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The Menu

One LHC
A lot of Jets
Numerous Photons
Some W and Z Bosons
A handful of Top
Outlook

Unless noted otherwise all results are taken from ICHEP conference contributions:
Complete references can be found here:
ICHEP 2010 web page: http://www.ichep2010.fr
ATLAS public results web page:
https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults
CMS public results web page:
https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

Apologies to ALICE and LHCb,
I did not find much (yet) that fits
into the high pT category … :-( 

http://www.ichep2010.fr/
https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults
https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults
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Expected Event Rates at LHC
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L≈ 1027cm-2s-1 
L≈ 1028cm-2s-1 

L≈ 1029cm-2s-1 

L≈ 1030cm-2s-1 

Delivered Luminosity
Instantaneous luminosity at LHC:

Range since start-up:                        
     L = 1027 – 1030 cm-2s-1

Peak:                                                    
     L = 1.6 x 1030 cm-2s-1

Luminosity uncertainty:                    
     ~ 11 %

 Thousandfold increase!

More than 2/3 of the data
arrived just in last week(s)

Common uncertainty for all 
cross section measurements!
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~70 days

1e32 !!

Short Term Plan
Instantaneous luminosity at LHC:

Range since start-up:                        
     L = 1027 – 1030 cm-2s-1

Next steps:
Deliver 100 / nb of int. luminosity 
per day for 2 – 4 weeks
Commission running with 48 X 48 
bunches (32 colliding)

Further increase by two 
orders of magnitude!
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(stable beams)

1st W 

1st top-quark 
candidate  

1st Z 

2.55 TeV mass  
di-jet event

ATLAS Event (Hi)Story
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Attention: Pile-up Events
Four simultaneous pp interactions
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Some Numbers

Jets: σ
jet

(E
T

jet > 350GeV)
~ 2 / hour

W & Z bosons: σ
W
, σ

Z

~ 6 / min, 2 / min

Top quarks (σ
tt
)

~ 9 / day

Photons: σ
γ
(E

T
γ > 20GeV)

 ~ 24 / min

Note: Analyzed integrated luminosity and candidate selections vary
          between analyses and experiments!

Highest photon pT: ATLAS: 150 GeV 
                                  CMS:  ~ 200 GeV

Top candidate events: ATLAS: 2+7 = 9
(dilepton & lepton+jets)  CMS:     2+3 = 5

Highest jet pT:         ATLAS: 1.12 TeV 
                                   
Highest dijet mass: ATLAS: 2.55 TeV
                                  CMS:     2.13 TeV

W candidate events: ATLAS:  O(103)
(e,μ)                                CMS:  O(103)     
Z candidate events: ATLAS:   O(102) 
(ee & μμ)                    CMS:       O(102)
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Sketch of a pp Scatter

Not shown for simplicity:
Beam Remnants

Multiple Interactions
FSR off the hard partons

PLUS …
a Detector!

S. Gieseke



  

Jet 1

Jet 2

Highest-mass di-jet
event from ATLAS:
Mjj = 2.55 TeV



  

Highest pT jet event 
from ATLAS:
pT = 1.12 TeV



  

Highest-mass di-jet
event from CMS:
Mjj = 2.13 TeV

Multi-jet event from CMS:
pT,1 = 261 GeV
pT,2 = 188 GeV
pT,3 = 178 GeV

Jet 1

Jet 3

Jet 2
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See also lectures from Kenichi Hatakeyama
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Jet Algorithms 1/3

Establish a good correspondence 
between:
- detector measurements
- final state particles and
- hard partons

Primary Goal:

Two classes of algorithms:
- Cone algorithms: ”Geometrically”
  assign objects to the leading energy
  flow objects in an event
  (favorite choice at hadron colliders)
- Sequential recombination: Repeatedly
  combine closest pairs of objects
  (favorite choice at e+e- & ep colliders)
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Jet Algorithms 2/3

Jet Algorithm Desiderata (Theory):
Infrared safety
Collinear safety
Longitudinal boost invariance                  
(recombination scheme!)

Boundary stability                                      
(→ 4-vector addition, rapidity y)

Order independence                       
(parton, particle, detector)

Ease of implementation          
(standardized public code?)

“Snowmass Accord”, FNAL-C-90-249-E
Tevatron Run II Jet Physics, hep-ex/0005012

IR unsafe: Sensitive to the
addition of soft particles

Coll. unsafe: Sensitive to the
splitting of a 4-vector (seeds!)

2

0 1

1
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Jet Algorithms 3/3
Jet Algorithm Desiderata (Experiment):

Computational efficiency and predictability 
(use in trigger?, reconstruction times?)

