Introduction to

Monte Carlo Event Generators

Torbjörn Sjöstrand

Lund University

1. (today) Introduction and Overview; Monte Carlo Techniques
2. (today) Matrix Elements; Parton Showers I
3. (tomorrow) Parton Showers II; Matching Issues
4. (tomorrow) Multiple Parton-Parton Interactions
5. (Wednesday) Hadronization and Decays; Generator Status

Matrix Elements and Their Usage

$\mathcal{L} \Rightarrow$ Feynman rules \Rightarrow Matrix Elements \Rightarrow Cross Sections + Kinematics \Rightarrow Processes $\Rightarrow \ldots \Rightarrow$

(Higgs simulation in CMS)

QCD at Fixed Order

Distribution of observable: 0
In production of $X+$ anything

Truncate at $\mathrm{k}=\mathrm{n}$, $\mathrm{l}=0$
 \rightarrow Leading Order for $X+n$
 Lowest order at which $X+n$ happens

Loops and Legs

Another representation

Loops and Legs

Another representation

Loops and Legs

Another representation

Loops and Legs

Another representation

$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$X^{(2)}$$X^{(1)}$	$X+1^{(2)}$$x+1^{(1)}$	$X+2^{(1)}$	$x+3^{(1)}$	(includes X+2 © LO)	
					..	Note: $\sigma \rightarrow \infty$ if no jet resolved
	Born	$X+1^{(0)}$	$x+2^{(0)}$	$X+3^{(0)}$...	Note: $x+2$ jet observables only correct at LO
			Legs	(borrowe		Skands)

Loops and Legs

Another representation

$X^{(2)}$	$X+1^{(2)}$	\ldots
$X^{(1)}$	$X+1^{(1)}$	$X+2^{(1)}$
Born	$X+1^{(0)}$	$X+2^{(0)}$
		Legs

X @ NNLO
 (includes $X+1$ @ NLO) (includes $X+2$ @ LO)

(borrowed from Peter Skands)

Next-to-leading order (NLO) calculations
I. Lowest order, \mathcal{O} ($\alpha \mathrm{em}$):
$q \bar{q} \rightarrow Z^{0}$

Next-to-leading order (NLO) calculations

II. First-order real,
$\mathcal{O}\left(\alpha_{\mathrm{em}} \alpha_{\mathrm{s}}\right)$:
$q \bar{q} \rightarrow Z^{0} g$ etc.

$\xrightarrow{\text { lowest order }} \begin{aligned} & \text { dinite } \sigma_{0} \\ & \\ & \\ & \text { (} p_{\perp}\end{aligned}$

Next-to-leading order (NLO) calculations

$$
\sigma_{\mathrm{NLO}}=\int_{n} \mathrm{~d} \sigma_{\mathrm{LO}}+\int_{n+1} \mathrm{~d} \sigma_{\text {Real }}+\int_{n} \mathrm{~d} \sigma_{\mathrm{Virt}}
$$

Simple one-dimensional example: $x \sim p_{\perp} / p_{\perp \text { max }}, 0 \leq x \leq 1$ Divergences regularized by $d=4-2 \epsilon$ dimensions, $\epsilon<0$

$$
\sigma_{\mathrm{R}+\mathrm{V}}=\int_{0}^{1} \frac{\mathrm{~d} x}{x^{1+\epsilon}} M(x)+\frac{1}{\epsilon} M_{0}
$$

KLN cancellation theorem: $M(0)=M_{0}$

$$
\begin{aligned}
& \text { Phase Space Slicing: } \\
& \text { Introduce arbitrary finite cutoff } \delta \ll 1 \text { (so } \delta \gg|\epsilon| \text {) } \\
& \begin{aligned}
\sigma_{\mathrm{R}+\vee} & =\int_{\delta}^{1} \frac{\mathrm{~d} x}{x^{1+\epsilon}} M(x)+\int_{0}^{\delta} \frac{\mathrm{d} x}{x^{1+\epsilon}} M(x)+\frac{1}{\epsilon} M_{0} \\
& \approx \int_{\delta}^{1} \frac{\mathrm{~d} x}{x} M(x)+\int_{0}^{\delta} \frac{\mathrm{d} x}{x^{1+\epsilon}} M_{0}+\frac{1}{\epsilon} M_{0} \\
& =\int_{\delta}^{1} \frac{\mathrm{~d} x}{x} M(x)+\frac{1}{\epsilon}\left(1-\delta^{-\epsilon}\right) M_{0} \\
& \approx \int_{\delta}^{1} \frac{\mathrm{~d} x}{x} M(x)+\ln \delta M_{0}
\end{aligned}
\end{aligned}
$$

