

LUND UNIVERSITY

CTEQ-MCnet School 2010 Lauterbad, Germany 26 July - 4 August 2010

Introduction to Monte Carlo Event Generators

Torbjörn Sjöstrand Lund University

1. (today) Introduction and Overview; Monte Carlo Techniques

2. (today) Matrix Elements; Parton Showers I

3. (tomorrow) Parton Showers II; Matching Issues

- 4. (tomorrow) Multiple Parton–Parton Interactions
- 5. (Wednesday) Hadronization and Decays; Generator Status

Matrix Elements and Their Usage

 $\mathcal{L} \Rightarrow \mathsf{Feynman} \text{ rules} \Rightarrow \mathsf{Matrix} \text{ Elements} \Rightarrow \mathsf{Cross} \text{ Sections} \\ + \text{Kinematics} \Rightarrow \mathsf{Processes} \Rightarrow \ldots \Rightarrow$

(Higgs simulation in CMS)

QCD at Fixed Order

Truncate at k=n, l=0 → Leading Order for X + n Lowest order at which X + n happens

19

(borrowed from Peter Skands)

Another representation

Next-to-leading order (NLO) calculations

Next-to-leading order (NLO) calculations

Next-to-leading order (NLO) calculations

$$\sigma_{\rm NLO} = \int_n \mathrm{d}\sigma_{\rm LO} + \int_{n+1} \mathrm{d}\sigma_{\rm Real} + \int_n \mathrm{d}\sigma_{\rm Virt}$$

Simple one-dimensional example: $x \sim p_{\perp}/p_{\perp max}$, $0 \le x \le 1$ Divergences regularized by $d = 4 - 2\epsilon$ dimensions, $\epsilon < 0$

$$\sigma_{\mathsf{R}+\mathsf{V}} = \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} M(x) + \frac{1}{\epsilon} M_0$$

KLN cancellation theorem: $M(0) = M_0$

Phase Space Slicing:

Introduce arbitrary *finite* cutoff $\delta << 1$ (so $\delta \gg |\epsilon|$)

$$\sigma_{\mathsf{R}+\mathsf{V}} = \int_{\delta}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} M(x) + \int_{0}^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} M(x) + \frac{1}{\epsilon} M_{0}$$
$$\approx \int_{\delta}^{1} \frac{\mathrm{d}x}{x} M(x) + \int_{0}^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} M_{0} + \frac{1}{\epsilon} M_{0}$$
$$= \int_{\delta}^{1} \frac{\mathrm{d}x}{x} M(x) + \frac{1}{\epsilon} \left(1 - \delta^{-\epsilon}\right) M_{0}$$
$$\approx \int_{\delta}^{1} \frac{\mathrm{d}x}{x} M(x) + \ln \delta M_{0}$$

Alternatively Subtraction:

$$\sigma_{\mathsf{R}+\mathsf{V}} = \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} M(x) - \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} M_0 + \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} M_0 + \frac{1}{\epsilon} M_0$$
$$= \int_0^1 \frac{M(x) - M_0}{x^{1+\epsilon}} \mathrm{d}x + \left(-\frac{1}{\epsilon} + \frac{1}{\epsilon}\right) M_0$$
$$\approx \int_0^1 \frac{M(x) - M_0}{x} \mathrm{d}x + \mathcal{O}(1) M_0$$

NLO provides a more accurate answer for an integrated cross section:

Warning!

Neither approach operates with positive definite quantities No obvious event-generator implementation No trivial connection to physical events

Cross sections and kinematics

$$qq' \rightarrow qq'$$
 : $\frac{d\hat{\sigma}}{d\hat{t}} = \frac{\pi}{\hat{s}^2} \frac{4}{9} \alpha_s^2 \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$ (~ Rutherford)

$$\sigma = \sum_{i,j} \iiint \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{d}\hat{t} \, f_i^{(A)}(x_1, Q^2) \, f_j^{(B)}(x_2, Q^2) \, \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}\hat{t}}$$

Factorization: proven for a few processes, assumed for more!

Parton Distribution/Density Functions (PDFs)

http://durpdg.dur.ac.uk/hepdata/pdf.html

Initial conditions nonperturbative; evolution perturbative (DGLAP):

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_{\mathsf{S}}}{2\pi} P_{a\to bc} \left(z = \frac{x}{x'}\right)$$

Peaking of PDF's at small x and of QCD ME's at low p_{\perp} \implies most of the physics is at low transverse momenta ...

