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es 9I. DIMENSIONAL REGULARIZATIONA. Introdu
tion and MotivationIn 1999, Gerardus 't Hooft and Martinus J.G.Veltmanre
eived the Nobel Prize in Physi
s �for elu
idatingthe quantum stru
ture of ele
troweak intera
tions inphysi
s.� In parti
ular, they demonstrated that the non-abelian ele
troweak theory 
ould be 
onsistently renor-malized to yield unique and pre
ise predi
tions.A key ingredient for their demonstration was the devel-opment of the dimensional regularization te
hnique.[1�3℄ That is, instead of working in pre
isely D=4 spa
e-time dimensions, they generalized the dimension to be a
ontinuous variable so they 
ould 
ompute the theory inD=4.01 or D=3.99 dimensions.1An important property of the dimensional regulariza-tion is that it respe
ts gauge and Lorentz symmetries;20 This work is based on le
tures presented a the CTEQSummer S
hools on QCD Analysis and Phenomenology.http://www.
teq.org1 See Ref. [4℄ and also the webpage 
itation for the 1999 NobelPrize in Physi
s at: http://nobelprize.org/2 Note, for 
hiral symmetries there are some subtle di�
ulties that
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Figure 1: a) A right triangle spe
i�ed by angles {θ, φ} andhypotenuse c. b) The same triangular area 
an be des
ribedby two similar triangles of hypotenuse a and b.
this is in 
ontrast to the other regularization s
hemes(e.g., 
uto� s
hemes, et
.) whi
h violate these symme-tries. The symmetries of the ele
troweak theory play a
riti
al role in determining the dynami
s of the parti
lesand their intera
tions. Be
ause it respe
ts these symme-tries, dimensional regularization has be
ome an essentialtool for the 
al
ulation of �eld theories.While dimensional regularization is a powerful and el-egant te
hnique, most examples and appli
ations of di-mensional regularization are in the 
ontext of 
omplexhigher-order Quantum Field Theory (QFT) 
al
ulationsinvolving gauge and Lorentz symmetries. However, thevirtues of dimensional regularization 
an be exhibitedwithout the �distra
tions� of the asso
iated QFT 
om-plexities.In the present paper, we will apply the dimensional reg-ularization method to a problem from an elementary un-dergraduate physi
s 
ourse, namely the ele
tri
 potentialof an in�nite line of 
harge.[5, 6℄ The example is simpleenough for the undergraduate to understand, yet 
on-tains many of the 
on
epts we en
ounter in a true QFT
al
ulation. We will 
ontrast the symmetry-preservingdimensional regularization approa
h with a symmetry-violating 
uto� approa
h.Imagining a variable number of dimensions 
an bea produ
tive exer
ise. To explain the weak nature ofthe gravitational for
e physi
ists have re
ently positedthe existen
e of �Extra Dimensions.� Having 
onsideredspa
e-time dimensions in the neighborhood of D = 4,we brie�y 
ontemplate wider ex
ursions of D = 4, 5, 6, ...dimensions.must be handled 
arefully. In parti
ular, the properties of theparity operator are dependent on the dimensionality of spa
e-time.

II. DIMENSION ANALYSIS: THEPYTHAGOREAN THEOREMTo illustrate utility of dimensional regularization anddimensional analysis, we warm-up with a pre-example.Our goal will be to demonstrate the Pythagorean Theo-rem, and our method will be dimensional analysis.We 
onsider the right triangle displayed in Fig. 1-a).From the Angle-Side-Angle (ASA) theorem, this 
an beuniquely spe
i�ed using the two angles {θ, φ} and thehypotenuse c. We now 
onstru
t a formula for the areaof the triangle, Ac, using only these variables: {c, θ, φ}.Note that c has dimensions of length, and {θ, φ} are di-mensionless. From dimensional analysis, the area of thetriangle must have dimensions of length squared. As c isthe only dimensional quantity, the formula for Ac mustbe of the form:
Ac = c2f(θ, φ) (1)where f(θ, φ) is an unknown dimensionless fun
tion.Note that f(θ, φ) 
annot depend on the length c as thiswould spoil the dimensionless nature of f(θ, φ).We now observe that we 
an divide the original triangleof Fig. 1-a) into two similar triangles of hypotenuse a and