Alternatively Subtraction:

$$
\begin{aligned}
\sigma_{\mathrm{R}+\mathrm{V}} & =\int_{0}^{1} \frac{\mathrm{~d} x}{x^{1+\epsilon}} M(x)-\int_{0}^{1} \frac{\mathrm{~d} x}{x^{1+\epsilon}} M_{0}+\int_{0}^{1} \frac{\mathrm{~d} x}{x^{1+\epsilon}} M_{0}+\frac{1}{\epsilon} M_{0} \\
& =\int_{0}^{1} \frac{M(x)-M_{0}}{x^{1+\epsilon}} \mathrm{d} x+\left(-\frac{1}{\epsilon}+\frac{1}{\epsilon}\right) M_{0} \\
& \approx \int_{0}^{1} \frac{M(x)-M_{0}}{x} \mathrm{~d} x+\mathcal{O}(1) M_{0}
\end{aligned}
$$

NLO provides a more accurate answer for an integrated cross section:

Warning!

Neither approach operates with positive definite quantities No obvious event-generator implementation
No trivial connection to physical events

Cross sections and kinematics

d(2)
$u(3) \quad \hat{s}=\left(p_{1}+p_{2}\right)^{2}$

$$
\hat{t}=\left(p_{1}-p_{3}\right)^{2}=-\widehat{s}(1-\cos \widehat{\theta}) / 2
$$

$$
\mathrm{d}(4) \quad \hat{u}=\left(p_{1}-p_{4}\right)^{2}=-\widehat{s}(1+\cos \widehat{\theta}) / 2
$$

$$
\mathrm{qq}^{\prime} \rightarrow \mathrm{qq}^{\prime}: \frac{\mathrm{d} \widehat{\sigma}}{\mathrm{~d} \overparen{t}}=\frac{\pi}{\hat{s}^{2}} \frac{4}{9} \alpha_{\mathrm{s}}^{2} \frac{\widehat{s}^{2}+\widehat{u}^{2}}{\hat{t}^{2}} \quad(\sim \text { Rutherford })
$$

$$
\mathrm{p}(A) \rightarrow \begin{aligned}
& s=\left(p_{A}+p_{B}\right)^{2} \\
& x_{1} \approx E_{1} / E_{A} \\
& x_{2} \approx E_{2} / E_{B} \\
& \hat{s}=x_{1} x_{2} s
\end{aligned}
$$

$$
\sigma=\sum_{i, j} \iiint \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \hat{t} f_{i}^{(A)}\left(x_{1}, Q^{2}\right) f_{j}^{(B)}\left(x_{2}, Q^{2}\right) \frac{\mathrm{d} \widehat{\sigma}_{i j}}{\mathrm{~d} \hat{t}}
$$

Factorization: proven for a few processes, assumed for more!

Parton Distribution/Density Functions (PDFs)

Initial conditions nonperturbative; evolution perturbative (DGLAP):

$$
\frac{\mathrm{d} f_{b}\left(x, Q^{2}\right)}{\mathrm{d}\left(\ln Q^{2}\right)}=\sum_{a} \int_{x}^{1} \frac{\mathrm{~d} z}{z} f_{a}\left(x^{\prime}, Q^{2}\right) \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z=\frac{x}{x^{\prime}}\right)
$$

Peaking of PDF's at small x and of QCD ME's at low p_{\perp}
\Longrightarrow most of the physics is at low transverse momenta ...

... but New Physics likely to show up at large masses $/ p_{\perp}$'s

At NLO PDFs are not physical objects and not required positive definite: $\sigma=\hat{\sigma} \otimes \mathrm{PDF}$, and both can be negative.