Maximal reconstruction efficiency
Minimal resolution smearing and angular 
biasing
Insensitivity to pile-up                               
(mult. collisions at high luminosity ...)

Ease of calibration
Detector independence
Fully specified                                       
(details?, code?)

Ease of implementation                     
(standardized public code?)

Fast kT implementation

Original kT implementation

Jetograph y, G
. Sala m

, hep-p h/0906.18 33

JetClu (R
un I C

one)

Midpoint (R
un II C

one)

2-3 orders of
magnitude

p = 1: kT
p = 0: Cambridge/Aachen
p = -1: anti-kT 
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Jet Algorithms at LHC
kT

SISCone

Primary algorithm at LHC:

 Anti-kT:                                
   ATLAS R = 0.4, 0.6             
   CMS     R = 0.5, 0.7             
 

 kT: R = 0.4, 0.6                     
   (ATLAS & CMS)

 SISCone: R = 0.5, 0.7          
   (CMS)

 Cambridge/Aachen              
   used in jet substructure, for 
   example in boosted top

Fast kT, Cacciari/Salam, PLB641, 2006
SISCone, Salam/Soyez, JHEP05, 2007
anti-kT, Cacciari et al., JHEP04, 2008

anti-kT

Cam/AC

General interest to
work with all four
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Jet Measurements

K. Kousouris

Master Equation

Luminosity, common
uncertainty to all
measurements
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Jet Analysis Uncertainties

Theoretical Uncertainties 
(~ in order of importance):

PDF Uncertainty
pQCD (Scale) Uncertainty
Non-perturbative Corrections
PDF Parameterization
Electroweak Corrections
Knowledge of αS(MZ)

• • •

Experimental Uncertainties 
(~ in order of importance):

Jet Energy Scale (JES)
Noise Treatment
Pile-Up Treatment

Luminosity
Jet Energy Resolution (JER)
Trigger Efficiencies
Resolution in Rapidity
Resolution in Azimuth
Non-Collision Background
• • •
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Jet Energy Calibration

Offset: Correct for detector noise and pile-up                                       
             (use random triggers = zero bias, special read-out for noise) 
Relative (η): Equalize jet response in η w.r.t. control region (barrel)   
                      (dijet balancing; or MC)
Absolute (pT): Correct measured jet pT to particle jet pT                                         

                                           (photon + 1jet, Z + 1jet events)

Optional analysis dependent corrections: Electromagnetic fraction, 
flavour, … will not discuss here
Initial assumption on JEC uncertainty: CMS Calorimeter: 10%            
                                                                   ATLAS lAr Calo:     7%           
                                                                   CMS Calo&Tracks: 5%

à la CMS
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Resolution Unsmearing Steps

Motivation

The observed  cross section is higher 
than the true one due to the falling shape 
of the spectrum and the finite pT resolution. 
More events migrate into a bin of 
measured pT than out of it. No detector simulation,

artificial smearing.

Unsmearing steps:

Analytical expression of the pT resolution

Ansatz function with free parameters to be 
determined by the data

Fitting the data with the Ansatz function 
smeared with pT resolution.

Unsmearing correction calculated bin by 
bin.
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Unsmearing Applied

Unsmearing by
“Ansatz Method”

Artificial smearing,
no detector simulation

Artificial smearing,
no detector simulation

 Artificially smear jets by Gaussian with an arbitrary   
   but reasonable pT dependent width.

 Apply ansatz method
 Method corrects pT smearing effects on steeply         

 falling spectrum

Closure
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Incl. Jet pT: Exp. Uncertainties

Dominant: Absolute jet energy scaleCorrection for Jet Energy Resolution

ParticleFlow uses
 Calo&Tracker: 5%
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Incl. Jet pT: Theory Uncertainties
To compare with data correct NLO for:

 Multiple Parton Interactions (MPI)
 Hadronization & Decays (Lund, Cluster)

Dominant at low pT: np. Corrections
                at high pT: PDF
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Incl. Jet pT: Cross Section

Measurements mostly below QCD predictions,
compatible within uncertainties.
Measurements mostly below QCD predictions,
compatible within uncertainties.
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Incl. Jet pT: Data / Theory
Compatible within uncertainties!
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Previous Jets Data / Theory
Comparison of jet data from

STAR at RHIC 
H1 and ZEUS at HERA
CDF and D0 at Tevatron

Compatible with NLO pQCD
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Simulation: Contact Interactions
kT, D=0.6, 10 TeV

CMS PAS QCD-08-001

LHC reach
> 2 x 600 GeV
with 10/pb at
10 TeV

Comparison with Contact Interactions

Tevatron limit ~600 GeV
LHC ICHEP     ~600 GeV
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Dijet Mass

Cross Section Data / Theory17 / nb
Compatible within uncertainties!
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Dijet Mass Bump Hunt

296 / nb

120 / nb

No bumps                                          found so far!
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Reduction of Uncertainties 1

Both leading jets
in specific
η region 

~ strong coupling αs 
jet 3

Measurements so far: Absolute jet cross sections
Inclusive jet pT or dijet mass cross sections:

Most complicated, require all uncertainties to be under control!