b as displayed in Fig. 1-b). Again, using the ASA theo-rem, we 
an represent the area of these triangles, Aa and
Ab, in terms of the variables {a, θ, φ} and {b, θ, φ}, re-spe
tively. Again from dimensional 
onsiderations, theseareas must be proportional to a2 and b2; thus, we obtain:

Aa + Ab = a2f(θ, φ) + b2f(θ, φ) . (2)Be
ause all three triangles are similar, their areas aredes
ribed by the same f(θ, φ). It is important to notethat the fun
tion f(θ, φ) is universal, dimensionless, ands
ale-invariant.Finally, we use �
onservation of area� to obtain ourresult. Spe
i�
ally, sin
e the area of the original triangle
Ac is equal to the sum of the 
ombined Aa and Ab,

Aa + Ab = Ac . (3)We 
an substitute Eqs. (1) and (2) to obtain our desiredresult:
a2f(θ, φ) + b2f(θ, φ) = c2f(θ, φ)

a2 + b2 = c2 . (4)The last equation is, of 
ourse, the Pythagorean The-orem. Clearly, there are mu
h simpler methods to provethis theorem; however, this method does illustrate thepower of the dimensional analysis approa
h.3 Addition-ally, we gain a new perspe
tive on the Pythagorean The-orem in this proof as it is linked to 
onservation of area.3 In Se
. V we will use dimensional analysis to demonstrate that we
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Figure 2: Coordinate system for an in�nite line of 
harge run-ning in the y-dire
tion with linear 
harge density λ = dQ/dy.We 
ompute the potential V (x) at a �xed perpendi
ular dis-tan
e x from the line of 
harge. The distan
e to the elementof 
harge dQ is r =
√

x2 + y2.There are instan
es, su
h as renormalizable �eld the-ory, where dimensional analysis tools are essential tomaking 
ertain 
al
ulations tra
table. The following ex-ample will illustrate some of these features.III. AN INFINITE LINE OF CHARGEA. Statement of the problemFor our next example we 
onsider the 
al
ulation ofthe ele
tri
 potential V for the 
ase of an in�nite line of
harge with linear 
harge density λ = dQ/dy. The 
on-tribution to the ele
tri
 potential from an in�nitesimal
harge dQ is given by:4
dV =

1

4πǫ0

dQ

r
.We 
hoose our 
oordinate system (
f., Fig. 2) su
h that

x spe
i�es the perpendi
ular distan
e from the wire, y isthe 
oordinate along the wire, and r =
√

x2 + y2. Given
λ = dQ/dy we have dQ = λdy and 
an integrate alongthe length of the wire to obtain:

V (x) =
λ

4πǫ0

∫ +∞

−∞

dy
√

x2 + y2
= ∞ . (5)Unfortunately, this integral is logarithmi
ally divergentand we obtain an in�nite result.must introdu
e an auxiliary s
ale µ in addition to the regulator

ǫ. For other interesting appli
ations of s
aling and dimensionalanalysis 
f. Refs. [7�10℄.4 We will use MKS units here so that our results redu
e to theusual undergraduate textbook expressions.

