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Figure 1: a) A right triangle spei�ed by angles {θ, φ} andhypotenuse c. b) The same triangular area an be desribedby two similar triangles of hypotenuse a and b.
this is in ontrast to the other regularization shemes(e.g., uto� shemes, et.) whih violate these symme-tries. The symmetries of the eletroweak theory play aritial role in determining the dynamis of the partilesand their interations. Beause it respets these symme-tries, dimensional regularization has beome an essentialtool for the alulation of �eld theories.While dimensional regularization is a powerful and el-egant tehnique, most examples and appliations of di-mensional regularization are in the ontext of omplexhigher-order Quantum Field Theory (QFT) alulationsinvolving gauge and Lorentz symmetries. However, thevirtues of dimensional regularization an be exhibitedwithout the �distrations� of the assoiated QFT om-plexities.In the present paper, we will apply the dimensional reg-ularization method to a problem from an elementary un-dergraduate physis ourse, namely the eletri potentialof an in�nite line of harge.[5, 6℄ The example is simpleenough for the undergraduate to understand, yet on-tains many of the onepts we enounter in a true QFTalulation. We will ontrast the symmetry-preservingdimensional regularization approah with a symmetry-violating uto� approah.Imagining a variable number of dimensions an bea produtive exerise. To explain the weak nature ofthe gravitational fore physiists have reently positedthe existene of �Extra Dimensions.� Having onsideredspae-time dimensions in the neighborhood of D = 4,we brie�y ontemplate wider exursions of D = 4, 5, 6, ...dimensions.must be handled arefully. In partiular, the properties of theparity operator are dependent on the dimensionality of spae-time.

II. DIMENSION ANALYSIS: THEPYTHAGOREAN THEOREMTo illustrate utility of dimensional regularization anddimensional analysis, we warm-up with a pre-example.Our goal will be to demonstrate the Pythagorean Theo-rem, and our method will be dimensional analysis.We onsider the right triangle displayed in Fig. 1-a).From the Angle-Side-Angle (ASA) theorem, this an beuniquely spei�ed using the two angles {θ, φ} and thehypotenuse c. We now onstrut a formula for the areaof the triangle, Ac, using only these variables: {c, θ, φ}.Note that c has dimensions of length, and {θ, φ} are di-mensionless. From dimensional analysis, the area of thetriangle must have dimensions of length squared. As c isthe only dimensional quantity, the formula for Ac mustbe of the form:
Ac = c2f(θ, φ) (1)where f(θ, φ) is an unknown dimensionless funtion.Note that f(θ, φ) annot depend on the length c as thiswould spoil the dimensionless nature of f(θ, φ).We now observe that we an divide the original triangleof Fig. 1-a) into two similar triangles of hypotenuse a and

b as displayed in Fig. 1-b). Again, using the ASA theo-rem, we an represent the area of these triangles, Aa and
Ab, in terms of the variables {a, θ, φ} and {b, θ, φ}, re-spetively. Again from dimensional onsiderations, theseareas must be proportional to a2 and b2; thus, we obtain:

Aa + Ab = a2f(θ, φ) + b2f(θ, φ) . (2)Beause all three triangles are similar, their areas aredesribed by the same f(θ, φ). It is important to notethat the funtion f(θ, φ) is universal, dimensionless, andsale-invariant.Finally, we use �onservation of area� to obtain ourresult. Spei�ally, sine the area of the original triangle
Ac is equal to the sum of the ombined Aa and Ab,

Aa + Ab = Ac . (3)We an substitute Eqs. (1) and (2) to obtain our desiredresult:
a2f(θ, φ) + b2f(θ, φ) = c2f(θ, φ)

a2 + b2 = c2 . (4)The last equation is, of ourse, the Pythagorean The-orem. Clearly, there are muh simpler methods to provethis theorem; however, this method does illustrate thepower of the dimensional analysis approah.3 Addition-ally, we gain a new perspetive on the Pythagorean The-orem in this proof as it is linked to onservation of area.3 In Se. V we will use dimensional analysis to demonstrate that we
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Figure 2: Coordinate system for an in�nite line of harge run-ning in the y-diretion with linear harge density λ = dQ/dy.We ompute the potential V (x) at a �xed perpendiular dis-tane x from the line of harge. The distane to the elementof harge dQ is r =
√

