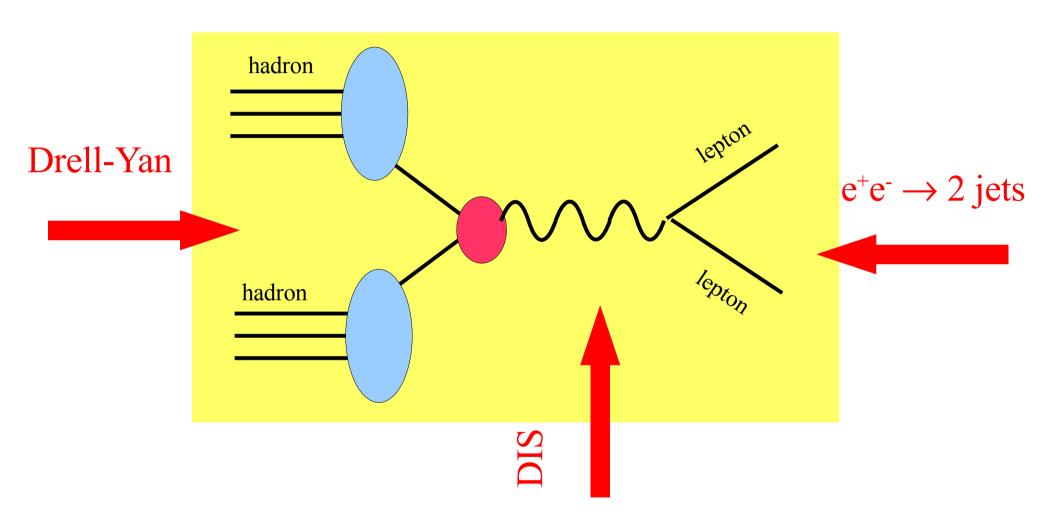
DIS

Now we consider

Drell-Yan Process

Important for Tevatron and LHC

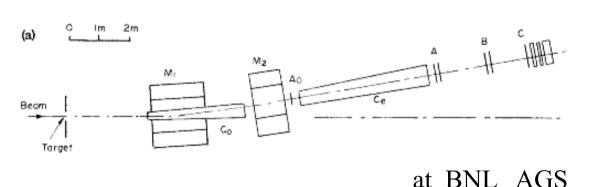
What is the Explanation



Drell-Yan and e^+e^- *have an interesting historical relation*

A Drell-Yan Example: Discovery of J/Psi

The Process: $p + Be \rightarrow e^+ e^- X$



VOLUME 33, NUMBER 23

PHYSICAL REVIEW LETTERS

2 DECE

Experimental Observation of a Heavy Particle J†

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technolog Cambridge, Massachusetts 02139

and

Y. Y. Lee Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

We report the observation of a heavy particle J, with mass m=3.1 GeV and width approximately zero. The observation was made from the reaction $p+\mathrm{Be}\to e^++e^-+x$ by measuring the e^+e^- mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's 30-GeV alternating-gradient synchrotron.

This experiment is part of a large program to

daily with a thin Al foil. The beam spot

very narrow width ⇒ long lifetime

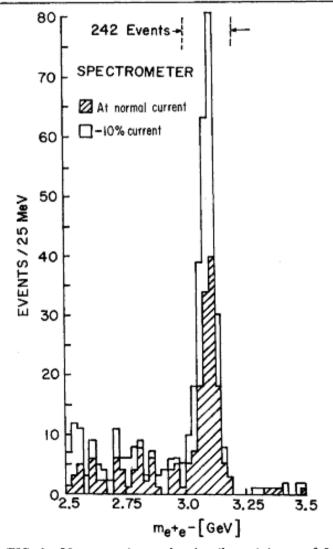
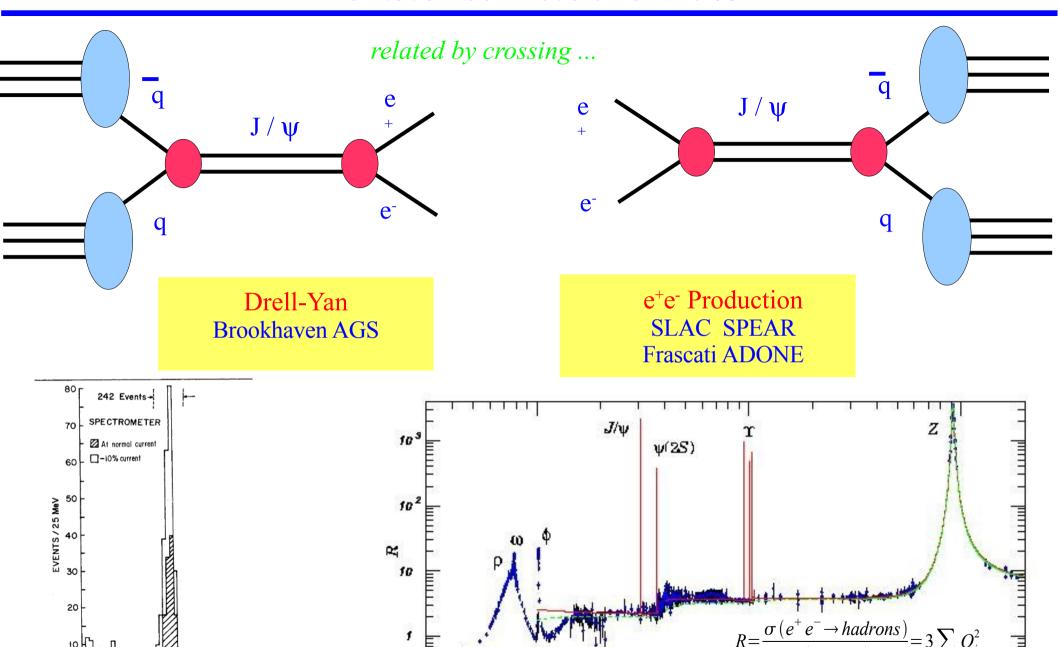


FIG. 2. Mass spectrum showing the existence of J. Results from two spectrometer settings are plotted showing that the peak is independent of spectrometer currents. The run at reduced current was taken two months later than the normal run.

The November Revolution: 1973



√s (GeV)

FIG. 2. Mass spectrum showing the existence of J. Results from two spectrometer settings are plotted showing that the peak is independent of spectrometer currents. The run at reduced current was taken two months later than the normal run.

m_e+_e-[GeV]

We'll look at Drell-Yan

Specifically W/Z production

Schematically:

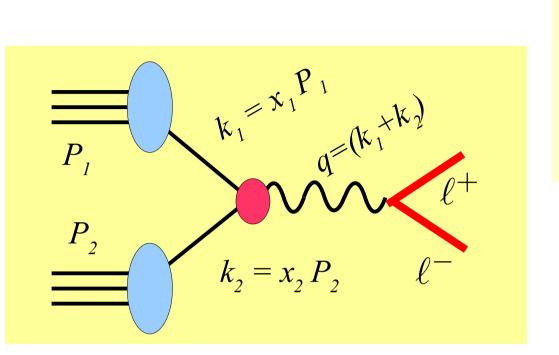
$$\frac{d\sigma(q\overline{q}\rightarrow l^+l^-)}{=} = d\sigma(q\overline{q}\rightarrow y^*) \times d\sigma(y^*\rightarrow l^+l^-)$$

