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Gathering factors and contracting gµν, we obtain:

Squaring, and averaging over spin and color, ....
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Let's compute the Born process:                                 qq ee−



Let's work out some parton level kinematics

Defining the Mandelstam variables ...
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We'll now compute the matrix element M

Where we have used: 
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Manipulating the traces, we find ...
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Putting all the pieces together, we have:
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... and put it together to find the cross section
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In the partonic 
CMS system

Recall, 

so, the differential cross section is ...
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and the total cross section is ...
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#1) Show: 

#2) Show that the 2-body phase space  can be expressed as: 

This relation is often useful as the RHS is manifestly Lorentz invariant

Note, we are working with massless partons, and  θ is in the partonic CMS frame

Homework: Part 1
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1) Let's work out the general 2→2 kinematics for general masses. 

a) Start with the incoming particles. 
    Show that these can be written in the general form:

... with the following definitions:

Note that ∆(a,b,c) is symmetric with respect to its arguments, 
and involves the only invariants of the initial state: s, m
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b) Next, compute the general form for the final state particles, p
3
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 are), and then rotate about the y-axis by angle θ.

Homework : Part 2
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What does the angular dependence tell us?

Observe, the angular dependence:

Characteristic of scattering of spin ½ constitutients by a spin 1 vector
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Note, for the photon, the mirror image of the above is also valid; hence the symmetric distribution. The W  
has V-A couplings, so we'll find:  (1+cosθ)2