x2 + y2.There are instanes, suh as renormalizable �eld the-ory, where dimensional analysis tools are essential tomaking ertain alulations tratable. The following ex-ample will illustrate some of these features.III. AN INFINITE LINE OF CHARGEA. Statement of the problemFor our next example we onsider the alulation ofthe eletri potential V for the ase of an in�nite line ofharge with linear harge density λ = dQ/dy. The on-tribution to the eletri potential from an in�nitesimalharge dQ is given by:4
dV =

1

4πǫ0

dQ

r
.We hoose our oordinate system (f., Fig. 2) suh that

x spei�es the perpendiular distane from the wire, y isthe oordinate along the wire, and r =
√

x2 + y2. Given
λ = dQ/dy we have dQ = λdy and an integrate alongthe length of the wire to obtain:

V (x) =
λ

4πǫ0

∫ +∞

−∞

dy
√

x2 + y2
= ∞ . (5)Unfortunately, this integral is logarithmially divergentand we obtain an in�nite result.must introdue an auxiliary sale µ in addition to the regulator

ǫ. For other interesting appliations of saling and dimensionalanalysis f. Refs. [7�10℄.4 We will use MKS units here so that our results redue to theusual undergraduate textbook expressions.

B. Sale invariane:If we take a loser look at this integral, we will demon-strate that it is sale invariant; that is, if we resale theargument x by a onstant fator k (x → k x), the resultis invariant.
V (k x) =

λ

4πǫ0

∫ +∞

−∞

dy
1

√

(k x)2 + y2

=
λ

4πǫ0

∫ +∞

−∞

d(y/k)
1

√

x2 + (y/k)2

=
λ

4πǫ0

∫ +∞

−∞

dz
1√

x2 + z2
(6)

= V (x) . (7)In the above we have implemented the resaling z = y/k;sine both y and z are dummy variables and the inte-gration limits are in�nite, the integral is unhanged. Aonsequene of this sale invariane is:
V (x1) = V (x2) . (8)At �rst glane, this result appears to be a disaster sinethe usual purpose of the eletri potential is to omputethe work W via the formula

W/Q = ∆V = V (x2) − V (x1)or to ompute the eletri �eld via
~E = −~∇V .As Eq. (8) suggests V (x2)−V (x1) = 0, this implies thatour attempts to ompute the work W or the eletri �eld

~E will be meaningless.We now understand why it is fortunate that V (x)is in�nite as in�nite numbers have some unusual prop-erties. For example, given a �nite onstant c we anwrite (shematially) ∞ + c = ∞ whih implies ∞ −
∞ = c. We now understand that even though wehave V (x1) = V (x2), beause these quantities are in-�nite we an still �nd that the di�erene is non-zero:
δV = V (x2) − V (x1) 6= 0. The hallenge is that the dif-ferene of two in�nite quantities is ambiguous; that is,how an we tell if ∞ − ∞ = c1 or ∞ − ∞ = c2 is theorret physial result?The solution is that we must regularize the in�nitequantities so that we an uniquely extrat the di�erene.IV. CUTOFF REGULARIZATION:A. Cuto� Regularization ComputationWe will �rst regularize the integral using a simple ut-o� method. That is, instead of onsidering an in�nite



4wire, we will ompute the potential for a �nite wire oflength 2L. In this instane, the potential beomes:5
V (x) =

λ

4πǫ0

∫ +L

−L

dy
1

√

x2 + y2

=
λ

4πǫ0
Log

[

+L +
√

L2 + x2

−L +
√

L2 + x2

]

. (9)We make the following observations.
• The result is �nite.
• In addition to the physial length sale x, V (x) de-pends on an arti�ial regulator L.
• We annot remove the regulator L without

V (x) beoming singular.
• The result for V (x) violates a symmetry of the orig-inal problem�translation invariane.B. Computation of E and δVEven though V (x) depends on the arti�ial regulator

L, we observe that all physial quantities are independentof this regulator in the limit L → ∞. Spei�ally, for theeletri �eld we have:
E(x) =