For example:

$$\frac{d\sigma}{dQ^2 d\hat{t}}(q\bar{q} \to l^+ l^-) = \frac{d\sigma}{d\hat{t}}(q\bar{q} \to \gamma^*) \times \frac{\alpha}{3\pi Q^2}$$

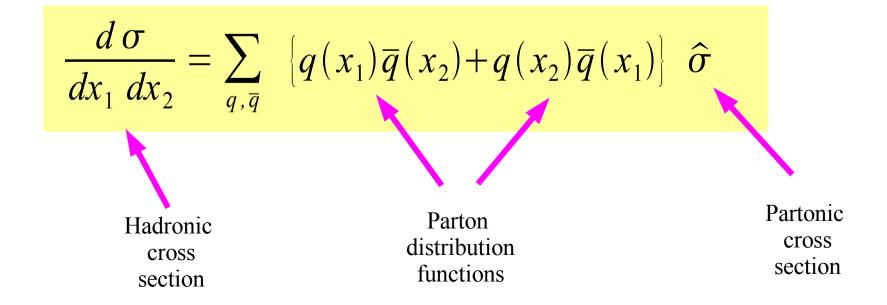
Kinematics in the hadronic CMS

Kinematics for Drell-Yan



$$P_1 = \frac{\sqrt{s}}{2} (1,0,0,+1)$$
 $P_1^2 = 0$
 $P_2 = \frac{\sqrt{s}}{2} (1,0,0,-1)$ $P_2^2 = 0$

$$k_1 = x_1 P_1$$
 $k_1^2 = 0$
 $k_2 = x_2 P_2$ $k_2^2 = 0$



Kinematics for Drell-Yan

Trade $\{x_1, x_2\}$ variables for $\{\tau, y\}$

$$x_{1,2} = \sqrt{\tau} e^{\pm y} \qquad \qquad y = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right)$$

$$\tau = x_1 x_2$$

$$s = (P_1 + P_2)^2 = \frac{\hat{s}}{x_1 x_2} = \frac{\hat{s}}{\tau}$$
 Therefore $\tau = x_1 x_2 = \frac{\hat{s}}{s} \equiv \frac{Q^2}{s}$

Fractional energy² between partonic and hadronic system

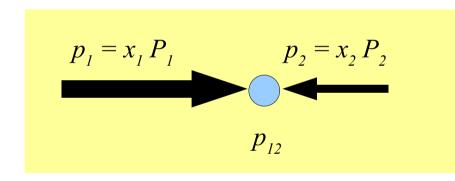
Using: $d x_1 d x_2 = d \tau dy$

$$\frac{d\sigma}{d\tau dy} = \sum_{q,\overline{q}} \left[q(x_1)\overline{q}(x_2) + q(x_2)\overline{q}(x_1) \right] \hat{\sigma}$$

Rapidity & Longitudinal Momentum Distributions

The rapidity is defined as:
$$y = \frac{1}{2} \ln \left\{ \frac{E_{12} + p_L}{E_{12} - p_L} \right\}$$

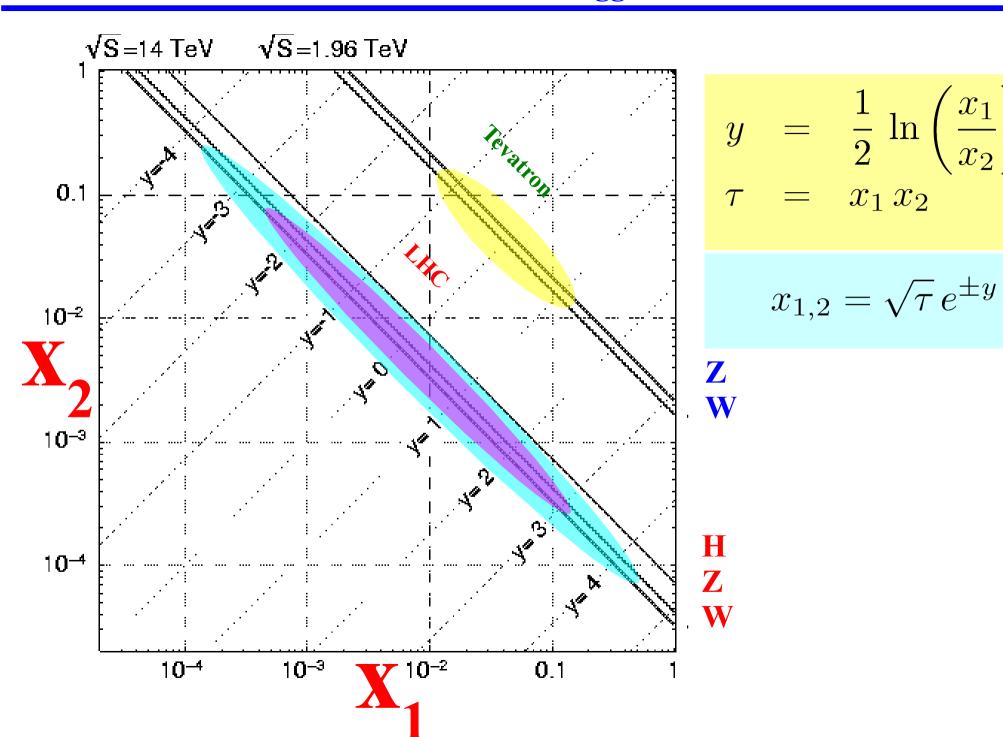
Partonic CMS has longitudinal momentum w.r.t. the hadron frame



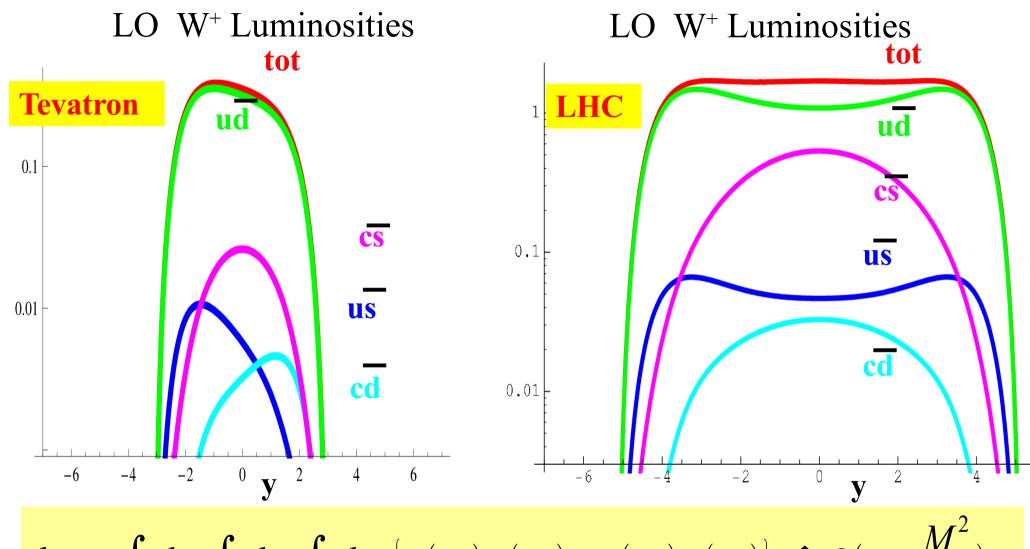
$$\begin{aligned} p_{12} &= (p_1 + p_2) = (E_{12}, 0, 0, p_L) \\ E_{12} &= \frac{\sqrt{s}}{2} (x_1 + x_2) \\ p_L &= \frac{\sqrt{s}}{2} (x_1 - x_2) \equiv \frac{\sqrt{s}}{2} x_F \end{aligned}$$