Dangerous for LO MCs: recently introduce new MC-adapted PDFs

- allow $\sum_{i} \int_{0}^{1} x f_{i}\left(x, Q^{2}\right)>1$ as "built-in K factor"
- use NLO-calculated pseudodata as target for tunes

Current usage:

- conventional: CTEQ 5L, CTEQ 6L, CTEQ 6L1, MSTW 2008 LO
- MC-adapted: MRST LO* and LO**; CT09 MC1, MC2 and MCS

Colour flow in hard processes
One Feynman graph can correspond to several possible colour flows, e.g. for qg \rightarrow qg:

while other qg \rightarrow qg graphs only admit one colour flow:

so nontrivial mix of kinematics variables (\hat{s}, \widehat{t})
and colour flow topologies I, II:

$$
\begin{aligned}
|\mathcal{A}(\hat{s}, \hat{t})|^{2} & =\left|\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t})+\mathcal{A}_{\mathrm{II}}(\hat{s}, \hat{t})\right|^{2} \\
& =\left|\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t})\right|^{2}+\left|\mathcal{A}_{\mathrm{II}}(\widehat{s}, \hat{t})\right|^{2}+2 \operatorname{Re}\left(\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t}) \mathcal{A}_{\mathrm{II}}^{*}(\hat{s}, \hat{t})\right)
\end{aligned}
$$

with $\operatorname{Re}\left(\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t}) \mathcal{A}_{\mathrm{II}}^{*}(\hat{s}, \hat{t})\right) \neq 0$
\Rightarrow indeterminate colour flow, while

- showers should know it (coherence),
- hadronization must know it (hadrons singlets).

Normal solution:

$$
\frac{\text { interference }}{\text { total }} \propto \frac{1}{N_{\mathrm{C}}^{2}-1}
$$

so split I : II according to proportions in the $N_{C} \rightarrow \infty$ limit, i.e.

$$
\begin{aligned}
|\mathcal{A}(\hat{s}, \hat{t})|^{2} & =\left|\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t})\right|_{\text {mod }}^{2}+\left|\mathcal{A}_{\mathrm{II}}(\hat{s}, \hat{t})\right|_{\text {mod }}^{2} \\
\left|\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t})\right|_{\text {mod }}^{2} & =\left|\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t})+\mathcal{A}_{\mathrm{II}}(\hat{s}, \hat{t})\right|^{2}\left(\frac{\left|\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t})\right|^{2}}{\left|\mathcal{A}_{\mathrm{I}}(\hat{s}, \hat{t})\right|^{2}+\left|\mathcal{A}_{\mathrm{II}}(\hat{s}, \hat{t})\right|^{2}}\right)_{N_{\mathrm{C}} \rightarrow \infty} \\
\left|\mathcal{A}_{\mathrm{II}}(\hat{s}, \hat{t})\right|_{\text {mod }}^{2} & =\ldots
\end{aligned}
$$

Process Libraries

Traditionally generators come each with its own subprocess library, handcoded since before the days of automatic code generation.

Subprocess lists with hundreds of entries look impressive, and are useful to rapidly get going, but:

* Processes usually only in lowest nontrivial order
\Rightarrow need programs that include HO loop corrections to cross sections, alternatively do (p_{\perp}, y)-dependent rescaling by hand?
* No multijet topologies (except in SHERPA)
\Rightarrow have to trust shower to get it right, alternatively match to HO (non-loop) ME generators
* Spin correlations often absent or incomplete (in PYTHIA)
e.g. top produced unpolarized, while $\mathrm{t} \rightarrow \mathrm{bW}^{+} \rightarrow \mathrm{b} \ell^{+} \nu_{\ell}$ decay correct
\Rightarrow have to use external programs when important
* New physics scenarios appear at rapid pace
\Rightarrow need to have a bigger class of "one-issue experts" contributing code

The Les Houches Accord

Some Specialized Generators:

- AcerMC: $\operatorname{t\overline {t}b\overline {b},\ldots }$
- ALPGEN: W/Z+ $\leq 6 j$, $n \mathrm{~W}+m \mathrm{Z}+k \mathrm{H}+\leq 3 \mathrm{j}, \ldots$
- CalcHEP: generic LO
- Comix: generic LO
- CompHEP: generic LO
- GRACE+Bases/Spring: generic LO+ some NLO loops
- HELAC-PHEGAS: generic LO
- MadCUP: W/Z+ $\leq 3 j$, t渞 \bar{b}
- MadGraph+HELAS: generic LO
- MCFM: NLO W/Z+ $\leq 2 \mathrm{j}$, WZ, WH, H+ $\leq 1 j$
- O'Mega+WHIZARD: generic LO

Apologies for all unlisted programs

Do it yourself

MadGraph, CompHEP and CalcHEP can easily be run interactively:

- user specifies process, e.g. gg $\rightarrow W^{+} \bar{u} d$, and cuts
- program finds all contributing lowest-order Feynman graphs,
- the required amplitudes/cross sections are calculated,
- phase-space is sampled and unweighted to give parton-level events,
- parton-level properties can be histogrammed,
- Les Houches Accord \Longrightarrow complete events.