B. S
ale invarian
e:If we take a 
loser look at this integral, we will demon-strate that it is s
ale invariant; that is, if we res
ale theargument x by a 
onstant fa
tor k (x → k x), the resultis invariant.
V (k x) =

λ

4πǫ0

∫ +∞

−∞

dy
1

√

(k x)2 + y2

=
λ

4πǫ0

∫ +∞

−∞

d(y/k)
1

√

x2 + (y/k)2

=
λ

4πǫ0

∫ +∞

−∞

dz
1√

x2 + z2
(6)

= V (x) . (7)In the above we have implemented the res
aling z = y/k;sin
e both y and z are dummy variables and the inte-gration limits are in�nite, the integral is un
hanged. A
onsequen
e of this s
ale invarian
e is:
V (x1) = V (x2) . (8)At �rst glan
e, this result appears to be a disaster sin
ethe usual purpose of the ele
tri
 potential is to 
omputethe work W via the formula

W/Q = ∆V = V (x2) − V (x1)or to 
ompute the ele
tri
 �eld via
~E = −~∇V .As Eq. (8) suggests V (x2)−V (x1) = 0, this implies thatour attempts to 
ompute the work W or the ele
tri
 �eld

~E will be meaningless.We now understand why it is fortunate that V (x)is in�nite as in�nite numbers have some unusual prop-erties. For example, given a �nite 
onstant c we 
anwrite (s
hemati
ally) ∞ + c = ∞ whi
h implies ∞ −
∞ = c. We now understand that even though wehave V (x1) = V (x2), be
ause these quantities are in-�nite we 
an still �nd that the di�eren
e is non-zero:
δV = V (x2) − V (x1) 6= 0. The 
hallenge is that the dif-feren
e of two in�nite quantities is ambiguous; that is,how 
an we tell if ∞ − ∞ = c1 or ∞ − ∞ = c2 is the
orre
t physi
al result?The solution is that we must regularize the in�nitequantities so that we 
an uniquely extra
t the di�eren
e.IV. CUTOFF REGULARIZATION:A. Cuto� Regularization ComputationWe will �rst regularize the integral using a simple 
ut-o� method. That is, instead of 
onsidering an in�nite



4wire, we will 
ompute the potential for a �nite wire oflength 2L. In this instan
e, the potential be
omes:5
V (x) =

λ

4πǫ0

∫ +L

−L

dy
1

√

x2 + y2

=
λ

4πǫ0
Log

[

+L +
√

L2 + x2

−L +
√

L2 + x2

]

. (9)We make the following observations.
• The result is �nite.
• In addition to the physi
al length s
ale x, V (x) de-pends on an arti�
ial regulator L.
• We 
annot remove the regulator L without

V (x) be
oming singular.
• The result for V (x) violates a symmetry of the orig-inal problem�translation invarian
e.B. Computation of E and δVEven though V (x) depends on the arti�
ial regulator

L, we observe that all physi
al quantities are independentof this regulator in the limit L → ∞. Spe
i�
ally, for theele
tri
 �eld we have:
E(x) =

−∂V (x)

∂x
=

λ

2πǫ0x

L√
L2 + x2

−→
L→∞

λ

2πǫ0xand for the potential di�eren
e (proportional to the ele
-tri
 work W ) we have:
δV = V (x1) − V (x2)

−→
L→∞

λ

4πǫ0
Log

[

x2
2

x2
1

]

. (10)As we observed in Se
. III B, δV is �nite even though itis the di�eren
e of two in�nite terms V (x1) and V (x2).The regulator L allows us to unambiguously extra
t the�nite di�eren
e δV , at whi
h point the regulator 
an bedis
arded (L → ∞). The fa
t that the physi
al quantities
E(x) and δV are independent of the unphysi
al regulatoris a essential property of any regularization method; wewill dis
uss this further in Se
. VII.5 For simpli
ity, we will 
al
ulate the potential at the mid-point ofthe wire; the general 
ase is more 
ompli
ated algebrai
ally, butyields the same result in the L → ∞ limit.

n Ωn Γ(n/2) Obje
t Vn Surfa
e Sn−11 2
√

π Line 2R Point 22 2π 1 Disk πR2 Line 2πR3 4π 1

2

√
π 3-Ball 4π

3
R3 2-Sphere 4πR24 2π2 1 4-Ball π

2

2
R4 3-Sphere 2π2R35 8π

2

3

3

4

√
π 5-Ball 8 π

2

15
R5 4-Sphere 8π

2

3
R4Table I: Angular integration measure Ωn as a fun
tion of di-mension n. The surfa
e of the n-dimensional volume Vn is an