 $x_{\rm F}$ is a measure of the longitudinal momentum

$$y = \frac{1}{2} \ln \left\{ \frac{E_{12} + p_L}{E_{12} - p_L} \right\} = \frac{1}{2} \ln \left\{ \frac{x_1}{x_2} \right\}$$



Kinematics for W production at Tevatron & LHC



$$d\sigma = \int dx_1 \int dx_2 \int d\tau \left\{ q(x_1)\overline{q}(x_2) + q(x_2)\overline{q}(x_1) \right\} \hat{\sigma} \delta(\tau - \frac{M^2}{S})$$

$$\frac{d\,\sigma}{d\,\tau} = \frac{dL}{d\,\tau} \quad \widehat{\sigma}(\tau)$$

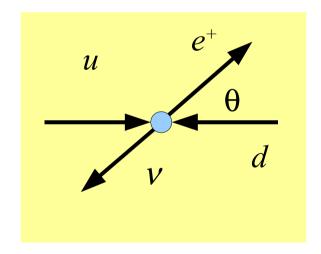
$$\frac{dL}{d\tau} = f \otimes f$$

Kinematics in a Hadron-Hadron Interaction:

The CMS of the parton-parton system is moving longitudinally relative to the hadron-hadron system

How do we measure the W-boson mass?

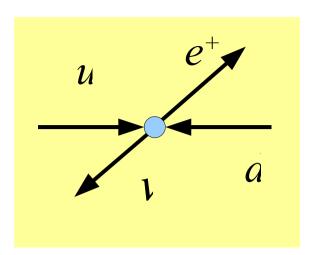
$$u + \overline{d} \rightarrow W^+ \rightarrow e^+ \nu$$



Can't measure W directly
Can't measure v directly
Can't measure longitudinal momentum

We can measure the P_T of the lepton

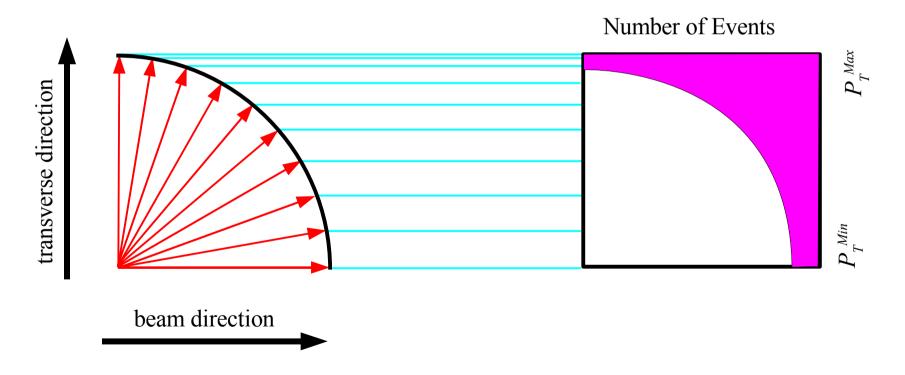
The Jacobian Peak



Suppose lepton distribution is uniform in θ

The dependence is actually $(1+\cos\theta)^2$, but we'll worry about that later

What is the distribution in P_T ?



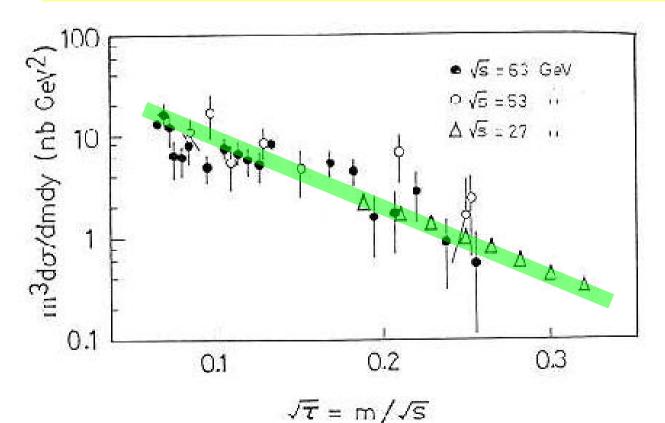
We find a peak at $P_T^{max} \approx M_W/2$

Drell-Yan Cross Section and the Scaling Form

Using:
$$\hat{\sigma}_0 = \frac{4\pi\alpha^2}{9\hat{s}}Q_i^2$$
 and $\delta(Q^2 - \hat{s}) = \frac{1}{sx_1}\delta(x_2 - \frac{\tau}{x_1})$

we can write the cross section in the scaling form:

$$Q^{4} \frac{d\sigma}{dQ^{2}} = \frac{4\pi\alpha^{2}}{9} \sum_{q,\bar{q}} Q_{i}^{2} \int_{\tau}^{1} \frac{dx_{1}}{x_{1}} \tau \left[q(x_{1}) \bar{q}(\tau/x_{1}) + \bar{q}(x_{1}) q(\tau/x_{1}) \right]$$



Notice the RHS is a function of only τ , not Q.

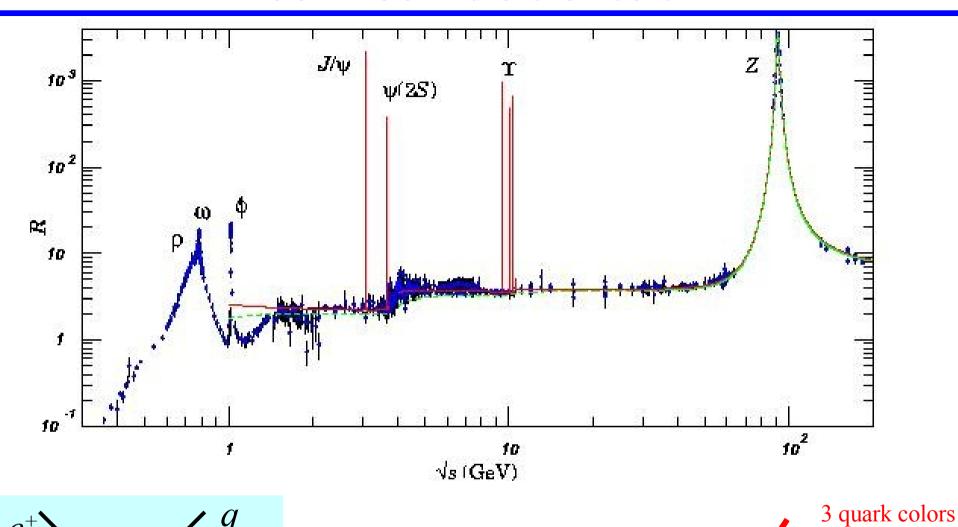
This quantity should lie on a universal scaling curve.