CompHEP/CalcHEP (matrix-elements-based, good for $\sim \leq 4$ outgoing):
http://theory.sinp.msu.ru/comphep/
http://theory.sinp.msu.ru/~pukhov/calchep.html
MadGraph (amplitude-based, can handle $\sim \leq 7$ outgoing):
http://madgraph.physics.uiuc.edu/
Comix (in Sherpa): powerful new framework based on recursion relations
... but

- stiff price to pay for each additional parton \Longrightarrow optimized LO libraries,
- confined to lowest-order processes \Longrightarrow NLO libraries.

Ready-made libraries

Many leading-order (LO) ones, e.g.:
\bullet ALPGEN: $\mathrm{W} / \mathrm{Z}+\leq 6 \mathrm{j}, n \mathrm{~W}+m \mathrm{Z}+k \mathrm{H}+\leq 3 \mathrm{j}, \mathrm{Q} \overline{\mathrm{Q}}+\leq 6 \mathrm{j}, \ldots$

$$
\begin{gathered}
\text { http: //mlm.home.cern.ch/mlm/alpgen/ } \\
\text { •AcerMC: t勇 } \overline{\mathrm{b}}, \mathrm{WWb} \overline{\mathrm{~b}}, \ldots \\
\text { http: //borut. home. cern.ch/borut/ } \\
\bullet \text { VECBOS: W/Z+ } \mathrm{W}+\mathrm{j} \\
\bullet \text { TopReX: } \mathrm{t}, \ldots
\end{gathered}
$$

Not as many NLO, but still quite a few, e.g.

- MCFM: NLO W/Z+ $\leq 2 \mathrm{j}, \mathrm{WZ}, \mathrm{WH}, \mathrm{H}+\leq 1 \mathrm{j}$
http://mcfm.fnal.gov/
- NLOJet++: 2j, 3j
http://nagyz.web.cern.ch/nagyz/Site/NLOJet++
- PHOX family: photons + jets
http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html
- MNR: c $\bar{c}, b \bar{b}$
- VBFNLO: WW, WZ, ZZ, ... (incl. Higgs contribution)
http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb/
- HIGLU: $\mathrm{gg} \rightarrow \mathrm{H}$
- PROSPINO: $\widetilde{q} \widetilde{q}, \tilde{q} \widetilde{g}, \widetilde{g} \widetilde{g}$

FEYNRULES: Implementing new models made easy

Aim

- Portable, transparent \& reproducible implementation of (nearly arbitrary) new physics models.
- In most codes: New models given by new particles, their properties \& interactions.
- Output to standard ME generators enabled (MadGraph, Sherpa, ...)

- Various models already implemented \& validated for a list: http://feynrules.phys.ucl.ac.be

Parton Showers

An event with 6 jets taken on April 4th, 2010. The jets have calibrated transverse momenta between 30 GeV and 70 GeV and are well separated in the detector.

- Final-State (Timelike) Showers
- Initial-State (Spacelike) Showers
- Matching to Matrix Elements

Divergences

Emission rate q \rightarrow qg diverges when

- collinear: opening angle $\theta_{\mathrm{ag}} \rightarrow 0$
- soft: gluon energy $E_{g} \rightarrow 0$

Almost identical to $\mathrm{e} \rightarrow \mathrm{e} \gamma$
("bremsstrahlung"),
but QCD is non-Abelian so additionally

- $\mathrm{g} \rightarrow \mathrm{gg}$ similarly divergent
- $\alpha_{\mathrm{s}}\left(Q^{2}\right)$ diverges for $Q^{2} \rightarrow 0$ (actually for $Q^{2} \rightarrow \Lambda_{\mathrm{QCD}}^{2}$)

Big probability for one emission \Longrightarrow also big for several \Longrightarrow with ME's need to calculate to high order and with many loops
\Longrightarrow extremely demanding technically (not solved!), and involving big cancellations between positive and negative contributions. Alternative approach: parton showers

The Parton-Shower Approach

$$
2 \rightarrow n=(2 \rightarrow 2) \oplus \text { ISR } \oplus \mathrm{FSR}
$$

ISR

FSR = Final-State Rad.; timelike shower $Q_{i}^{2} \sim m^{2}>0$ decreasing

ISR = Initial-State Rad.; spacelike shower
$Q_{i}^{2} \sim-m^{2}>0$ increasing
$2 \rightarrow 2=$ hard scattering (on-shell):

$$
\sigma=\iiint \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \hat{t} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{i j}}{\mathrm{~d} \hat{t}}
$$

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability:
the cross section is not directly affected, but indirectly it is, via the changed event shape

Technical aside: why timelike/spacelike?