(n − 1)-dimensional manifold Sn−1. We re
ognize Ω2 as the
ir
umferen
e of the unit 
ir
le, Ω3 as the surfa
e area of theunit sphere, and Ω4 as the 3-surfa
e of the 4-dimensional unithypersphere. See Appendix X for details.C. Broken translational symmetry:Noti
e that the presen
e of the 
uto� L breaks thetranslation symmetry of the original problem. That is,for a truly in�nite wire, our position in the y-dire
tionis in
onsequential; however, for a �nite wire this is nolonger the 
ase. Spe
i�
ally, if we shift our y-position bya 
onstant c to y → y′ = y + c, our result be
omes:
V (x) =

λ

4πǫ0

∫ +L+c

−L+c

dy
1

√

x2 + y2
(11)

=
λ

4πǫ0
Log

[

+(L + c) +
√

(L + c)2 + x2

−(L − c) +
√

(L − c)2 + x2

]

.Clearly we have lost the translation invarian
e y → y′ =
y + c.While preserving symmetries is not of paramount im-portan
e in this simple example, it is essential for 
ertain�eld theory 
al
ulations. We now repeat this 
al
ulation,but instead using dimensional regularization whi
h willpreserve the translational symmetry.D. Re
apIn summary, we �nd that our problem is solved at theexpense of 1) an extra s
ale L whi
h serves both to reg-ulate the in�nities and provide an auxiliary length s
ale,and 2) a broken symmetry�translational invarian
e.V. DIMENSIONAL REGULARIZATIONA. Generalization to arbitrary dimensionThe 
entral idea of dimensional regularization is to
ompute V (x) in n-dimensions where n is not ne
essar-ily an integer.[1�3℄ We 
an generalize the integration ofEq. (5) by repla
ing the one-dimensional integration ∫

dy



5by the general n-dimension result. Spe
i�
ally, we makethe repla
ement:6
∫ +∞

−∞

dy =

∫

dV1 −→
∫

dVn =

∫

dΩn

∫ +∞

0

yn−1dy .where the angular integration measure is given by
Ωn =

∫

dΩn =
2πn/2

Γ
(

n
2

) ≡ n πn/2

Γ
(

n
2

+ 1
) . (12)Here, Ωn is the solid-angle in n-dimensions, and we haveused Γ(z + 1) = z Γ(z) where Γ is the Gamma fun
tion;in Appendix X we provide additional explanation, andverify that Ωn yields the expe
ted results for integer di-mensions as tabulated in Table I.B. Computation of V in arbitrary dimensionsThe generalized formula for V (x) now reads:[6℄

V (x) =
λ

4πǫ0

∫

dΩn

∫ +∞

0

yn−1

µn−1

dy
√

x2 + y2
. (13)Note that we are for
ed to introdu
e an auxiliary s
alefa
tor of µn−1, where µ has units of length, to ensure

V (x) has the 
orre
t dimension.7 Repla
ing n = 1 − 2ǫto fa
ilitate expanding about n = 1 we obtain
V (x) =

λ

4πǫ0

Γ
[

1−n
2

]

(

x
µ

√
π
)1−n

=
λ

4πǫ0

(

µ2ǫ

x2ǫ

Γ[ǫ]

πǫ

)

. (14)We make the following observations about the dimen-sionally regularized result.
• V (x) depends on an arti�
ial regulator ǫ whi
h isdimensionless.
• V (x) depends on an auxiliary s
ale µ whi
h hasdimensions of length.
• If we remove either the regulator ǫ or the auxiliarys
ale µ then V (x) will be
ome ill-de�ned.
• The dimensional regularization preserves the trans-lation invarian
e of the original problem.It is interesting to 
ontrast this result with the 
uto� reg-ularization method where L serves as both the regulatorand the auxiliary s
ale.6 Here, Vn with a subs
ript represents volume, and V (x) representsthe potential.7 Sin
e the fa
tor λ/(4πǫ0) has units of potential, the integral mustbe dimensionless.