Reduction strategy 1: Jet cross section ratios
Dijet mass cross section ratios in rapidity              new physics ?
3-jet to 2-jet cross section ratio                                strong coupling αs 

Many uncertainties cancelled (luminosity, …) or reduced (JES, ...) 
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Dijet Centrality Ratio
No deviations from QCD observed!
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Reduction of Uncertainties 2
Reduction strategy 2: Jet angular measurements 

Dijet chi distribution                             new physics ?
Dijet azimuthal decorrelation              deviations from QCD radiation ?

Reduced sensitivity to jet energy scale (JES) or resolution (JER)

In addition: Normalized distributions
Event shapes                   Test of QCD, MC tuning 

Less sensitive to JES, not dependent on luminosity
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Dijet Chi 1
Compatible with QCD!Int. Luminosity 17 / nb
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Dijet Chi 2

520 < Mjj / GeV < 680
430 < Mjj / GeV < 600

NLO x NP-corr. & uncertainty

Still no deviations from QCD observed!> threefold increase in int. Lumi
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Dijet Azimuthal Decorrelation
Dijets in pp collisions:

Δφ dijet = π → 
  Exactly two jets, no further radiation

Δφ dijet small deviations from π →
  Additional soft radiation outside the jets

Δφ dijet as small as 2π/3 →
  One additional high-pT jet

Δφ dijet small – no limit →
  Multiple additional hard jets in the event
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Dijet Azimuthal Decorrelation
Data well described by Pythia or Herwig++, less so by MadGraph
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Event Shapes

linear  ~  dijet spherical ~ multijet

Definition:
Transverse global Thrust

Similar as Event Shapes in 
e+e- and ep
 In praxis, need to restrict rapidity 

   range: |η| < 1.3 →                            
   Transverse central thrust
 Less sensitive to JES & JER          

   uncertainty
 No luminosity uncertainty
 Useful for MC tuning

T         0 T         2/π

Redefine to get             0  in LO dijet case
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Event Shapes
Dijet case:

Good description by Pythia6, Herwig++

Alpgen & MadGraph off as well as 
Pythia8

Multijet case:

Pythia6, Herwig++ still ok

Alpgen & MadGraph better
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First Light

γ

QCD Compton

Annihilation

See lectures from Jeff Owens
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Expectations

Prompt photon measurements 
provide:

Test of QCD
Another handle on gluon PDF
Background knowledge for Higgs, 
SUSY, etc. searches

What counts as prompt photon?
Direct photons, previous slide
NLO: Photons radiated off quarks 
(fragmentation photon) ?
Need to define isolation criterion!

Settings: ET > 10 GeV
                 Isolation: ET(parton, ΔR < 0.4) < 5 GeV
                 ATLAS ECAL: |η| < 1.37; 1.52 < |η| < 2.37
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Photon Difficulties
Isolation definition
Background from decays, in particular π0, η 
Background from jets faking a photon
Photon conversions in detector material

X ray of
CMS Pixel

“Real”

All candidates

Fake photons dominating 
by > 1 order of magnitude
(After preselection only, 
background scaled to 
match yield) 
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Refined Photon ID
Well balanced photon + jet event

Elm. Energy
Had. Energy
Tracks

Well isolated, narrow
elm. energy cluster

Typical jet:
Broad energy deposition,
elm. & had. energy,
tracks

No tracks ==>
unconverted photon
(Otherwise try to find
conversion vertex)

Apply
- Isolation criteria
- Photon ID via shower
  shape (η, φ also 
  longitudinal)
- Recovery procedure for
  converted photons
to refine measurement
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Prompt Photon Yield
Strategies for isolation and photon ID in ATLAS and CMS similar but 
different in the details. Recall:

ATLAS: Liquid Argon sampling calorimeter
CMS: Crystal elm. and brass/scintillating fibre had. calorimeter

Work on cross sections                                                                                 
in progress ...