Consider four-momentum conservation in a branching $a \rightarrow b c$

$$
\begin{gathered}
\text { Define } p_{+b}=z p_{+a}, p_{+c}=(1-z) p_{+a} \\
\text { Use } p_{+} p_{-}=E^{2}-p_{\llcorner }^{2}=m^{2}+p_{\perp}^{2} \\
\frac{m_{a}^{2}+p_{\perp a}^{2}}{p_{+a}}=\frac{m_{b}^{2}+p_{\perp b}^{2}}{z p_{+a}}+\frac{m_{c}^{2}+p_{\perp c}^{2}}{(1-z) p_{+a}} \\
\Rightarrow m_{a}^{2}=\frac{m_{b}^{2}+p_{\perp}^{2}}{z}+\frac{m_{c}^{2}+p_{\perp}^{2}}{1-z}=\frac{m_{b}^{2}}{z}+\frac{m_{c}^{2}}{1-z}+\frac{p_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Final-state shower: $m_{b}=m_{c}=0 \Rightarrow m_{a}^{2}=\frac{p_{\perp}^{2}}{z(1-z)}>0 \Rightarrow$ timelike Initial-state shower: $m_{a}=m_{c}=0 \Rightarrow m_{b}^{2}=-\frac{p_{\perp}^{2}}{1-z}<0 \Rightarrow$ spacelike

Doublecounting

A $2 \rightarrow n$ graph can be "simplified" to $2 \rightarrow 2$ in different ways:

Do not doublecount: $2 \rightarrow 2$ = most virtual $=$ shortest distance
Conflict: theory derivations often assume virtualities strongly ordered; interesting physics often in regions where this is not true!

From Matrix Elements to Parton Showers

Rewrite for $x_{2} \rightarrow 1$, i.e. q-g collinear limit:

$$
\begin{aligned}
& 1-x_{2}=\frac{m_{13}^{2}}{E_{\mathrm{cm}}^{2}}=\frac{Q^{2}}{E_{\mathrm{cm}}^{2}} \Rightarrow \mathrm{~d} x_{2}=\frac{\mathrm{d} Q^{2}}{E_{\mathrm{cm}}^{2}} \\
& x_{1} \approx z \Rightarrow \mathrm{~d} x_{1} \approx \mathrm{~d} z \\
& x_{3} \approx 1-z
\end{aligned}
$$

$\Rightarrow \mathrm{d} \mathcal{P}=\frac{\mathrm{d} \sigma}{\sigma_{0}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} x_{2}}{\left(1-x_{2}\right)} \frac{4}{3} \frac{x_{2}^{2}+x_{1}^{2}}{\left(1-x_{1}\right)} \mathrm{d} x_{1} \approx \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{4}{3} \frac{1+z^{2}}{1-z} \mathrm{~d} z$

Generalizes to DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$
\begin{aligned}
\mathrm{d} \mathcal{P}_{a \rightarrow b c} & =\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \\
P_{\mathrm{q} \rightarrow \mathrm{ag}} & =\frac{4}{3} \frac{1+z^{2}}{1-z} \\
P_{\mathrm{g} \rightarrow \mathrm{gg}} & =3 \frac{(1-z(1-z))^{2}}{z(1-z)} \\
P_{\mathrm{g} \rightarrow \mathrm{a} \overline{\mathrm{a}}} & =\frac{n_{f}}{2}\left(z^{2}+(1-z)^{2}\right) \quad\left(n_{f}=\text { no. of quark flavours }\right)
\end{aligned}
$$

Iteration gives final-state parton showers

Need soft/collinear cut-offs to stay away from nonperturbative physics.
Details model-dependent, e.g.
$Q>m_{0}=\min \left(m_{i j}\right) \approx 1 \mathrm{GeV}$,
$z_{\text {min }}(E, Q)<z<z_{\max }(E, Q)$
or $p_{\perp}>p_{\perp \text { min }} \approx 0.5 \mathrm{GeV}$