−∂V (x)

∂x
=

λ

2πǫ0x

L√
L2 + x2

−→
L→∞

λ

2πǫ0xand for the potential di�erene (proportional to the ele-tri work W ) we have:
δV = V (x1) − V (x2)

−→
L→∞

λ

4πǫ0
Log

[

x2
2

x2
1

]

. (10)As we observed in Se. III B, δV is �nite even though itis the di�erene of two in�nite terms V (x1) and V (x2).The regulator L allows us to unambiguously extrat the�nite di�erene δV , at whih point the regulator an bedisarded (L → ∞). The fat that the physial quantities
E(x) and δV are independent of the unphysial regulatoris a essential property of any regularization method; wewill disuss this further in Se. VII.5 For simpliity, we will alulate the potential at the mid-point ofthe wire; the general ase is more ompliated algebraially, butyields the same result in the L → ∞ limit.

n Ωn Γ(n/2) Objet Vn Surfae Sn−11 2
√

π Line 2R Point 22 2π 1 Disk πR2 Line 2πR3 4π 1

2

√
π 3-Ball 4π

3
R3 2-Sphere 4πR24 2π2 1 4-Ball π

2

2
R4 3-Sphere 2π2R35 8π

2

3

3

4

√
π 5-Ball 8 π

2

15
R5 4-Sphere 8π

2

3
R4Table I: Angular integration measure Ωn as a funtion of di-mension n. The surfae of the n-dimensional volume Vn is an

(n − 1)-dimensional manifold Sn−1. We reognize Ω2 as theirumferene of the unit irle, Ω3 as the surfae area of theunit sphere, and Ω4 as the 3-surfae of the 4-dimensional unithypersphere. See Appendix X for details.C. Broken translational symmetry:Notie that the presene of the uto� L breaks thetranslation symmetry of the original problem. That is,for a truly in�nite wire, our position in the y-diretionis inonsequential; however, for a �nite wire this is nolonger the ase. Spei�ally, if we shift our y-position bya onstant c to y → y′ = y + c, our result beomes:
V (x) =

λ

4πǫ0

∫ +L+c

−L+c

dy
1

√

x2 + y2
(11)

=
λ

4πǫ0
Log

[

+(L + c) +
√

(L + c)2 + x2

−(L − c) +
√

(L − c)2 + x2

]

.Clearly we have lost the translation invariane y → y′ =
y + c.While preserving symmetries is not of paramount im-portane in this simple example, it is essential for ertain�eld theory alulations. We now repeat this alulation,but instead using dimensional regularization whih willpreserve the translational symmetry.D. ReapIn summary, we �nd that our problem is solved at theexpense of 1) an extra sale L whih serves both to reg-ulate the in�nities and provide an auxiliary length sale,and 2) a broken symmetry�translational invariane.V. DIMENSIONAL REGULARIZATIONA. Generalization to arbitrary dimensionThe entral idea of dimensional regularization is toompute V (x) in n-dimensions where n is not neessar-ily an integer.[1�3℄ We an generalize the integration ofEq. (5) by replaing the one-dimensional integration ∫

dy



5by the general n-dimension result. Spei�ally, we makethe replaement:6
∫ +∞

−∞

dy =

∫

dV1 −→
∫

dVn =

∫

dΩn

∫ +∞

0

yn−1dy .where the angular integration measure is given by
Ωn =

∫

dΩn =
2πn/2

Γ
(

n
2

) ≡ n πn/2

Γ
(

n
2

+ 1
) . (12)Here, Ωn is the solid-angle in n-dimensions, and we haveused Γ(z + 1) = z Γ(z) where Γ is the Gamma funtion;in Appendix X we provide additional explanation, andverify that Ωn yields the expeted results for integer di-mensions as tabulated in Table I.B. Computation of V in arbitrary dimensionsThe generalized formula for V (x) now reads:[6℄

V (x) =
λ

4πǫ0

∫

dΩn

∫ +∞

0

yn−1

µn−1

dy
√

x2 + y2
. (13)Note that we are fored to introdue an auxiliary salefator of µn−1, where µ has units of length, to ensure