All

Prompt

Tight selection,
isolation
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Standard Candles
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W/Z Measurements

Signal Background

Efficiency

Acceptance

Luminosity

Uncertainties:
ΔN: Purely statistics; improves with integrated luminosity
ΔB, ΔA, Δε: Exp. & theor.; improves over time with better understanding

Background, acceptance & efficiency estimations, i.a. using                    
MC detector simulations

ΔL: Luminosity uncertainty; improves with better understanding of LHC 
beam parameters and luminosity monitors
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Typical W/Z Event Selections

Differences in details between ATLAS and CMS depending on
detector coverage, fiducial volumes and performance

Electron channels:
W→eν: ET,e > 20 – 30 GeV
             |ηe| < 2.4 – 2.5
             MET > 25 – 30 GeV
             MT > 40 GeV
             Veto 2nd e from Z

Z→ee: ET,e > 15 – 20 GeV
            |ηe| < 2.4 – 2.5
            60 – 70 < Mee < 110 – 120 GeV

Lepton isolation: Radii in (η,Φ) of 0.3 to 0.5 are imposed
Lepton ID: Criteria might be looser for μ compared to e and for Z→ll compared to W→lν
Lepton Pairs: Opposite charges required

Muon channels:
W→μν: pT,μ > 20 GeV
             |ημ| < 2.0 – 2.5
             MET > 25 – 30 GeV
             MT > 40 GeV
             Veto 2nd μ from Z

Z→μμ: pT,μ > 15 – 20 GeV
            |ημ| < 2.0 – 2.5
            60 – 70 < Mμμ < 110 – 120 GeV
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W Transverse Mass 
Distributions

ATLAS: W → eν CMS: W → μν

Using missing ET instead of neutrino 

MET > 25 GeV
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Z Mass Distributions

ATLAS: Z → ee CMS: Z → μμ
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Inclusive W/Z Production

W: ~8-9% Precision  

Z: ~12% Precision

Theory (PDF, scale): 4-5% Lumi: 11%

CMS Cross Sections,
Lint = 198 / nb NNLO FEWZ

NNLO FEWZ

0.97 ± 0.04 nb NNLO FEWZ

ATLAS Z combined,
Lint = 225 / nb

Very good agreement, need more data!
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Inclusive W/Z Production

ATLAS:
W+, W- and W production,
e, μ combined

10 nb

10 nb

CMS:
W+, W- and W, Z production,
e, μ combined

Z

W

W
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Inclusive Z Production
ATLAS Z Cross Sections Z production e, μ separate
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Ratios, W plus Jets
W→eν, μν + Njets distribution

Reduced syst. exp. uncertainties also in
W+ / W- or
boson + N jets/ (N+1) jets ratios

Theory: 10.74 ± 0.04 

CMS: W / Z Ratio

Attention:
Different efficiencies, acceptances
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To the Top

p b
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t

W-

q
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b-jet

jet

jet

b-jet

See also lectures from Wolfgang Wagner
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Top Analyses at ICHEP

Top candidate events: ATLAS: 2+7 = 9
(dilepton & lepton+jets)  CMS:     2+3 = 5

Not enough luminosity yet!
Solidify analyses
Look for good candidates in 
dilepton (ee,eμ,μμ) and lepton+jets 
(ej,μj) channels
Check background description

ov
er

flo
w

e + jets

e + jets &
μ + jets
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Top Pair Candidate in μμ 
Channel

Event passes full 
selection:

Two muons with 
opposite charge
Two jets with clear b 
tags & secondary 
vertices
Significant missing ET  
(> 50 GeV)
Preliminarily 
reconstructed mass in 
160 – 220 GeV range
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Boosted Tops

Kaplan et al., PRL101, 2008
CMS PAS JME-09-001

Example analysis looking for top jets with pT of >≈ 600 GeV in signal 
sample Z' → ttbar → hadr. with MZ' = 2 TeV vs. QCD jets at similar pT

Use Cambridge/Aachen algorithm to resolve subjets, R = 0.8

Gain stat. from ≈ 68%

       of hadr. W decays

Efficiency for top jets:

       46%

Reject non-top jets:

       98%

Example has 800 GeV

Simulation
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Outlook
What will we learn from LHC?
LHC is a superb laboratory to investigate jet and weak boson 
production
The first top's have been sighted this side of the Atlantic
After four months we start beating Tevatron limits
Unknown territory is explored in the Standard Model …
and beyond ?
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Backups
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MC Event Generation Steps

A. Oehler
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Jet Cross Section 
Decomposition

Tevatron, 1.96 TeV LHC, 14 TeV
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Particle Flow Concept

~ 10%

~ 25%

~ 65%

Associate particle types to all measurements,
 apply type-dependent corrections

JE
T
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Relative Jet Corrections
M. Voutilainen, ICHEP2010



 66

Jet Calibration and Uncertainty
Jet calibration:
Simple P

T,jet
 and y dependent correction applied to measured jets at the electro-magnetic scale.