The Sudakov Form Factor

Conservation of total probability:
\mathcal{P} (nothing happens) $=1-\mathcal{P}$ (something happens)
"multiplicativeness" in "time" evolution:
$\mathcal{P}_{\text {nothing }}(0<t \leq T)=\mathcal{P}_{\text {nothing }}\left(0<t \leq T_{1}\right) \mathcal{P}_{\text {nothing }}\left(T_{1}<t \leq T\right)$
Subdivide further, with $T_{i}=(i / n) T, 0 \leq i \leq n$:

$$
\begin{aligned}
\mathcal{P}_{\text {nothing }}(0<t \leq T) & =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\text {nothing }}\left(T_{i}<t \leq T_{i+1}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1}\left(1-\mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \\
& =\exp \left(-\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \\
& =\exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right) \\
\Longrightarrow \mathrm{d} \mathcal{P}_{\text {first }}(T) & =\mathrm{d} \mathcal{P}_{\text {something }}(T) \exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\text {something }}(t)}{\mathrm{d} t} \mathrm{~d} t\right)
\end{aligned}
$$

Example: radioactive decay of nucleus
$N(t)$

naively: $\frac{\mathrm{d} N}{\mathrm{~d} t}=-c N_{0} \Rightarrow N(t)=N_{0}(1-c t)$
depletion: a given nucleus can only decay once correctly: $\frac{\mathrm{d} N}{\mathrm{~d} t}=-c N(t) \Rightarrow N(t)=N_{0} \exp (-c t)$ generalizes to: $N(t)=N_{0} \exp \left(-\int_{0}^{t} c\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)$
or: $\frac{\mathrm{d} N(t)}{\mathrm{d} t}=-c(t) N_{0} \exp \left(-\int_{0}^{t} c\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)$
sequence allowed: nucleus ${ }_{1} \rightarrow$ nucleus $_{2} \rightarrow$ nucleus $_{3} \rightarrow \ldots$
Correspondingly, with $Q \sim 1 / t$ (Heisenberg)
$\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \exp \left(-\sum_{b, c} \int_{Q^{2}}^{Q_{\mathrm{max}}^{2}} \frac{\mathrm{~d} Q^{\prime 2}}{Q^{\prime 2}} \int \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) \mathrm{d} z^{\prime}\right)$
where the exponent is (one definition of) the Sudakov form factor
A given parton can only branch once, i.e. if it did not already do so
Note that $\sum_{b, c} \iint \mathrm{~d} \mathcal{P}_{a \rightarrow b c} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens)

Sudakov form factor provides "time" ordering of shower: lower $Q^{2} \Longleftrightarrow$ longer times

$$
\begin{aligned}
& Q_{1}^{2}>Q_{2}^{2}>Q_{3}^{2} \\
& Q_{1}^{2}>Q_{4}^{2}>Q_{5}^{2} \\
& \text { etc. }
\end{aligned}
$$

Sudakov regulates singularity for first emission...

...but in limit of repeated soft emissions $\mathrm{q} \rightarrow \mathrm{qg}$ (but no $\mathrm{g} \rightarrow \mathrm{gg}$) one obtains the same inclusive Q emission spectrum as for ME, i.e. divergent ME spectrum
\Longleftrightarrow infinite number of PS emissions
Proof: as for veto algorithm (what is probability to have an emission at Q after $0,1,2,3, \ldots$ previous ones?)

Coherence

QED: Chudakov effect (mid-fifties)

emulsion plate \begin{tabular}{c}
reduced

ionization

normal

ionization
\end{tabular}

QCD: colour coherence for soft gluon emission

solved by • requiring emission angles to be decreasing
or - requiring transverse momenta to be decreasing

The Common Showering Algorithms (LEP era)

Three main approaches to showering in common use:
Two are based on the standard shower language of $a \rightarrow b c$ successive branchings:

HERWIG: $Q^{2} \approx E^{2}(1-\cos \theta) \approx E^{2} \theta^{2} / 2$
PYTHIA: $Q^{2}=m^{2}$ (timelike) or $=-m^{2}$ (spacelike)
One is based on a picture of dipole emission $a b \rightarrow c d e$:

ARIADNE: $Q^{2}=p_{\perp}^{2} ;$ FSR mainly, ISR is primitive; there instead LDCMC: sophisticated but complicated

Ordering variables in final-state radiation (LEP era)