... but New Physics likely to show up at large masses/ p_{\perp} 's

At NLO PDFs are not physical objects and not required positive definite: $\sigma = \hat{\sigma} \otimes \text{PDF}$, and both can be negative.

Dangerous for LO MCs: recently introduce new MC-adapted PDFs • allow $\sum_{i} \int_{0}^{1} x f_{i}(x, Q^{2}) > 1$ as "built-in K factor"

• use NLO-calculated pseudodata as target for tunes

Current usage:

- conventional: CTEQ 5L, CTEQ 6L, CTEQ 6L1, MSTW 2008 LO
- MC-adapted: MRST LO* and LO**; CT09 MC1, MC2 and MCS

Colour flow in hard processes

One Feynman graph can correspond to several possible colour flows, e.g. for $qg \rightarrow qg$:

while other $qg \rightarrow qg$ graphs only admit one colour flow:

so nontrivial mix of kinematics variables (\hat{s}, \hat{t}) and colour flow topologies I, II:

$$\begin{aligned} |\mathcal{A}(\hat{s},\hat{t})|^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t}) + \mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2 \\ &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|^2 + |\mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2 + 2\mathcal{R}e\left(\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})\mathcal{A}_{\mathrm{II}}^*(\hat{s},\hat{t})\right) \end{aligned}$$

with $\mathcal{R}e\left(\mathcal{A}_{\mathrm{I}}(\widehat{s},\widehat{t})\mathcal{A}_{\mathrm{II}}^{*}(\widehat{s},\widehat{t})\right) \neq 0$

- \Rightarrow indeterminate colour flow, while
- showers should know it (coherence),
- hadronization *must* know it (hadrons singlets).

Normal solution:

$$\frac{\text{interference}}{\text{total}} \propto \frac{1}{N_{\text{C}}^2 - 1}$$

so split I : II according to proportions in the $N_{C} \rightarrow \infty$ limit, i.e.

$$\begin{aligned} |\mathcal{A}(\hat{s},\hat{t})|^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 + |\mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 \\ |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t}) + \mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2 \left(\frac{|\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|^2}{|\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|^2 + |\mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2}\right)_{N_{\mathsf{C}} \to \infty} \\ |\mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 &= \ldots \end{aligned}$$

Process Libraries

Traditionally generators come each with its own subprocess library, handcoded since before the days of automatic code generation. Subprocess lists with hundreds of entries *look* impressive, and are useful to rapidly get going, but:

* Processes usually only in lowest nontrivial order

 \Rightarrow need programs that include HO loop corrections to cross sections, alternatively do (p_{\perp},y) -dependent rescaling by hand?

* No multijet topologies (except in SHERPA)

 \Rightarrow have to trust shower to get it right, alternatively match to HO (non-loop) ME generators

* Spin correlations often absent or incomplete (in PYTHIA) e.g. top produced unpolarized, while $t \rightarrow bW^+ \rightarrow b\ell^+ \nu_\ell$ decay correct \Rightarrow have to use external programs when important

* New physics scenarios appear at rapid pace

 \Rightarrow need to have a bigger class of "one-issue experts" contributing code

⇒The Les Houches Accord

The Les Houches Accord

Some Specialized Generators:

- AcerMC: ttbb, ...
- ALPGEN: $W/Z + \leq 6j$, $nW + mZ + kH + \leq 3j$, ...
- CalcHEP: generic LO
- Comix: generic LO
- CompHEP: generic LO
- GRACE+Bases/Spring: generic LO+ some NLO loops
- HELAC-PHEGAS: generic LO
- MadCUP: $W/Z + \leq 3j, t\overline{t}b\overline{b}$
- MadGraph+HELAS: generic LO
- MCFM: NLO W/Z+ \leq 2j, WZ, WH, H+ < 1j
- O'Mega+WHIZARD: generic LO

Apologies for all unlisted programs

Do it yourself

MadGraph, CompHEP and CalcHEP can easily be run interactively:

- user specifies process, e.g. $gg \rightarrow W^+ \overline{u}d$, and cuts
- program finds all contributing lowest-order Feynman graphs,
- the required amplitudes/cross sections are calculated,
- phase-space is sampled and unweighted to give parton-level events,
- parton-level properties can be histogrammed,
- Les Houches Accord \Longrightarrow complete events.