V (x) has the orret dimension.7 Replaing n = 1 − 2ǫto failitate expanding about n = 1 we obtain
V (x) =

λ

4πǫ0

Γ
[

1−n
2

]

(

x
µ

√
π
)1−n

=
λ

4πǫ0

(

µ2ǫ

x2ǫ

Γ[ǫ]

πǫ

)

. (14)We make the following observations about the dimen-sionally regularized result.
• V (x) depends on an arti�ial regulator ǫ whih isdimensionless.
• V (x) depends on an auxiliary sale µ whih hasdimensions of length.
• If we remove either the regulator ǫ or the auxiliarysale µ then V (x) will beome ill-de�ned.
• The dimensional regularization preserves the trans-lation invariane of the original problem.It is interesting to ontrast this result with the uto� reg-ularization method where L serves as both the regulatorand the auxiliary sale.6 Here, Vn with a subsript represents volume, and V (x) representsthe potential.7 Sine the fator λ/(4πǫ0) has units of potential, the integral mustbe dimensionless.

C. Computation of E and δVFor the potential di�erene we �nd
δV = V (x1) − V (x2)

−→
ǫ → 0

λ

4πǫ0
Log

[

x2
2

x2
1

] (15)and for the eletri �eld we obtain:
E =

−∂V (x)

∂x
=

λ

4πǫ0

[

2ǫµ2ǫΓ[ǫ]

πǫx1+2ǫ

]

−→

ǫ→0

λ

2πǫ0

1

x
. (16)As before, we observe that all physial quantities are in-dependent of both the regulator ǫ and the auxiliary sale

µ. D. ReapIn onlusion we �nd that the problem for V (x) issolved at the expense of an arti�ial regulator ǫ and anauxiliary sale µ. We also note the regulator ǫ and aux-iliary sale µ are separate entities in ontrast to the ut-o� regularization method where the length L plays bothroles. Additionally, translational invariane symmetryis preserved; the fat that dimensional regularization re-spets symmetries makes this tehnique indispensable for�eld theory alulations involving gauge symmetries andLorentz symmetries.VI. RENORMALIZATIONHaving demonstrated two separate methods to regu-larize the in�nities that enter the alulation of V (x), wenow turn to renormalization.While physial quantities suh as the work W ∼ δVand the eletri �eld ~E ∼ −~∇V are derived from V (x),the potential itself is not a physial quantity. In partiu-lar, we an shift the potential by a onstant c, V → V +c,and the physial quantities will be unhanged.To illustrate this point, let's expand V (x) of Eq. (14)in powers of ǫ:
V (x) =

λ

4πǫ0

[

1

ǫ
+ ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]

.Here, γE ≃ 0.577216 is the Euler onstant whih arisesfrom expanding the Gamma funtion Γ[ǫ] ∼ 1

ǫ − γE .Let us now invent a Minimal Subtration (MS) pre-sription. We have the freedom to shift V (x) by a on-stant, and we hoose this onstant to eliminate the 1/ǫterm:
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VMS(x) =

λ

4πǫ0

[

ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]

.We an go even further and invent a Modi�ed Min-imal Subtration (MS) presription to eliminate the
ln[e−γE/π] term as well:
VMS(x) =

λ

4πǫ0

[

ln

[

µ2

x2

]

+ O(ǫ)

]

.After renormalization we an remove the regulator (ǫ →
0), but not the auxiliary sale µ; reall that without anauxiliary sale to generate a dimensionless ratio µ/x weould not have any substantive x-dependene.In addition to the µ-dependene we will also haverenormalization sheme dependene in V (x). However,physial observablesmust be independent of the auxiliarysale µ and the partiular renormalization sheme. Forexample, the omputed potential di�erenes yield identi-al results when alulated onsistently in a single renor-malization sheme:
VMS(x1) − VMS(x2) = δV = VMS(x1) − VMS(x2) .Here, the results of the Minimal Subtration (MS) andthe Modi�ed Minimal Subtration (MS) are idential forphysial quantities.However, if you mix renormalization shemes inonsis-tently you will obtain non-sensible results that are de-pendent on the hoie of sheme:8
VMS(x1) − VMS(x2) 6= δV 6= VMS(x1) − VMS(x2) .A. Connetion to QFTThis elementary problem of the in�nite line hargeontains all the key onepts of the dimensional regu-larization and renormalization that we enounter in thefull QFT radiative alulations. For example, in the ra-diative Quantum Chromodynamis (QCD) alulation ofthe Drell-Yan proess (qq̄ → γ∗ → µ+µ−) we enounterthe following in�nite expression:9

