Calculation of:

$$
q+\bar{q} \rightarrow e^{+}+e^{-}
$$

Taken from:

http://www.physics.smu.edu/~olness/cteq2003/
Linked from: cteq.org

Let's compute the Born process: $q+\bar{q} \rightarrow e^{+}+e^{-}$

Gathering factors and contracting $g^{\mu \nu}$, we obtain:

$$
-i M=i Q_{i} \frac{e^{2}}{q^{2}}\left\{\bar{v}\left(p_{2}\right) \boldsymbol{\gamma}^{\mu} u\left(p_{1}\right)\right\}\left\{\bar{u}\left(p_{3}\right) \gamma_{\mu} v\left(p_{4}\right)\right\}
$$

Squaring, and averaging over spin and color,

$$
\overline{|M|^{2}}=\left(\frac{1}{2}\right)^{2} 3\left(\frac{1}{3}\right)^{2} Q_{i}^{2} \frac{e^{4}}{q^{4}} \operatorname{Tr}\left[p_{2} \gamma^{\mu} p_{1} \gamma^{\nu}\right] \operatorname{Tr}\left[p_{3} \gamma_{\mu} p_{4} \gamma_{\nu}\right]
$$

$$
\begin{array}{ll}
p_{1}=\frac{\sqrt{\hat{S}}}{2}(1,0,0,+1) \\
p_{2}=\frac{\sqrt{\hat{S}}}{2}(1,0,0,-1) \\
p_{3}=\frac{\sqrt{\hat{S}}}{2}(1,+\sin (\theta), 0,+\cos (\theta)) \\
p_{4}=\frac{\sqrt{\hat{S}}}{2}(1,-\sin (\theta), 0,-\cos (\theta))
\end{array}
$$

Defining the Mandelstam variables ...

$$
\begin{array}{ll}
\hat{s}=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} & \hat{t}=-\frac{\hat{s}}{2}(1-\cos (\theta)) \\
\hat{t}=\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} & \hat{u}=-\frac{\hat{s}}{2}(1+\cos (\theta))
\end{array}
$$

Manipulating the traces, we find ...

$$
\begin{aligned}
& \operatorname{Tr}\left[p_{2} \gamma^{\mu} p_{1} \gamma^{v}\right] \operatorname{Tr}\left[p_{3} \gamma_{\mu} p_{4} \gamma_{\nu}\right] \\
& =4\left[p_{1}^{\mu} p_{2}^{v}+p_{2}^{\mu} p_{1}^{v}-g^{\mu \nu}\left(p_{1} \cdot p_{2}\right)\right] \times 4\left[p_{3}^{\mu} p_{4}^{v}+p_{4}^{\mu} p_{3}^{v}-g^{\mu v}\left(p_{3} \cdot p_{4}\right)\right] \\
& =2^{5}\left[\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)\right] \\
& =2^{3}\left[\hat{t}^{2}+\hat{u}^{2}\right]
\end{aligned}
$$

Where we have used:

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0
$$

$$
\begin{aligned}
& \hat{s}=2\left(p_{1} \cdot p_{2}\right)=2\left(p_{3} \cdot p_{4}\right) \\
& \hat{t}=2\left(p_{1} \cdot p_{3}\right)=2\left(p_{2} \cdot p_{4}\right) \\
& \hat{u}=2\left(p_{1} \cdot p_{4}\right)=2\left(p_{2} \cdot p_{3}\right)
\end{aligned}
$$