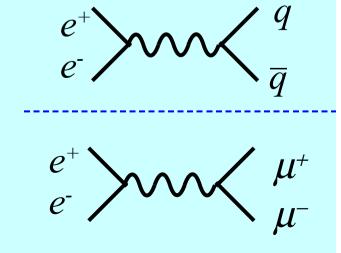
Cf., DIS case, & scattering of point-like constituents

e⁺e⁻ R ratio

$$R = \frac{\sigma(e^{+}e^{-} \rightarrow hadrons)}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$

e⁺e⁻ Ratio of hadrons to muons



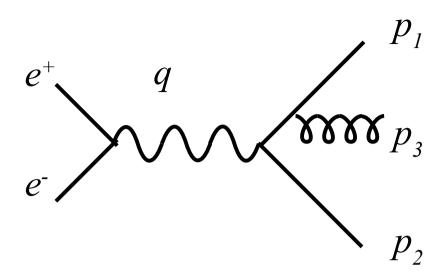


$$R = \frac{\sigma(e^{+}e^{-} \rightarrow hadrons)}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})} = 3\sum_{i} Q_{i}^{2} \left[1 + \frac{\alpha_{s}}{\pi}\right]$$
NLO correction

 e^+e^-

NLO corrections

e⁺e⁻ to 3 particles final state



Define the energy fractions E_i :

$$x_i = \frac{E_i}{\sqrt{s}/2} = \frac{2p_i \cdot q}{s}$$

Energy Conservation:

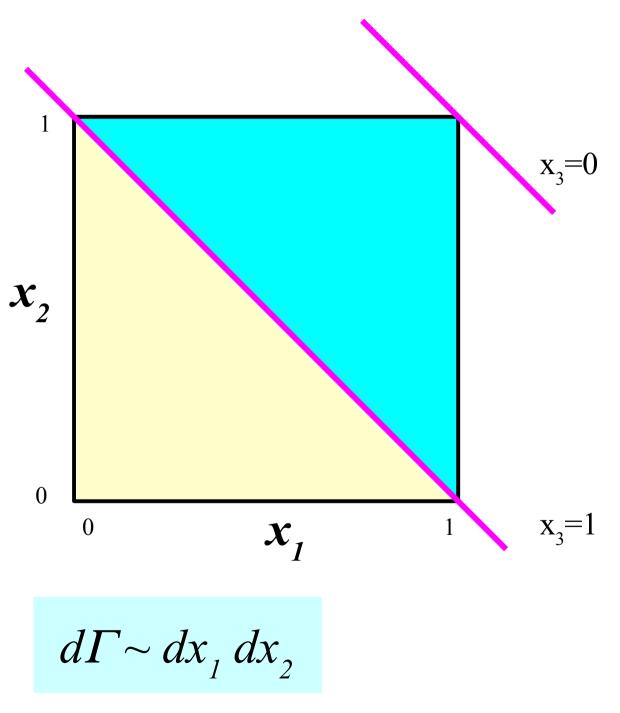
$$\sum_{i} x_i = 2$$

Range of x:

$$x_i \subset [0,1]$$

Exercise: show 3-body phase space is flat in $dx_1 dx_2$

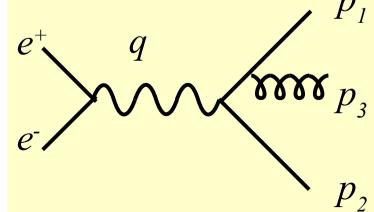
3-Particle Phase Space



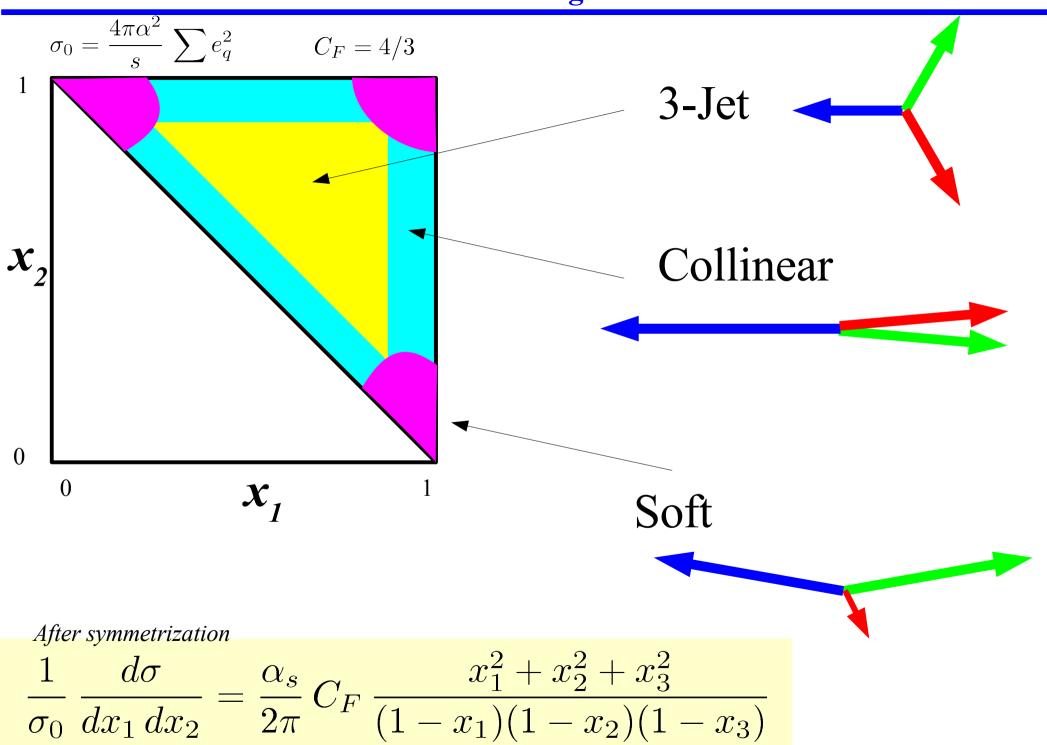
$$x_i = \frac{E_i}{\sqrt{s}/2}$$

$$x_i \subset [0, 1]$$

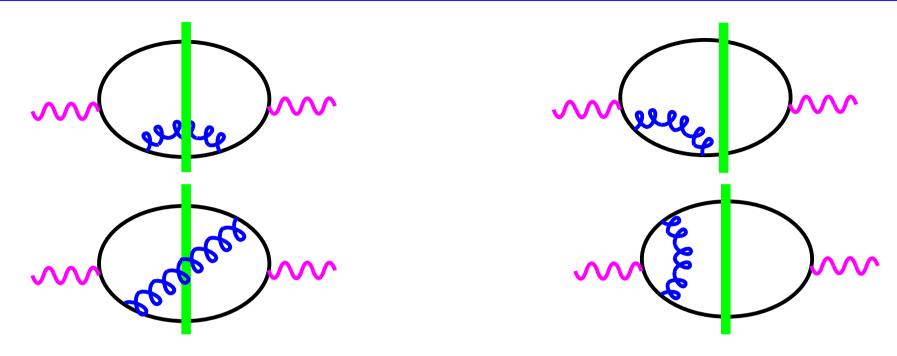
$$x_1 + x_2 + x_3 = 2$$



3-Particle Configurations



Singularities cancel between 2-particle and 3-particle graphs



$$\sigma_2^{(\epsilon)} = \sigma_0 C_F \frac{\alpha_s}{\pi} (...) \left[+ \frac{-1}{\epsilon^2} + \frac{-3}{2\epsilon} + \frac{\pi^2}{2} - 4 \right]$$

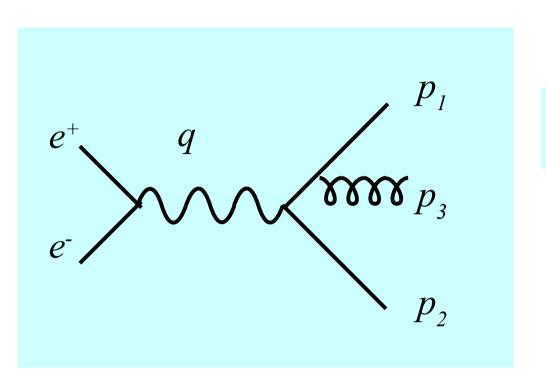
$$\sigma_3^{(\epsilon)} = \sigma_0 C_F \frac{\alpha_s}{\pi} (...) \left[+\frac{+1}{\epsilon^2} + \frac{+3}{2\epsilon} + \frac{-\pi^2}{2} - \frac{19}{4} \right]$$

$$\sigma_2^{(\epsilon)} + \sigma_3^{(\epsilon)} = \sigma_0 C_F \frac{\alpha_s}{\pi} (...) \left[0 + 0 + 0 + -\frac{35}{4} \right]$$

Same result with gluon mass regularization

e⁺e⁻ Differential Cross Sections

Differential Cross Section



What do we do about soft and collinear singularities????