D(ǫ)

ǫ
=

(

4πµ2

Q2

)ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

∼ 1

ǫ
− ln

(

e+γE

4π

)

+ ln

(

µ2

Q2

)

.8 The reader is invited to verify that the omputation of the ele-tri �eld ~E(x) in a onsistent renormalization sheme yields theprevious results of Eq. (16), and an inonsistent appliation ofthe shemes does not.9 Cf., Ref. [11℄, Eq. (46) and Eq. (47).

In this equation, Q represents the harateristi energysale; this is the independent variable that is analogousto x in our example. While this is for a 4-dimensionalQCD alulation, the struture of the divergent termis remarkably similar to our simple one-dimensional ex-ample above. For the QCD alulation, the Mini-mal Subtration (MS) presription for this Drell-Yanalulation eliminates the 1/ǫ term, and the Modi�edMinimal Subtration (MS) presription eliminates the
1/ǫ − ln[e+γe/(4π)] so that only the ln[µ2/Q2] remains.VII. THE RENORMALIZATION GROUPEQUATIONA. Physial Observables:The fat that the physial observables are independentof the unphysial auxiliary sale µ is simply a onse-quene of the renormalization group equation (RGE):10

µ
dσ

dµ
= 0 (17)where σ represents any physial observable. Thus, therenormalization group equation implies that the eletri�eld ~E = ~∇V and the workW = δV are also independentof the µ sale:

µ
dE

dµ
= 0 µ

dW

dµ
= 0 .These results are impliit in the �nal expression for thephysial quantities E and V .B. Relating Perturbative & Non-PerturbativeFuntionsWhile the result of Eq. (17) appears to be almost triv-ial in the above example, this yields a very importantresult when applied to sattering proesses involving non-perturbative hadroni partiles (proton, nuleons, et.).We an write the physial ross setion σ as a produt of anon-perturbative distribution f whih desribes the soft(low energy) physis, and a perturbative term ω whihdesribes the hard (high energy) physis:11

σ = f ω .10 For an exellent pedagogial analysis of the renormalizationgroup equation f. Ref.[12℄.11 More preisely, f is a �parton distribution funtion,� and ω isa �hard-sattering ross setion.� The ross setion σ is a on-volution σ = f ⊗ ω whih an be deomposed by taking Mellinmoments; hene, the disussion of this setion applies formallyto the Mellin transforms of f and ω.
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Deff E(r) V (r) Example3 1

r
2

1

r
Point harge2 1

r
1 ln r Line harge1 1

r
0 r Sheet hargeTable II: Example harge on�gurations that illustrate Deff =

{3, 2, 1} e�etive dimensions.Di�erentiating with respet to lnµ and applying thehain rule we �nd
dσ

d lnµ
= 0 =

df

d lnµ
ω + f

dω

d lnµwhere we have used Eq. (17). Rearranging terms, weplae all the f dependene on the left-hand-side (LHS)and the ω dependene on the right-hand-side (RHS),
1

f

df

d lnµ
= −γ =

1

ω

dω

d lnµ
. (18)We introdue a separation onstant12 −γ. We note theLHS of Eq. (18) depends only on the non-perturbativequantity f ; therefore, the LHS is (in priniple) inalula-ble. Conversely, the RHS of Eq. (18) depends only on theperturbative quantity ω; therefore, the RHS is alulablein perturbation theory, and we an use this to ompute

−γ.Having omputed −γ, we an solve Eq. (18) for f toobtain13
f ∼ µ−γ . (19)Equation (19) is a remarkable result! Even though f wasan inalulable non-perturbative quantity, we are able to�nd the µ-dependene for this funtion. Thus, the renor-malization group equation has allowed us to ompute the