C. Computation of E and δVFor the potential di�eren
e we �nd
δV = V (x1) − V (x2)

−→
ǫ → 0

λ

4πǫ0
Log

[

x2
2

x2
1

] (15)and for the ele
tri
 �eld we obtain:
E =

−∂V (x)

∂x
=

λ

4πǫ0

[

2ǫµ2ǫΓ[ǫ]

πǫx1+2ǫ

]

−→

ǫ→0

λ

2πǫ0

1

x
. (16)As before, we observe that all physi
al quantities are in-dependent of both the regulator ǫ and the auxiliary s
ale

µ. D. Re
apIn 
on
lusion we �nd that the problem for V (x) issolved at the expense of an arti�
ial regulator ǫ and anauxiliary s
ale µ. We also note the regulator ǫ and aux-iliary s
ale µ are separate entities in 
ontrast to the 
ut-o� regularization method where the length L plays bothroles. Additionally, translational invarian
e symmetryis preserved; the fa
t that dimensional regularization re-spe
ts symmetries makes this te
hnique indispensable for�eld theory 
al
ulations involving gauge symmetries andLorentz symmetries.VI. RENORMALIZATIONHaving demonstrated two separate methods to regu-larize the in�nities that enter the 
al
ulation of V (x), wenow turn to renormalization.While physi
al quantities su
h as the work W ∼ δVand the ele
tri
 �eld ~E ∼ −~∇V are derived from V (x),the potential itself is not a physi
al quantity. In parti
u-lar, we 
an shift the potential by a 
onstant c, V → V +c,and the physi
al quantities will be un
hanged.To illustrate this point, let's expand V (x) of Eq. (14)in powers of ǫ:
V (x) =

λ

4πǫ0

[

1

ǫ
+ ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]

.Here, γE ≃ 0.577216 is the Euler 
onstant whi
h arisesfrom expanding the Gamma fun
tion Γ[ǫ] ∼ 1

ǫ − γE .Let us now invent a Minimal Subtra
tion (MS) pre-s
ription. We have the freedom to shift V (x) by a 
on-stant, and we 
hoose this 
onstant to eliminate the 1/ǫterm:
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VMS(x) =

λ

4πǫ0

[

ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]

.We 
an go even further and invent a Modi�ed Min-imal Subtra
tion (MS) pres
ription to eliminate the
ln[e−γE/π] term as well:
VMS(x) =

λ

4πǫ0

[

ln

[

µ2

x2

]

+ O(ǫ)

]

.After renormalization we 
an remove the regulator (ǫ →
0), but not the auxiliary s
ale µ; re
all that without anauxiliary s
ale to generate a dimensionless ratio µ/x we
ould not have any substantive x-dependen
e.In addition to the µ-dependen
e we will also haverenormalization s
heme dependen
e in V (x). However,physi
al observablesmust be independent of the auxiliarys
ale µ and the parti
ular renormalization s
heme. Forexample, the 
omputed potential di�eren
es yield identi-
al results when 
al
ulated 
onsistently in a single renor-malization s
heme:
VMS(x1) − VMS(x2) = δV = VMS(x1) − VMS(x2) .Here, the results of the Minimal Subtra
tion (MS) andthe Modi�ed Minimal Subtra
tion (MS) are identi
al forphysi
al quantities.However, if you mix renormalization s
hemes in
onsis-tently you will obtain non-sensible results that are de-pendent on the 
hoi
e of s
heme:8
VMS(x1) − VMS(x2) 6= δV 6= VMS(x1) − VMS(x2) .A. Conne
tion to QFTThis elementary problem of the in�nite line 
harge
ontains all the key 
on
epts of the dimensional regu-larization and renormalization that we en
ounter in thefull QFT radiative 
al
ulations. For example, in the ra-diative Quantum Chromodynami
s (QCD) 
al
ulation ofthe Drell-Yan pro
ess (qq̄ → γ∗ → µ+µ−) we en
ounterthe following in�nite expression:9