Putting all the pieces together, we have:

$$
\overline{|M|^{2}}=Q_{i}^{2} \alpha^{2} \frac{2^{5} \pi^{2}}{3}\left(\frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{s}^{2}}\right) \quad \text { with }
$$

$$
\begin{gathered}
q^{2}=\left(p_{1}+p_{2}\right)^{2}=\hat{s} \\
\alpha=\frac{e^{2}}{4 \pi}
\end{gathered}
$$

$$
\left.\begin{array}{c}
d \hat{\sigma} \simeq \frac{1}{2 \hat{s}} \overline{|M|^{2}} d \Gamma \\
d \Gamma=\frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)=\frac{d \cos (\theta)}{16 \pi} \\
\text { CMS partonic }
\end{array}\right] \begin{aligned}
& \text { Recall, } \\
& \qquad \hat{t}=\frac{-\hat{s}}{2}(1-\cos (\theta)) \quad \text { and } \quad \hat{u}=\frac{-\hat{s}}{2}(1+\cos (\theta))
\end{aligned}
$$

so, the differential cross section is ...

$$
\frac{d \hat{\sigma}}{d \cos (\theta)}=Q_{i}^{2} \alpha^{2} \frac{\pi}{6} \frac{1}{\hat{S}}\left(1+\cos ^{2}(\theta)\right)
$$

and the total cross section is ...

$$
\hat{\sigma}=Q_{i}^{2} \alpha^{2} \frac{\pi}{6} \frac{1}{\hat{S}} \int_{-1}^{1} d \cos (\theta)\left(1+\cos ^{2}(\theta)\right)=\frac{4 \pi \alpha^{2}}{9 \hat{S}} Q_{i}^{2} \equiv \hat{\sigma}_{0}
$$

\#1) Show:

$$
\frac{d^{3} p}{(2 \pi)^{3} 2 E}=\frac{d^{4} p}{(2 \pi)^{4}}(2 \pi) \delta^{+}\left(p^{2}-m^{2}\right)
$$

This relation is often useful as the RHS is manifestly Lorentz invariant
\#2) Show that the 2-body phase space can be expressed as:

$$
d \Gamma=\frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)=\frac{d \cos (\theta)}{16 \pi}
$$

Note, we are working with massless partons, and θ is in the partonic CMS frame

1) Let's work out the general $2 \rightarrow 2$ kinematics for general masses.
a) Start with the incoming particles.

Show that these can be written in the general form:

$$
\begin{array}{ll}
p_{1}=\left(E_{1}, 0,0,+p\right) & p_{1}^{2}=m_{1}^{2} \\
p_{2}=\left(E_{2}, 0,0,-p\right) & p_{2}^{2}=m_{2}^{2}
\end{array}
$$

... with the following definitions:

$$
\begin{gathered}
E_{1,2}=\frac{\hat{s} \pm m_{1}^{2} \mp m_{2}^{2}}{2 \sqrt{\hat{s}}} \quad p=\frac{\Delta\left(\hat{s}, m_{1}^{2,} m_{2}^{2}\right)}{2 \sqrt{\hat{s}}} \\
\Delta(a, b, c)=\sqrt{a^{2}+b^{2}+c^{2}-2(a b+b c+c a)}
\end{gathered}
$$

Note that $\Delta(a, b, c)$ is symmetric with respect to its arguments, and involves the only invariants of the initial state: $s, m_{1}^{2}, m_{2}{ }^{2}$.
b) Next, compute the general form for the final state particles, p_{3} and p_{4}. Do this by first aligning p_{3} and p_{4} along the z -axis (as p_{1} and p_{2} are), and then rotate about the y -axis by angle θ.

What does the angular dependence tell us?

Observe, the angular dependence:

$$
q+\bar{q} \rightarrow e^{+}+e^{-}
$$

$$
\frac{d \hat{\sigma}}{d \cos (\theta)}=Q_{i}^{2} \alpha^{2} \frac{\pi}{6} \frac{1}{\hat{S}}\left(1+\cos ^{2}(\theta)\right)
$$

Characteristic of scattering of spin $1 / 2$ constitutients by a spin 1 vector

Note, for the photon, the mirror image of the above is also valid; hence the symmetric distribution. The W has $V-A$ couplings, so we'll find: $(1+\cos \theta)^{2}$