CompHEP/CalcHEP (matrix-elements-based, good for $\sim \leq$ 4 outgoing): http://theory.sinp.msu.ru/comphep/ http://theory.sinp.msu.ru/~pukhov/calchep.html

MadGraph (amplitude-based, can handle $\sim \leq 7$ outgoing): http://madgraph.physics.uiuc.edu/

Comix (in Sherpa): powerful new framework based on recursion relations

- ...but
- stiff price to pay for each additional parton \implies optimized LO libraries,
- confined to lowest-order processes \implies NLO libraries.

Ready-made libraries

 $\begin{array}{l} \text{Many leading-order (LO) ones, e.g.:}\\ \bullet \text{ALPGEN: } W/Z+\leq 6j,\,nW+mZ+kH+\leq 3j,\,Q\overline{Q}+\leq 6j,\,\dots\\ & \text{http://mlm.home.cern.ch/mlm/alpgen/}\\ \bullet \text{AcerMC: t}\overline{t}b\overline{b},\,WVVb\overline{b},\,\dots\\ & \text{http://borut.home.cern.ch/borut/}\\ \bullet \text{VECBOS: } W/Z+\leq 4j\\ \bullet \text{TopReX: t}\overline{t},\,\dots\end{array}$

Not as many NLO, but still quite a few, e.g. • MCFM: NLO $W/Z+ \leq 2j$, WZ, WH, $H+ \leq 1j$ http://mcfm.fnal.gov/ • NLOJet++: 2j, 3j http://nagyz.web.cern.ch/nagyz/Site/NL0Jet++ • PHOX family: photons + jets http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html • MNR: $c\overline{c}$, $b\overline{b}$ • VBFNLO: WW, WZ, ZZ, ... (incl. Higgs contribution) http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb/ • HIGLU: $gg \rightarrow H$ • PROSPINO: $\tilde{q}\tilde{q}$, $\tilde{q}\tilde{g}$, $\tilde{g}\tilde{g}$

FEYNRULES: Implementing new models made easy

Aim

- Portable, transparent & reproducible implementation of (nearly arbitrary) new physics models.
- In most codes: New models given by new particles, their properties & interactions.
- Output to standard ME generators enabled (MADGRAPH, SHERPA, ...)

 Various models already implemented & validated for a list: http://feynrules.phys.ucl.ac.be

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

IPPP

Introduction to Event Generators

F. Krauss

(borrowed from Frank Krauss)

Parton Showers

- Final-State (Timelike) Showers
- Initial-State (Spacelike) Showers
 - Matching to Matrix Elements

Divergences

Big probability for one emission ⇒ also big for several ⇒ with ME's need to calculate to high order **and** with many loops ⇒ extremely demanding technically (not solved!), and involving big cancellations between positive and negative contributions. Alternative approach: **parton showers**

The Parton-Shower Approach

 $2 \rightarrow n = (2 \rightarrow 2) \oplus \text{ISR} \oplus \text{FSR}$

FSR = Final-State Rad.; timelike shower $Q_i^2 \sim m^2 > 0$ decreasing ISR = Initial-State Rad.; spacelike shower $Q_i^2 \sim -m^2 > 0$ increasing

 $2 \rightarrow 2$ = hard scattering (on-shell):

$$\sigma = \iiint \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{d}\hat{t} \, f_i(x_1, Q^2) \, f_j(x_2, Q^2) \, \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}\hat{t}}$$

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability: the cross section is not directly affected, but indirectly it is, via the changed event shape

Technical aside: why timelike/spacelike?

Consider four-momentum conservation in a branching $a \rightarrow b c$

Doublecounting

A 2 \rightarrow *n* graph can be "simplified" to 2 \rightarrow 2 in different ways:

Do not doublecount: $2 \rightarrow 2 = most virtual = shortest distance$

Conflict: theory derivations often assume virtualities strongly ordered; interesting physics often in regions where this is not true!