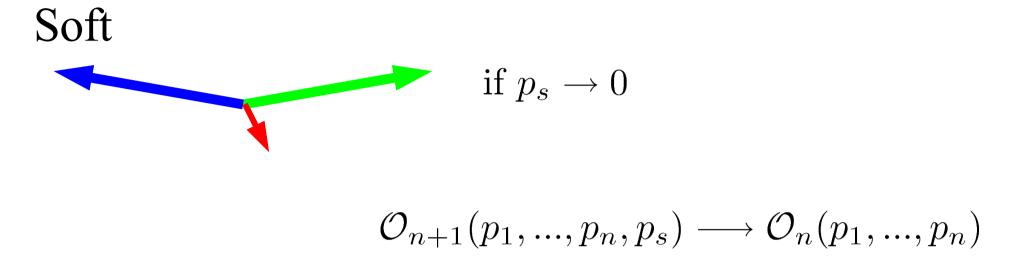
Introduce the concept of "Infrared Safe Observable"

The soft and collinear singularities will cancel **ONLY**

if the physical observables are appropriately defined.

Infrared Safe Observables

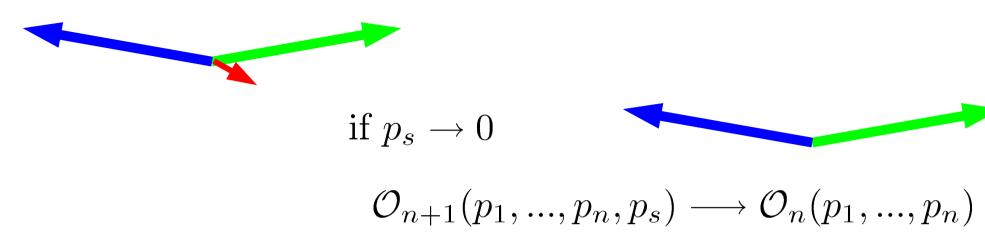
Observables must satisfy the following requirements:



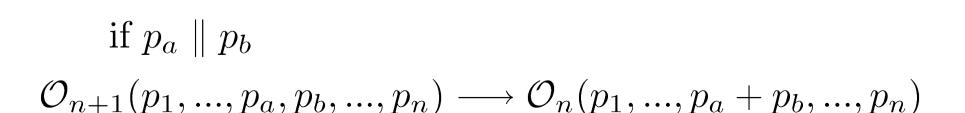
$$\mathcal{O}_{n+1}(p_1,...,p_a,p_b,...,p_n) \longrightarrow \mathcal{O}_n(p_1,...,p_a+p_b,...,p_n)$$

Infrared Safe Observables

Soft



Collinear



Examples: Infrared Safe Observables

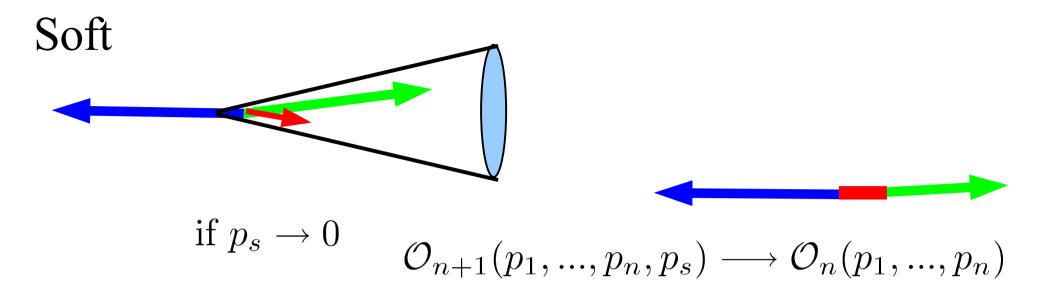
Infrared Safe Observables:

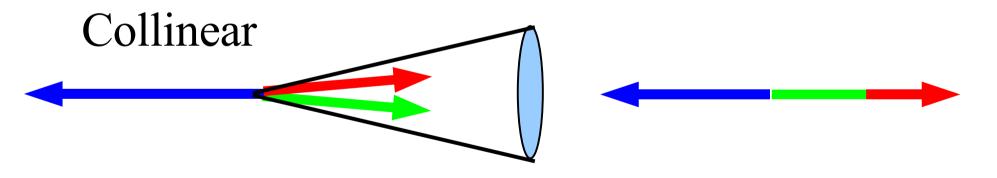
- Event shape distributions
- Jet Cross sections

Un-Safe Infrared Observables:

- Momentum of the hardest particle
 - (affected by collinear splitting)
- 100% isolated particles
 - (affected by soft emissions)
- Particle multiplicity
 - (affected by both soft & collinear emissions)

Infrared Safe Observables: Define Jets

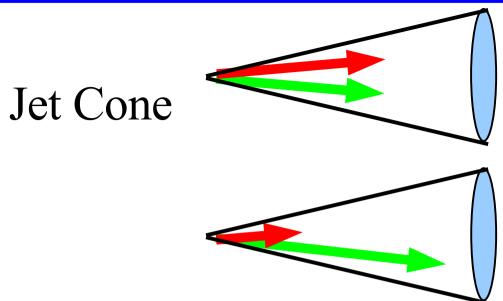


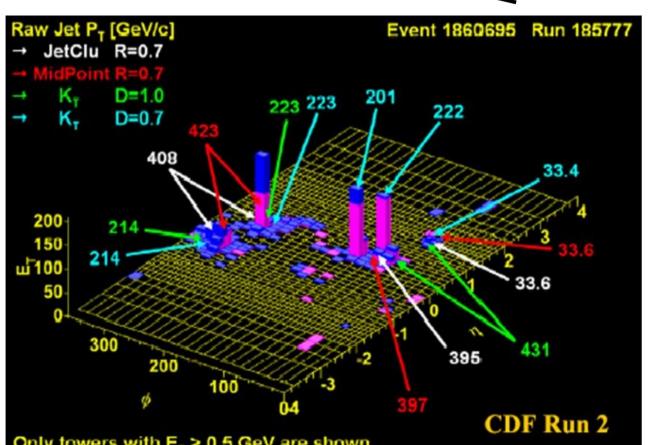


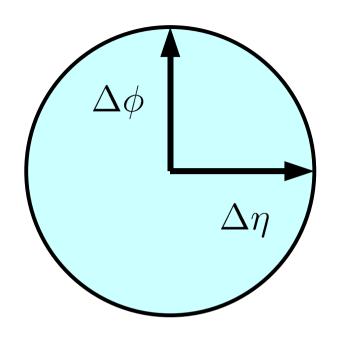
if
$$p_a \parallel p_b$$

$$\mathcal{O}_{n+1}(p_1,...,p_a,p_b,...,p_n) \longrightarrow \mathcal{O}_n(p_1,...,p_a+p_b,...,p_n)$$