PYTHIA: $Q^{2}=m^{2}$

large mass first
\Rightarrow "hardness" ordered coherence brute force
covers phase space ME merging simple

$$
\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}} \text { simple }
$$

not Lorentz invariant no stop/restart
ISR: $m^{2} \rightarrow-m^{2}$

HERWIG: $Q^{2} \sim E^{2} \theta^{2}$

large angle first
\Rightarrow hardness not ordered
coherence inherent gaps in coverage
ME merging messy
$g \rightarrow q \bar{q}$ simple
not Lorentz invariant
no stop/restart ISR: $\theta \rightarrow \theta$

ARIADNE: $Q^{2}=p_{\perp}^{2}$

large p_{\perp} first
\Rightarrow "hardness" ordered coherence inherent
covers phase space ME merging simple $\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ messy Lorentz invariant can stop/restart
ISR: more messy

Data comparisons (LEP)

All three algorithms do a reasonable job of describing LEP data, but typically ARIADNE $\left(p_{\perp}^{2}\right)>\operatorname{PYTHIA}\left(m^{2}\right)>$ HERWIG (θ)

... and programs evolve to do even better ...

Features of dipole showers

- Quantum coherence on similar grounds for angular and k_{T}-ordering, typical ordering in dipole showers by k_{\perp}.
- Many new shower formulations in past few years, many (nearly all) based on dipoles in one way or the other.
- Seemingly closer link to NLO calculations: Use subtraction kernels like antennae or Catani-Seymour kernels.
- Typically: First emission fully accounted for.

Survey of existing showering tools

Tools	evolution	AO/Coherence
Ariadne	k_{\perp}-ordered	by construction
Herwig Herwig++	angular ordering improved angular ordering	by construction by construction
Pythia	old: virtuality ordered new: k_{\perp}-ordered	by hand by construction
Sherpa	virtuality ordered (like old Pythia) new: k_{\perp}-ordering	by hand
Vincia	k_{\perp}-ordered	by construction

Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

$$
\begin{aligned}
\mathcal{P}_{\mathrm{a} \rightarrow \mathrm{ag}} & \approx \int \frac{\mathrm{~d} Q^{2}}{Q^{2}} \int \mathrm{~d} z \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{1+z^{2}}{1-z} \\
& \approx \alpha_{\mathrm{s}} \ln \left(\frac{Q_{\max }^{2}}{Q_{\min }^{2}}\right) \frac{8}{3} \ln \left(\frac{1-z_{\min }}{1-z_{\max }}\right) \sim \alpha_{\mathrm{s}} \ln ^{2}
\end{aligned}
$$

Rate for n emissions is of form:

$$
\mathcal{P}_{\mathrm{q} \rightarrow \mathrm{q} n \mathrm{~g}} \sim\left(\mathcal{P}_{\mathrm{q} \rightarrow \mathrm{ag}}\right)^{n} \sim \alpha_{\mathrm{s}}^{n} \ln ^{2 n}
$$

Next-to-leading log (NLL): inclusion of all corrections of type $\alpha_{\mathrm{s}}^{n} \ln 2 n-1$
No existing generator completely NLL (NLLJET?), but

- energy-momentum conservation (and "recoil" effects)
- coherence
- $2 /(1-z) \rightarrow\left(1+z^{2}\right) /(1-z)$
- scale choice $\alpha_{\mathrm{s}}\left(p_{\perp}^{2}\right)$ absorbs singular terms $\propto \ln z, \ln (1-z)$ in $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ splitting kernels $P_{\mathrm{q} \rightarrow \mathrm{ag}}$ and $\mathrm{P}_{\mathrm{g} \rightarrow \mathrm{gg}}$
\Rightarrow far better than naive, analytical LL

Summary Lecture 2

- Hard processes: •
^ Simple ones: probably built-in in PYTHIA/HERWIG \star (SHERPA has complete internal ME generator, HERWIG partial)
* Multiparton LO: external generator + Les Houches Accord \star
\star NLO: not easily related to physical events \star
- Parton Showers: •
$\star 2$ kinds: initial-state and final-state \star
* related to and derived from matrix elements \star
\star Sudakov form factor ensures sensible physics \star
\star Ordering variable ambiguous: $\theta, p_{\perp}^{2}, m^{2} \star$
\star Constraints from coherence arguments, and from data \star
* In state of continuous development \star
* More to come tomorrow! \star