Using particle level (truth ) from Monte Carlo simulation as reference.

Jet energy scale uncertainty:
Evaluated using MC using various detector configurations, hadronic shower and physics models
Based on large test-beam experience.

In-situ measurements:

1) Using Di-jet balance to 
    transport uncertainty
    central -> forward

2) Additional uncertainty
    for pile-up from average
    tower energy per vertex

3) Cross-checked with
    single isolated hadron 
    response measurements 
    (E

calo
/p

track
)

    Uncertainty via:
    deconvolution of jets
    in individual particles

Jet energy scale uncertainty smaller than 7% for p
t,jet

>100 GeV

Example:

T. Carli, ICHEP2010
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Absolute Correction
(Simulation Result)

CMS PAS JME-09-005 CMS PAS JME-09-009

Comparison of jet responses

CMS detector simulation, calorimeter towers, ECMS = 10 TeV
Derived correction at the example
of Z(→μμ) + 1jet
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Jet Energy Resolution

CMS PAS JME-10-003

Jet energy resolution (JER):
- Can be measured from data using  
  Asymmetry Method used:
  For dijet events:

                                =>

  Used at Tevatron.
- Comparison using MC information
  (matched jets) gives consistent
  results
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Parton Density Experience 
“The data are compared with QCD predictions for
various sets of parton distribution functions.
 The cross section for jets with ET>200 GeV is
significantly higher than current predictions based on
O(αS

3) perturbative QCD calculations. ...”

P
hy

s.
R

ev
.L

et
t. 

77
 (1

99
6) CDF 1996

Explained by change in gluon density
which then can be constrained by jets!
Today:
      Much better estimates of PDF
      uncertainties
      But beware ...
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W7Z Signal & Background 
Expectations

Electron channels

Muon channels

ATLAS, CERN-OPEN-2008-020
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The ATLAS Detector

See also JINST 3 2008 S08003
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The CMS Detector
Inner detector (tracker):
●       Si pixel & strip tracker
●       σ/pT ≈ 1-2% (μ at 100 GeV)
Calorimeter:
●       PbWO4 crystal ECAL,              
        brass/scintillator HCAL
●       ELM: σE/E = 2.8% /√E + 0.3%
●       HAD: σE/E = 100% /√E + 5%
Muon system:
●       Drift tubes, cathode strips,       
         resistive plate chambers
●       σ/p ≈ 10 – 50% (muon alone)
●             ≈ 0.7 – 20% (with tracker)
Magnet:
●       Solenoid → 3.8T

See also:
PTDR I LHCC-2006-001,
JINST 3 2008 S08003
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Barrel (EB):
- η segments: 2x85
- φ segments: 360
→ 61200 crystals
     (PbWO

4
, 26 X

0
)

→ Δη x Δφ ≈
     0.0174 x 0.0174

R
i
 = 1.29m

Endcaps (EE):
- (x,y) grid on two halfs
- front face 28 x 28 mm2

→ 2 x 2 x 3662 crystals = 14648
     (PbWO

4
, 25 X

0
)

Energy resolution from test beam:
S = 2.8%, N = 120 MeV, C = 0.30%

Se
gm

en
ta

tio
n

Segmentation

Electromagnetic Calorimeter
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Hadronic Calorimeter
HCAL (tower structure):
- Barrel (HB):           |η| < 1.4,         2592 towers
- Endcaps (HE):      1.3 < |η| < 3.0, 2592     “
- Outside coil (HO): |η| < 1.26,        2160     “
→ Depth (Brass abs. & plast. scint., ≈ 6 - 10 λ

N
)

→ Δη x Δφ ≈ 0.087 x 0.087 → 0.350 x 0.175

- Forward (HF):      2.9 < |η| < 5.0 (not shown)
→ 2 x 864 towers (Brass,quartz fibers, ≈ 10 λ

N
)

→ Δη x Δφ ≈ 0.111 x 0.175 → 0.302 x 0.350

CASTOR calorimeter (not shown):
- 5.1 < |η| < 6.5, ≈ 22 X

0
, ≈ 10 λ

N

Design energy resolution:
~ (100/√E + 5.0) %
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