µ-dependene of an inalulable quantity by relating the(inalulable) non-perturbative df/f to the (alulable)perturbative dω/ω = −γ.VIII. EXTRA DIMENSIONSA. E and V in arbitrary dimensionsIn the above example, we used the mathematial trikof generalizing the number of integration dimensions from12 Unless f and ω are trivially related, the most reasonable solutionfor this type of di�erential equation is that both the LHS andRHS of Eq. (18) equal a separation onstant, −γ.13 The term −γ is referred to as the anomalous dimension. Itis a dimension beause it determines the µ-saling dimensionof f in Eq. (19). It is anomalous beause if f satis�ed exatsaling, f would be invariant under a sale hange (µ1 → µ2);so f = µ0 = const, and any non-zero value for −γ would beanomalous.

Figure 3: Eletri �eld for a point harge on�ned in onein�nite dimension (x) and one �nite dimension (y) of sale R.an integer to a ontinuous parameter. While we only letthe dimension stray by 2ǫ, it is useful to onsider moredrasti shifts as in the ase of �Extra-Dimensions� whihhave reently been hypothesized.[13, 14℄ In this setion,we provide an example of a dimensional transmutation;that is where the e�etive dimension Deff hanges fromone integer to another as we probe the system at di�erentsales.For example, we an generalize the r-dependene of thepotential and eletri �eld in for the ase of D-dimensionsas:14
V (r) ∼ 1

rD−2
E(r) ∼ 1

rD−1
.A quik hek will verify that this reprodues the usualexpressions in ordinary D = 3 spaial dimensions. Ad-ditionally, in 3-dimensions we an reate harge distri-butions that mimi lower order spatial dimensions; thisis illustrated in Table II. For a (zero-dimensional) point-harge in 3-dimensions, aording to Gauss's law the ele-tri �eld lines spread out on a surfae of D−1 = 2 dimen-sions, and we observe E(r) ∼ 1/r2. Similarly, for a (one-dimensional) line-harge, our spae is now e�etively

D = 2 dimensional; hene the eletri �eld lines spreadout on a surfae of D − 1 = 1 dimension, and we ob-serve E(r) ∼ 1/r. Finally, for a (two-dimensional) sheet-harge, our spae is now e�etively D = 1 dimensional;hene the eletri �eld lines spread out on in D − 1 = 0dimensions, and we observe E(r) ∼ 1/r0 = constant.Figure 3 displays the eletri �eld lines for a pointharge on�ned to one in�nite dimension (x) and one�nite (or ompat) dimension (y) of sale R. We observethat if we examine the eletri �eld at sales small om-pared to the ompat dimension R (r ≪ R), we �nd thethe eletri �eld lines spread out in 2 dimensions and weobtain the usual 2-dimensional result ~E(r) ∼ 1/r; on-versely, if we examine the eletri �eld at distane sales14 Note, for the speial ase D=2 the potential V (r) has a logarith-mi form; see Table II for details.



8large ompared to the ompat dimension R (r ≫ R), we�nd the 1-dimensional result ~E(r) ∼ constant. In thisexample, the e�etive dimension of our spae hangesas we move from small (D = 2) to large length sales(D = 1). IX. CONCLUSIONSIn this paper we have omputed the potential of an in-�nite line of harge using dimensional regularization. Byontrasting this alulation with the onventional uto�approah, we demonstrated that dimensional regulariza-tion respets the symmetries of the problem�namely,translational invariane. The dimensional regularizationrequires that we introdue a regulator ǫ and an auxiliarylength sale µ. We then renormalized the potential toeliminate the 1/ǫ singularities; this potential was �niteand independent of the regulator ǫ, but it depended onthe partiular renormalization sheme and renormaliza-tion sale µ. However, we demonstrated that all physialobservables (E, δV ) were sheme and sale invariant.As this example exhibits many of the key features ofdimensional regularization as applied to QFT, it pro-vides an exellent opportunity to understand the virtuesof this regularization method without the ompliationsof gauge symmetries. As suh, this example serves as anideal pedagogial study.AknowledgmentWe thank Matthew Bernstein, Bryan Field, HowieHaber, Robert Ja�e, and John Ralston for valuable dis-ussions. We also thank the AJP reviewers for helpfulsuggestions. F.I.O. aknowledges the hospitality of Ar-gonne National Laboratory and CERN where a portionof this work was performed. This work is supported bythe U.S. Department of Energy under grant DE-FG02-04ER41299, the Lightner-Sams Foundation.X. APPENDIXA. 3-DimensionsThe volume of a 3-sphere (V3) in spherial oordinatesis a produt of the angular and radial integrals:
V3 =