From Matrix Elements to Parton Showers

Rewrite for $x_2 \rightarrow 1$, i.e. q–g collinear limit:

$$\Rightarrow d\mathcal{P} = \frac{d\sigma}{\sigma_0} = \frac{\alpha_s}{2\pi} \frac{dx_2}{(1-x_2)} \frac{4}{3} \frac{x_2^2 + x_1^2}{(1-x_1)} dx_1 \approx \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} \frac{4}{3} \frac{1+z^2}{1-z} dz$$

Generalizes to DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

$$d\mathcal{P}_{a \to bc} = \frac{\alpha_{\rm S}}{2\pi} \frac{dQ^2}{Q^2} P_{a \to bc}(z) dz$$

$$P_{\rm q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$$

$$P_{\rm g \to gg} = 3 \frac{(1-z(1-z))^2}{z(1-z)}$$

$$P_{\rm g \to q\overline{q}} = \frac{n_f}{2} (z^2 + (1-z)^2) \quad (n_f = \text{no. of quark flavours})$$

Iteration gives final-state parton showers

Need soft/collinear cut-offs to stay away from nonperturbative physics. Details model-dependent, e.g. $Q > m_0 = \min(m_{ij}) \approx 1$ GeV, $z_{\min}(E,Q) < z < z_{\max}(E,Q)$ or $p_{\perp} > p_{\perp\min} \approx 0.5$ GeV

The Sudakov Form Factor

Conservation of total probability: $\mathcal{P}(\text{nothing happens}) = 1 - \mathcal{P}(\text{something happens})$ "multiplicativeness" in "time" evolution: $\mathcal{P}_{\text{nothing}}(0 < t \leq T) = \mathcal{P}_{\text{nothing}}(0 < t \leq T_1) \mathcal{P}_{\text{nothing}}(T_1 < t \leq T)$ Subdivide further, with $T_i = (i/n)T$, $0 \le i \le n$: $\mathcal{P}_{\text{nothing}}(0 < t \le T) = \lim_{n \to \infty} \prod_{i=0} \mathcal{P}_{\text{nothing}}(T_i < t \le T_{i+1})$ $= \lim_{n \to \infty} \prod_{i=0}^{\infty} \left(1 - \mathcal{P}_{\text{something}}(T_i < t \le T_{i+1}) \right)$ $= \exp\left(-\lim_{n \to \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\text{something}}(T_i < t \le T_{i+1})\right)$ $= \exp\left(-\int_{0}^{T} \frac{\mathrm{d}\mathcal{P}_{\text{something}}(t)}{\mathrm{d}t} \mathrm{d}t\right)$ $\implies d\mathcal{P}_{first}(T) = d\mathcal{P}_{something}(T) \exp\left(-\int_{0}^{T} \frac{d\mathcal{P}_{something}(t)}{dt} dt\right)$ Example: radioactive decay of nucleus

naively:
$$\frac{dN}{dt} = -cN_0 \Rightarrow N(t) = N_0 (1 - ct)$$

depletion: a given nucleus can only decay once
correctly: $\frac{dN}{dt} = -cN(t) \Rightarrow N(t) = N_0 \exp(-ct)$
generalizes to: $N(t) = N_0 \exp\left(-\int_0^t c(t')dt'\right)$
or: $\frac{dN(t)}{dt} = -c(t) N_0 \exp\left(-\int_0^t c(t')dt'\right)$

sequence allowed: nucleus_1 \rightarrow nucleus_2 \rightarrow nucleus_3 \rightarrow ...

Correspondingly, with $Q \sim 1/t$ (Heisenberg)

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\rm S}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z \,\exp\left(-\sum_{b,c} \int_{Q^2}^{Q_{\rm max}^2} \frac{\mathrm{d}{Q'}^2}{Q'^2} \int \frac{\alpha_{\rm S}}{2\pi} P_{a\to bc}(z') \,\mathrm{d}z'\right)$$

where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that $\sum_{b,c} \int \int d\mathcal{P}_{a \to bc} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens)

Sudakov form factor provides "time" ordering of shower: lower $Q^2 \iff$ longer times

$$Q_1^2 > Q_2^2 > Q_3^2$$

 $Q_1^2 > Q_4^2 > Q_5^2$

Sudakov regulates singularity for *first* emission ...

... but in limit of repeated soft emissions $q \rightarrow qg$ (but no $g \rightarrow gg$) one obtains the same inclusive Q emission spectrum as for ME, i.e. divergent ME spectrum \iff infinite number of PS emissions Proof: as for veto algorithm (what is probability to have an emission at Qafter 0, 1, 2, 3, ... previous ones?)