D(ǫ)

ǫ
=

(

4πµ2

Q2

)ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

∼ 1

ǫ
− ln

(

e+γE

4π

)

+ ln

(

µ2

Q2

)

.8 The reader is invited to verify that the 
omputation of the ele
-tri
 �eld ~E(x) in a 
onsistent renormalization s
heme yields theprevious results of Eq. (16), and an in
onsistent appli
ation ofthe s
hemes does not.9 Cf., Ref. [11℄, Eq. (46) and Eq. (47).

In this equation, Q represents the 
hara
teristi
 energys
ale; this is the independent variable that is analogousto x in our example. While this is for a 4-dimensionalQCD 
al
ulation, the stru
ture of the divergent termis remarkably similar to our simple one-dimensional ex-ample above. For the QCD 
al
ulation, the Mini-mal Subtra
tion (MS) pres
ription for this Drell-Yan
al
ulation eliminates the 1/ǫ term, and the Modi�edMinimal Subtra
tion (MS) pres
ription eliminates the
1/ǫ − ln[e+γe/(4π)] so that only the ln[µ2/Q2] remains.VII. THE RENORMALIZATION GROUPEQUATIONA. Physi
al Observables:The fa
t that the physi
al observables are independentof the unphysi
al auxiliary s
ale µ is simply a 
onse-quen
e of the renormalization group equation (RGE):10

µ
dσ

dµ
= 0 (17)where σ represents any physi
al observable. Thus, therenormalization group equation implies that the ele
tri
�eld ~E = ~∇V and the workW = δV are also independentof the µ s
ale:

µ
dE

dµ
= 0 µ

dW

dµ
= 0 .These results are impli
it in the �nal expression for thephysi
al quantities E and V .B. Relating Perturbative & Non-PerturbativeFun
tionsWhile the result of Eq. (17) appears to be almost triv-ial in the above example, this yields a very importantresult when applied to s
attering pro
esses involving non-perturbative hadroni
 parti
les (proton, nu
leons, et
.).We 
an write the physi
al 
ross se
tion σ as a produ
t of anon-perturbative distribution f whi
h des
ribes the soft(low energy) physi
s, and a perturbative term ω whi
hdes
ribes the hard (high energy) physi
s:11

σ = f ω .10 For an ex
ellent pedagogi
al analysis of the renormalizationgroup equation 
f. Ref.[12℄.11 More pre
isely, f is a �parton distribution fun
tion,� and ω isa �hard-s
attering 
ross se
tion.� The 
ross se
tion σ is a 
on-volution σ = f ⊗ ω whi
h 
an be de
omposed by taking Mellinmoments; hen
e, the dis
ussion of this se
tion applies formallyto the Mellin transforms of f and ω.
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Deff E(r) V (r) Example3 1

r
2

1

r
Point 
harge2 1

r
1 ln r Line 
harge1 1

r
0 r Sheet 
hargeTable II: Example 
harge 
on�gurations that illustrate Deff =

{3, 2, 1} e�e
tive dimensions.Di�erentiating with respe
t to lnµ and applying the
hain rule we �nd
dσ

d lnµ
= 0 =

df

d lnµ
ω + f

dω

d lnµwhere we have used Eq. (17). Rearranging terms, wepla
e all the f dependen
e on the left-hand-side (LHS)and the ω dependen
e on the right-hand-side (RHS),
1

f

df

d lnµ
= −γ =

1

ω

dω

d lnµ
. (18)We introdu
e a separation 
onstant12 −γ. We note theLHS of Eq. (18) depends only on the non-perturbativequantity f ; therefore, the LHS is (in prin
iple) in
al
ula-ble. Conversely, the RHS of Eq. (18) depends only on theperturbative quantity ω; therefore, the RHS is 
al
ulablein perturbation theory, and we 
an use this to 
ompute