Infrared Safe Observables: Define Jets

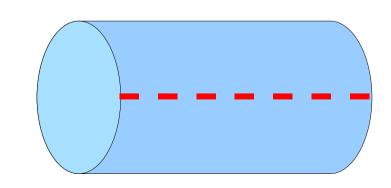




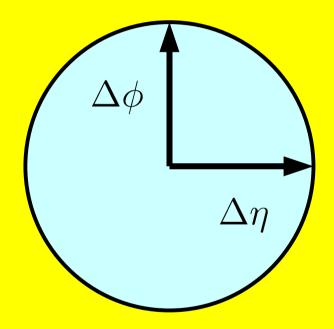


$$R^2 = (\Delta \eta)^2 + (\Delta \phi)^2$$

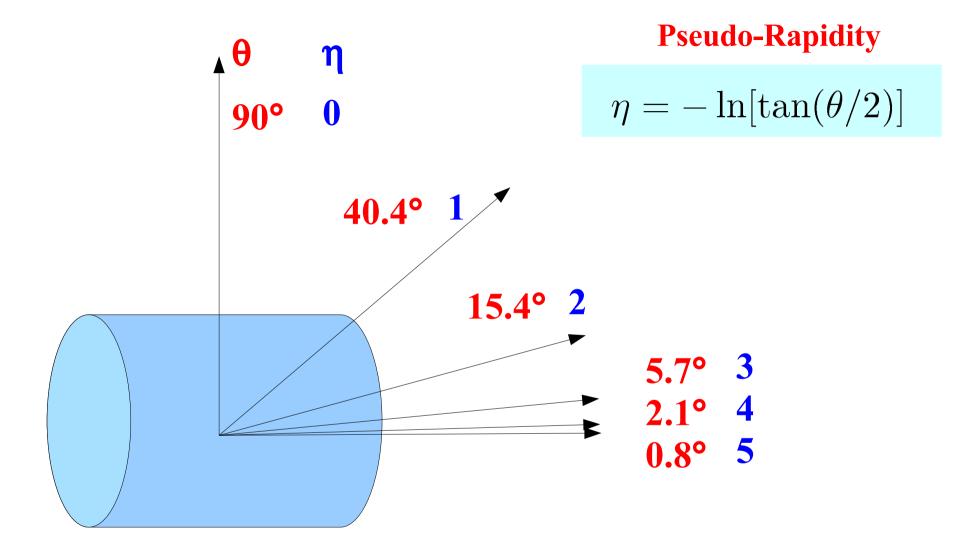
Let's examine this definition a bit more closely



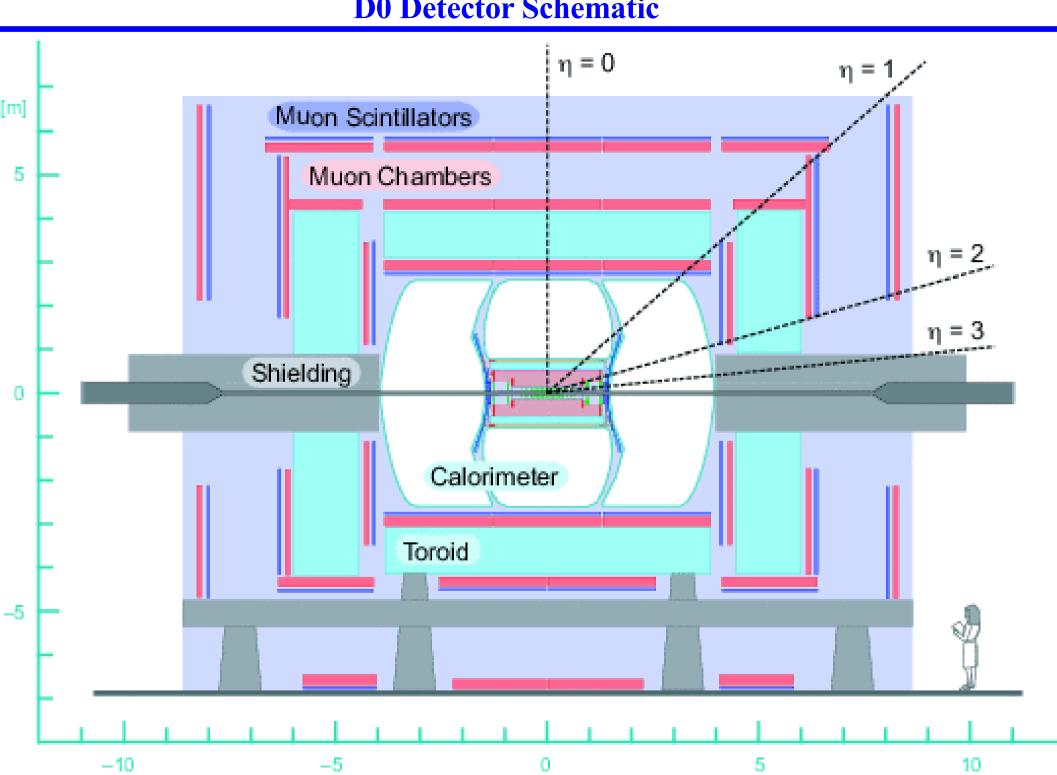
Jet Cone



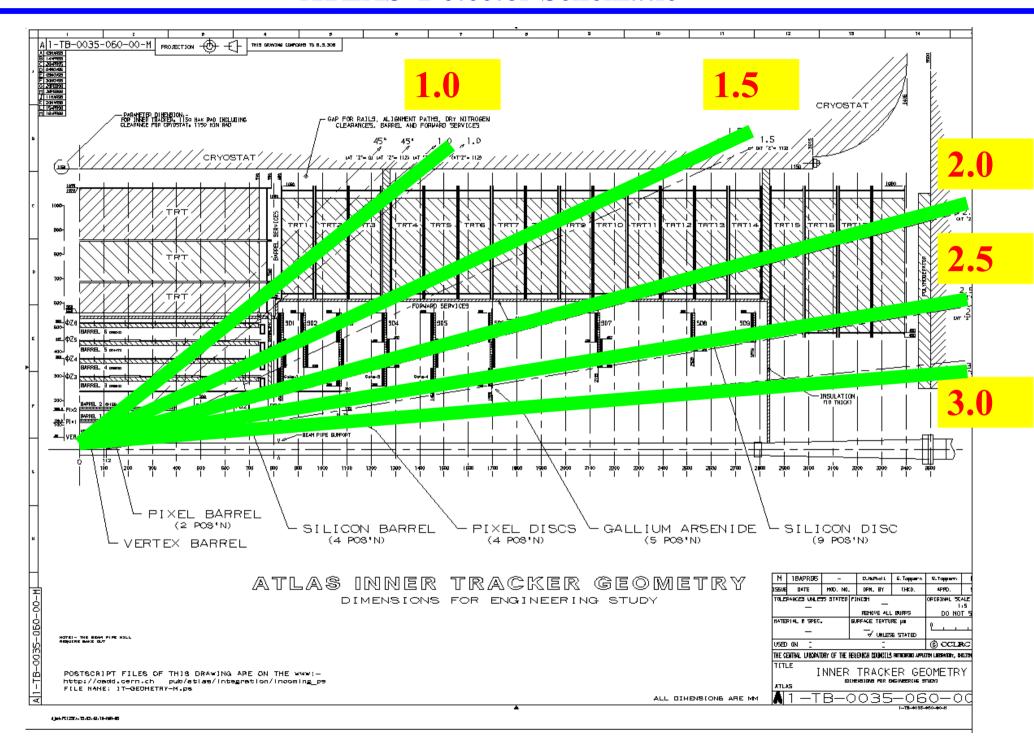
$$R^2 = (\Delta \eta)^2 + (\Delta \phi)^2$$