Coherence

or • requiring transverse momenta to be decreasing

The Common Showering Algorithms (LEP era)

Three main approaches to showering in common use:

Two are based on the standard shower language of $a \rightarrow bc$ successive branchings:

there instead LDCMC: sophisticated but complicated

Ordering variables in final-state radiation (LEP era)

PYTHIA: $Q^2 = m^2$ HERWIG: $Q^2 \sim E^2 \theta^2$ ARIADNE: $Q^2 = p_{\perp}^2$

large mass first \Rightarrow "hardness" ordered coherence brute force covers phase space ME merging simple $q \rightarrow q\overline{q}$ simple not Lorentz invariant no stop/restart

ISR: $m^2 \rightarrow -m^2$

large angle first \Rightarrow hardness not ordered coherence inherent gaps in coverage **ME merging messy** $g \rightarrow q\overline{q}$ simple not Lorentz invariant no stop/restart ISR: $\theta \rightarrow \theta$

U

large p_{\perp} first \Rightarrow "hardness" ordered coherence inherent

covers phase space ME merging simple $g \to q \overline{q} \text{ messy}$ Lorentz invariant can stop/restart **ISR: more messy**

Data comparisons (LEP)

All three algorithms do a reasonable job of describing LEP data, but typically ARIADNE (p_{\perp}^2) > PYTHIA (m^2) > HERWIG (θ)

... and programs evolve to do even better ...

Features of dipole showers

- Quantum coherence on similar grounds for angular and k_T -ordering, typical ordering in dipole showers by k_\perp .
- Many new shower formulations in past few years, many (nearly all) based on dipoles in one way or the other.
- Seemingly closer link to NLO calculations: Use subtraction kernels like antennae or Catani-Seymour kernels.
- Typically: First emission fully accounted for.

IPPP

(borrowed from Frank Krauss)

Survey of existing showering tools

Tools	evolution	AO/Coherence
Ariadne	k_{\perp} -ordered	by construction
Herwig	angular ordering	by construction
Herwig++	improved angular ordering	by construction
Pythia	old: virtuality ordered	by hand
	new: k_{\perp} -ordered	by construction
Sherpa	virtuality ordered	by hand
	(like old Pythia)	
	new: k_{\perp} -ordering	by construction
Vincia	k_{\perp} -ordered	by construction

◆□▶▲□▶▲≡▶▲≡▶ ▲□▼

IPPP

Introduction to Event Generators

F. Krauss

(borrowed from Frank Krauss)

Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

$$\mathcal{P}_{q \to qg} \approx \int \frac{\mathrm{d}Q^2}{Q^2} \int \mathrm{d}z \, \frac{\alpha_{\mathrm{S}}}{2\pi} \frac{4}{3} \frac{1+z^2}{1-z}$$
$$\approx \alpha_{\mathrm{S}} \, \ln\left(\frac{Q_{\mathrm{max}}^2}{Q_{\mathrm{min}}^2}\right) \, \frac{8}{3} \, \ln\left(\frac{1-z_{\mathrm{min}}}{1-z_{\mathrm{max}}}\right) \sim \alpha_{\mathrm{S}} \, \ln^2$$

Rate for n emissions is of form:

$$\mathcal{P}_{\mathsf{q} \to \mathsf{q} n \mathsf{g}} \sim (\mathcal{P}_{\mathsf{q} \to \mathsf{q} \mathsf{g}})^n \sim \alpha_{\mathsf{s}}^n \ln^{2n}$$

Next-to-leading log (NLL): inclusion of *all* corrections of type $\alpha_s^n \ln^{2n-1}$

No existing generator completely NLL (NLLJET?), but

- energy-momentum conservation (and "recoil" effects)
- coherence

•
$$2/(1-z) \rightarrow (1+z^2)/(1-z)$$

• scale choice $\alpha_s(p_{\perp}^2)$ absorbs singular terms $\propto \ln z$, $\ln(1-z)$ in $\mathcal{O}(\alpha_s^2)$ splitting kernels $P_{q \to qg}$ and $P_{g \to gg}$

• . . .

 \Rightarrow far better than naive, analytical LL

Summary Lecture 2

• Hard processes: •

* Simple ones: probably built-in in PYTHIA/HERWIG *
 (SHERPA has complete internal ME generator, HERWIG partial)
 * Multiparton LO: external generator + Les Houches Accord *
 * NLO: not easily related to physical events *

Parton Showers: •

* 2 kinds: initial-state and final-state *
* related to and derived from matrix elements *
* Sudakov form factor ensures sensible physics *
* Ordering variable ambiguous: θ, p²_⊥, m² *
* Constraints from coherence arguments, and from data *
* In state of continuous development *

* More to come tomorrow! *