−γ.Having 
omputed −γ, we 
an solve Eq. (18) for f toobtain13
f ∼ µ−γ . (19)Equation (19) is a remarkable result! Even though f wasan in
al
ulable non-perturbative quantity, we are able to�nd the µ-dependen
e for this fun
tion. Thus, the renor-malization group equation has allowed us to 
ompute the

µ-dependen
e of an in
al
ulable quantity by relating the(in
al
ulable) non-perturbative df/f to the (
al
ulable)perturbative dω/ω = −γ.VIII. EXTRA DIMENSIONSA. E and V in arbitrary dimensionsIn the above example, we used the mathemati
al tri
kof generalizing the number of integration dimensions from12 Unless f and ω are trivially related, the most reasonable solutionfor this type of di�erential equation is that both the LHS andRHS of Eq. (18) equal a separation 
onstant, −γ.13 The term −γ is referred to as the anomalous dimension. Itis a dimension be
ause it determines the µ-s
aling dimensionof f in Eq. (19). It is anomalous be
ause if f satis�ed exa
ts
aling, f would be invariant under a s
ale 
hange (µ1 → µ2);so f = µ0 = const, and any non-zero value for −γ would beanomalous.

Figure 3: Ele
tri
 �eld for a point 
harge 
on�ned in onein�nite dimension (x) and one �nite dimension (y) of s
ale R.an integer to a 
ontinuous parameter. While we only letthe dimension stray by 2ǫ, it is useful to 
onsider moredrasti
 shifts as in the 
ase of �Extra-Dimensions� whi
hhave re
ently been hypothesized.[13, 14℄ In this se
tion,we provide an example of a dimensional transmutation;that is where the e�e
tive dimension Deff 
hanges fromone integer to another as we probe the system at di�erents
ales.For example, we 
an generalize the r-dependen
e of thepotential and ele
tri
 �eld in for the 
ase of D-dimensionsas:14
V (r) ∼ 1

rD−2
E(r) ∼ 1

rD−1
.A qui
k 
he
k will verify that this reprodu
es the usualexpressions in ordinary D = 3 spa
ial dimensions. Ad-ditionally, in 3-dimensions we 
an 
reate 
harge distri-butions that mimi
 lower order spatial dimensions; thisis illustrated in Table II. For a (zero-dimensional) point-
harge in 3-dimensions, a

ording to Gauss's law the ele
-tri
 �eld lines spread out on a surfa
e of D−1 = 2 dimen-sions, and we observe E(r) ∼ 1/r2. Similarly, for a (one-dimensional) line-
harge, our spa
e is now e�e
tively