D0 Detector Schematic

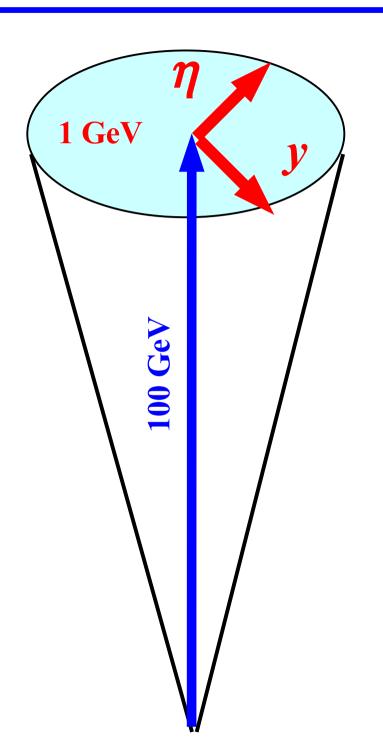


ATLAS Detector Schematic



homework

HOMEWORK: Jet Cone Definition



PROBLEM #2: In a Tevatron detector, consider two particles traveling in the transverse direction:

$$p_1^{\mu} = \{E, 100, 0, 1\}$$

 $p_2^{\mu} = \{E, 100, 1, 0\}$

where the componets are expressed in GeV units. E is defined such that the particles are massless.

- a) Compute E.
- b) For each particle, compute the pseudorapidity η and azimuthal angle ϕ .
- c) Explain how the above exercise justifies the correct jet radius definition to be:

$$R = \sqrt{\eta^2 + \phi^2}$$

In particular, why is the above correct and $R = \sqrt{\eta^2 + 2\phi^2}$, for example, incorrect.

HOMEWORK: Light-Cone Coordinates & Boosts

$$P_{\mu} = \{P_t, P_x, P_y, P_z\}$$

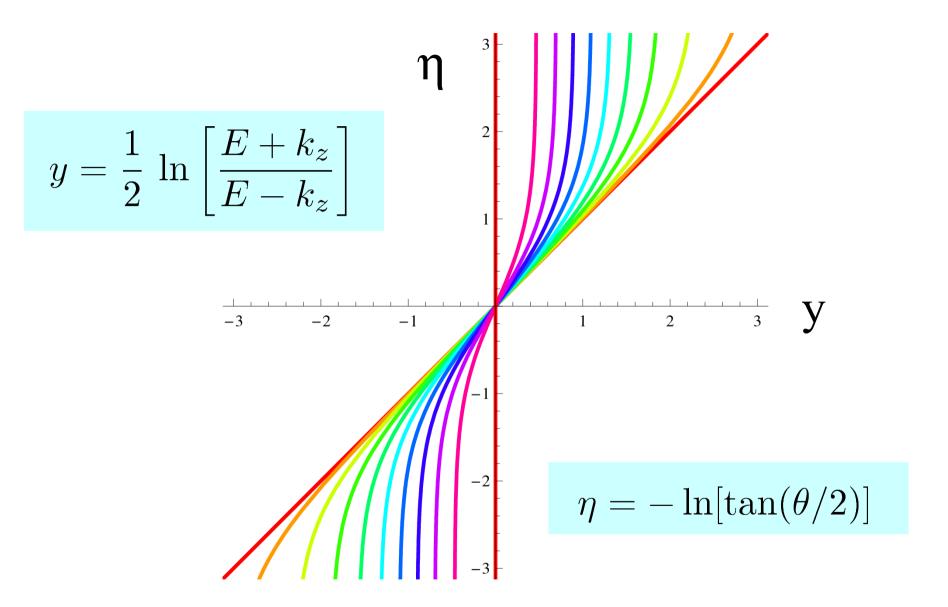
$$P_{\mu} = \{P_+, \overrightarrow{P_{\perp}}, P_-\}$$

$$\overrightarrow{P}_{\perp} = \{P_x, P_y\}$$

$$P_{\pm} = \frac{1}{\sqrt{2}} (P_t \pm P_z)$$

- 1) Compute the metric $g_{\mu\nu}$ in the light-cone frame, and compute $\overrightarrow{P}_1 \cdot \overrightarrow{P}_2$ in terms of the light-cone components.
- 2) Compute the boost matrix B for a boost along the z-axis, and show the light-cone vector transforms in a particularly simple manner.
- 3) Show that a boost along the z-axis uniformily shifts the rapidity of a vector by a constant amount.

Rapidity vs. Pseudo-Rapidity



$$\frac{M}{E} = \{0, 0.1, 0.2...\}$$

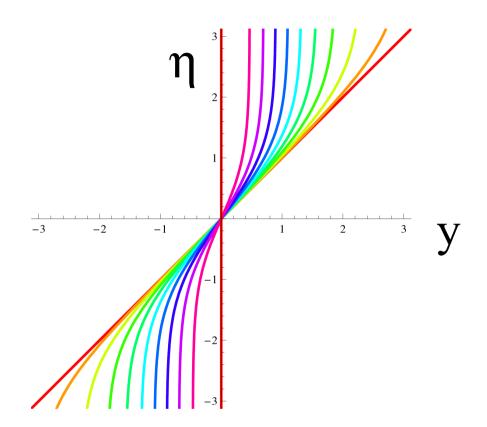
HOMEWORK: Rapidity vs. Pseudo-Rapidity

PROBLEM #1: Consider the rapidity y and the pseudo-rapidity η :

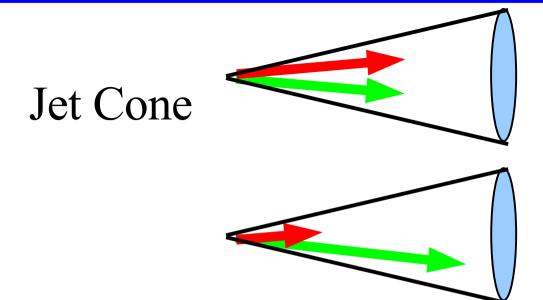
$$y = \frac{1}{2} \ln \left(\frac{E + P_T}{E - P_T} \right)$$

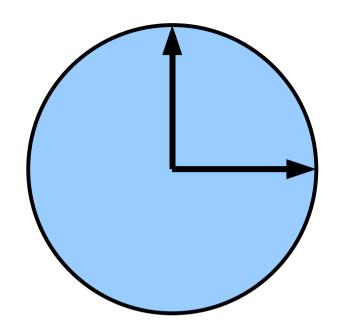
$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