∫

dΩ3

∫ R

0

r2dr =

∫ 2π

0

dφ

∫ π

0

sin θ dθ

∫ R

0

r2dr

=
4π

3
R3 .Note that the angular integral ∫ Ω3 is dimensionless whilethe radial integral ∫

r2dr arries the dimensions.

For the 2-dimensional surfae area (S2), we an use theabove V3 integral with a δ-funtion δ(r−R) to onstrainus to the surfae:
S2 =

∫

dΩ3

∫ R

0

dr r2δ(r − R) = 4πR2 .B. n-DimensionsHaving established the familiar 3-dimensional ase, wean generalize to n-dimensions:
Vn =

∫

dΩn

∫ R

0

rn−1dr = Ωn
Rn

n
(20)and the (n − 1)-dimensional surfae area (Sn−1) of the

n-dimensional volume Vn is:
Sn−1 =

∫

dΩn

∫ R

0

dr rn−1 δ(r−R) = Ωn Rn−1 . (21)With the above we have the general relation:
Vn

Sn−1

=
R

n
.Additionally, we �nd the following relation:

dVn

dR
= Sn−1 .This demonstrates that the derivative (or boundary) ofthe volume is the surfae area, ∂V = S.C. 1-DimensionAs the 1-dimensional ase has a subtle fator of 2, weompute this expliitly. Using Eq. (20) we �nd the vol-ume of a 1-dimensional line to be:

V1 =

∫

dV1 =

∫

dΩ1

∫ R

0

r0 dr = 2R .Note, this result is not R but 2R as the 1-dimensionalline extends from −R to +R.In the notation of Eq. (5) we have (with R → ∞)
∫

dV1 =

∫

dΩ1

∫ +∞

0

dy = 2

∫ +∞

0

dy =

∫ +∞

−∞

dy .Thus, we an make the replaement ∫ +∞

−∞
dy →

∫

dV1,and the n-dimensional generalization is then:
∫ +∞

−∞

dy =

∫

dV1 −→
∫

dVn =

∫

dΩn

∫ +∞

0

yn−1dy .Eq. (5) for the potential V (x) then beomes:
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V (x) =

λ

4πǫ0

∫

dΩn

∫ +∞

0

yn−1 dy
√

x2 + y2
. (22) Note that Eq. (22) is not dimensionally orret as thefator yn−1 will need to be ompensated by introduingan auxiliary sale fator as we do in Eq. (13).[1℄ Gerard 't Hooft, M. J. G. Veltman. Regularization andRenormalization of Gauge Fields. Nul. Phys., B44:189�213, 1972.[2℄ Gerard 't Hooft. Dimensional regularization and therenormalization group. Nul. Phys., B61:455�468, 1973.[3℄ C. G. Bollini, J. J. Giambiagi. Dimensional Renormal-ization: The Number of Dimensions as a RegularizingParameter. Nuovo Cim., B12:20�25, 1972.[4℄ Gloria B. Lubkin. Nobel Prize to 't Hooft and Veltmanfor Putting Eletroweak Theory on Firmer Foundation.Physis Today, 52:17, 1999.[5℄ C. Kaufman. An Illustration from Classial Physis ofRenormalization Mathematis. Am. J. Phys., 37:560�561, 1969.[6℄ M. Hans. An eletrostati example to illustrate di-mensional regularization and renormalization group teh-nique. Am. J. Phys., 51:694�698, 1983.[7℄ Arkady B. Migdal. Qualitative Methods in QuantumTheory. Front. Phys., 48:1�437, 1977.[8℄ Steven Vogel. Exposing Life's Limits with Dimensionless
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