D = 2 dimensional; hen
e the ele
tri
 �eld lines spreadout on a surfa
e of D − 1 = 1 dimension, and we ob-serve E(r) ∼ 1/r. Finally, for a (two-dimensional) sheet-
harge, our spa
e is now e�e
tively D = 1 dimensional;hen
e the ele
tri
 �eld lines spread out on in D − 1 = 0dimensions, and we observe E(r) ∼ 1/r0 = constant.Figure 3 displays the ele
tri
 �eld lines for a point
harge 
on�ned to one in�nite dimension (x) and one�nite (or 
ompa
t) dimension (y) of s
ale R. We observethat if we examine the ele
tri
 �eld at s
ales small 
om-pared to the 
ompa
t dimension R (r ≪ R), we �nd thethe ele
tri
 �eld lines spread out in 2 dimensions and weobtain the usual 2-dimensional result ~E(r) ∼ 1/r; 
on-versely, if we examine the ele
tri
 �eld at distan
e s
ales14 Note, for the spe
ial 
ase D=2 the potential V (r) has a logarith-mi
 form; see Table II for details.
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ompared to the 
ompa
t dimension R (r ≫ R), we�nd the 1-dimensional result ~E(r) ∼ constant. In thisexample, the e�e
tive dimension of our spa
e 
hangesas we move from small (D = 2) to large length s
ales(D = 1). IX. CONCLUSIONSIn this paper we have 
omputed the potential of an in-�nite line of 
harge using dimensional regularization. By
ontrasting this 
al
ulation with the 
onventional 
uto�approa
h, we demonstrated that dimensional regulariza-tion respe
ts the symmetries of the problem�namely,translational invarian
e. The dimensional regularizationrequires that we introdu
e a regulator ǫ and an auxiliarylength s
ale µ. We then renormalized the potential toeliminate the 1/ǫ singularities; this potential was �niteand independent of the regulator ǫ, but it depended onthe parti
ular renormalization s
heme and renormaliza-tion s
ale µ. However, we demonstrated that all physi
alobservables (E, δV ) were s
heme and s
ale invariant.As this example exhibits many of the key features ofdimensional regularization as applied to QFT, it pro-vides an ex
ellent opportunity to understand the virtuesof this regularization method without the 
ompli
ationsof gauge symmetries. As su
h, this example serves as anideal pedagogi
al study.A
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al 
oordinatesis a produ
t of the angular and radial integrals:
V3 =

∫

dΩ3

∫ R

0

r2dr =

∫ 2π

0

dφ

∫ π

0

sin θ dθ

∫ R

0

r2dr

=
4π

3
R3 .Note that the angular integral ∫ Ω3 is dimensionless whilethe radial integral ∫

r2dr 
arries the dimensions.

For the 2-dimensional surfa
e area (S2), we 
an use theabove V3 integral with a δ-fun
tion δ(r−R) to 
onstrainus to the surfa
e:
S2 =

∫

dΩ3

∫ R

0

dr r2δ(r − R) = 4πR2 .B. n-DimensionsHaving established the familiar 3-dimensional 
ase, we
an generalize to n-dimensions:
Vn =

∫

dΩn

∫ R

0

rn−1dr = Ωn
Rn

n
(20)and the (n − 1)-dimensional surfa
e area (Sn−1) of the

n-dimensional volume Vn is:
Sn−1 =

∫

dΩn

∫ R

0

dr rn−1 δ(r−R) = Ωn Rn−1 . (21)With the above we have the general relation:
Vn

Sn−1

=
R

n
.Additionally, we �nd the following relation:

dVn

dR
= Sn−1 .This demonstrates that the derivative (or boundary) ofthe volume is the surfa
e area, ∂V = S.C. 1-DimensionAs the 1-dimensional 
ase has a subtle fa
tor of 2, we
ompute this expli
itly. Using Eq. (20) we �nd the vol-ume of a 1-dimensional line to be:

V1 =

∫

dV1 =

∫

dΩ1

∫ R

0

r0 dr = 2R .Note, this result is not R but 2R as the 1-dimensionalline extends from −R to +R.In the notation of Eq. (5) we have (with R → ∞)
∫

dV1 =

∫

dΩ1

∫ +∞

0

dy = 2

∫ +∞

0

dy =

∫ +∞

−∞

dy .Thus, we 
an make the repla
ement ∫ +∞

−∞
dy →

∫

dV1,and the n-dimensional generalization is then:
∫ +∞

−∞

dy =

∫

dV1 −→
∫

dVn =

∫

dΩn

∫ +∞

0

yn−1dy .Eq. (5) for the potential V (x) then be
omes:
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V (x) =

λ

4πǫ0

∫

dΩn

∫ +∞

0

yn−1 dy
√

x2 + y2
. (22) Note that Eq. (22) is not dimensionally 
orre
t as thefa
tor yn−1 will need to be 
ompensated by introdu
ingan auxiliary s
ale fa
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