- a) Make a parametric plot of $\{y, \eta\}$ as a function of m/E where m is the mas of the particle.
- b) Show that in the limit $m \to 0$ that $y \to \eta$.
- c) Make a table of η for $\theta = [0^{\circ}, 180^{\circ}]$ in steps of 5 degrees.
 - d) Make a table of θ for $\eta = [0, 10]$ i



Infrared Safe Observables: Define Jets

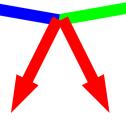




Problem:
The cone definition is simple,
BUT
it is too simple

$$R^2 = (\Delta \eta)^2 + (\Delta \phi)^2$$

Such configurations can be misidentified as a 3-jet event



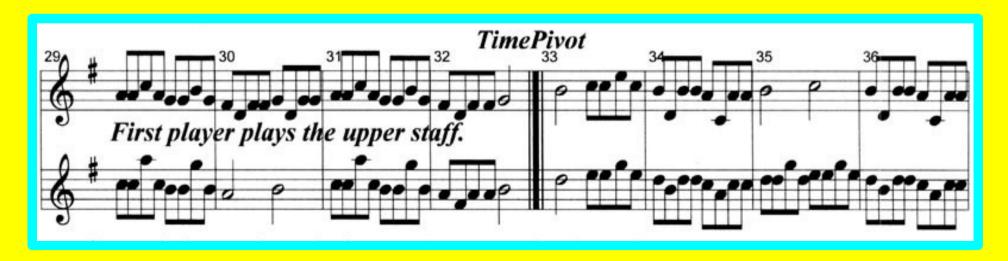
See talk by Ken Hatakeyama (Jets)

End of lecture 4: Recap

- Drell-Yan: Tremendous discovery potential
 - Need to compute 2 initial hadrons
- e⁺e⁻ processes:
 - Total Cross Section:
 - Differential Cross Section: singularities
- Infrared Safe Observables
 - Stable under soft and collinear emissions
- Jet definition
 - Cone definition is simple:
 - ... it is TOO simple

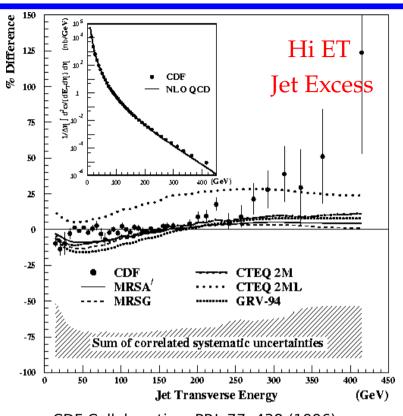
Final Thoughts

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i \gamma^{\mu} (D_{\mu})_{ij} - m \, \delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
$$= \bar{\psi}_i (i \gamma^{\mu} \partial_{\mu} - m) \psi_i - g G^a_{\mu} \bar{\psi}_i \gamma^{\mu} T^a_{ij} \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a ,$$

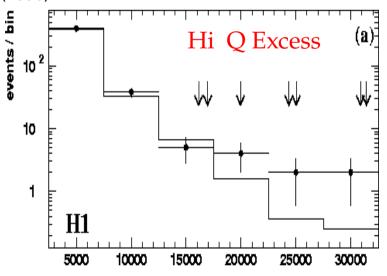


Scaling, Dimensional Analysis, Factorization, Regularization & Renormalization, Infrared Saftey ...

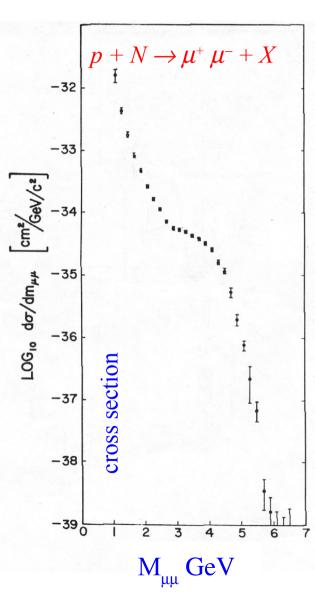
Can you find the Nobel Prize???

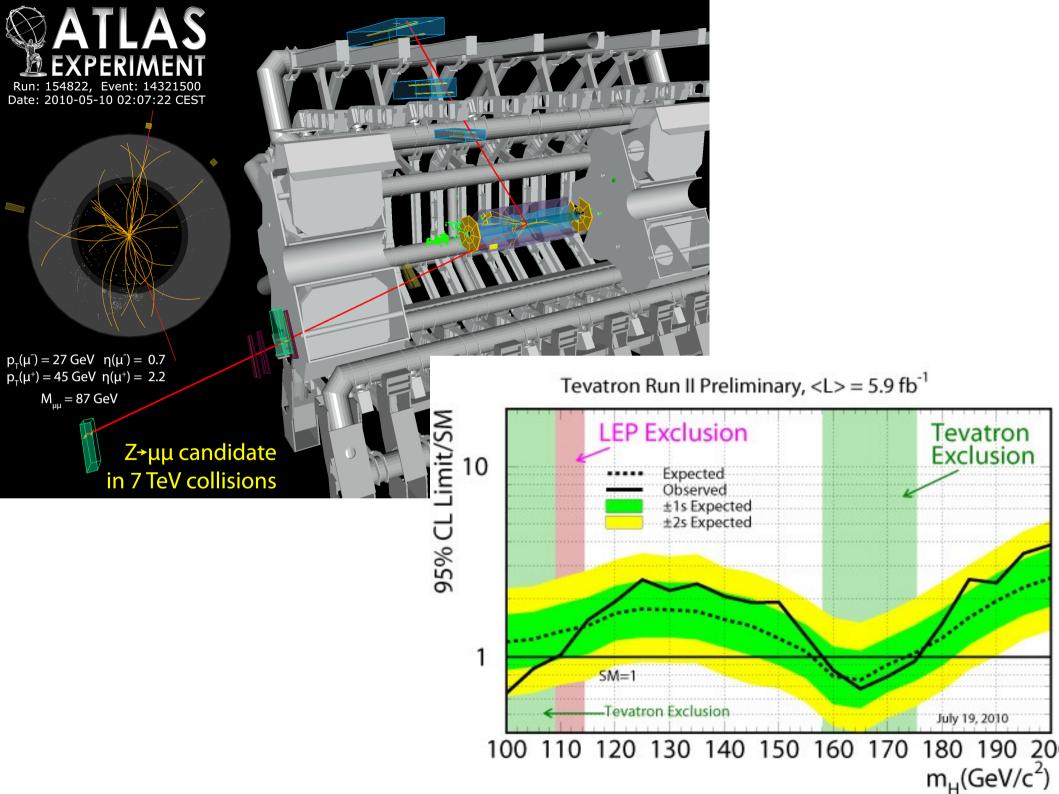


CDF Collaboration, PRL 77, 438 (1996)



H1 Collaboration, ZPC74, 191 (1997) \mathbf{Q}_{e}^{2} (GeV²) ZEUS Collaboration, ZPC74, 207 (1997)





Thanks to ...

Thanks to:

Dave Soper, George Sterman, Steve Ellis for ideas borrowed from previous CTEQ introductory lecturers

Thanks to Randy Scalise for the help on the Dimensional Regularization.

Thanks to my friends at Grenoble who helped with suggestions and corrections.

Thanks to Jeff Owens for help on Drell-Yan and Resummation.

To the CTEQ and MCnet folks for making all this possible.

END OF LECTURE 4