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1. (today) Introduction and Overview; Monte Carlo Techniques

2. (today) Matrix Elements; Parton Showers I

3. (tomorrow) Parton Showers II; Matching Issues

4. (tomorrow) Multiple Parton–Parton Interactions

5. (Wednesday) Hadronization and Decays; Generator Status



Matrix Elements and Their Usage

L ⇒ Feynman rules ⇒ Matrix Elements ⇒ Cross Sections
+ Kinematics ⇒ Processes ⇒ . . .⇒

(Higgs simulation in CMS)



Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order
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Fixed Order 

(all orders) 

Sum over 
“anything” ≈ legs

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate 
observable → 
differential in O

Momentum
configuration

 

(borrowed from Peter Skands)



Loops and Legs

Another representation
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Next-to-leading order (NLO) calculations

I. Lowest order,
O(αem):
qq → Z0

p⊥

dσ/dp⊥

lowest order
finite σ0
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II. First-order real,
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Next-to-leading order (NLO) calculations

I. Lowest order,
O(αem):
qq → Z0

p⊥

dσ/dp⊥

lowest order
finite σ0

II. First-order real,
O(αemαs):
qq → Z0g etc.

p⊥

dσ/dp⊥

real, +∞

III. First-order virtual,
O(αemαs):
qq → Z0 with loops

p⊥

dσ/dp⊥

virtual, −∞



σNLO =

∫

n
dσLO +

∫

n+1
dσReal +

∫

n
dσVirt

Simple one-dimensional example: x ∼ p⊥/p⊥max, 0 ≤ x ≤ 1

Divergences regularized by d = 4 − 2ǫ dimensions, ǫ < 0

σR+V =
∫ 1

0

dx

x1+ǫ
M(x) +

1

ǫ
M0

KLN cancellation theorem: M(0) = M0

Phase Space Slicing:
Introduce arbitrary finite cutoff δ << 1 (so δ ≫ |ǫ| )

σR+V =
∫ 1

δ

dx

x1+ǫ
M(x) +

∫ δ

0

dx

x1+ǫ
M(x) +

1

ǫ
M0

≈
∫ 1

δ

dx

x
M(x) +

∫ δ

0

dx

x1+ǫ
M0 +

1

ǫ
M0

=

∫ 1

δ

dx

x
M(x) +

1

ǫ

(

1 − δ−ǫ
)

M0

≈
∫ 1

δ

dx

x
M(x) + ln δ M0



Alternatively Subtraction:

σR+V =

∫ 1

0

dx

x1+ǫ
M(x)−

∫ 1

0

dx

x1+ǫ
M0 +

∫ 1

0

dx

x1+ǫ
M0 +

1

ǫ
M0

=

∫ 1

0

M(x) − M0

x1+ǫ
dx +

(

−
1

ǫ
+

1

ǫ

)

M0

≈
∫ 1

0

M(x) − M0

x
dx + O(1)M0

NLO provides a more accurate answer for an integrated cross section:
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Warning!

Neither approach operates

with positive definite quantities

No obvious event-generator

implementation

No trivial connection to
physical events



Cross sections and kinematics

u (1)

d (4)d (2)

u (3)

g

ŝ = (p1 + p2)
2

t̂ = (p1 − p3)
2 = −ŝ(1 − cos θ̂)/2

û = (p1 − p4)
2 = −ŝ(1 + cos θ̂)/2

qq′ → qq′ :
dσ̂

dt̂
=

π

ŝ2
4

9
α2
s

ŝ2 + û2

t̂2
(∼ Rutherford)

p (A)

p (B)

1

2

s = (pA + pB)2

x1 ≈ E1/EA

x2 ≈ E2/EB

ŝ = x1x2s

σ =
∑

i,j

∫∫∫

dx1 dx2 dt̂ f
(A)
i (x1, Q2) f

(B)
j (x2, Q2)

dσ̂ij

dt̂

Factorization: proven for a few processes, assumed for more!



Parton Distribution/Density Functions (PDFs)

http://durpdg.dur.ac.uk/hepdata/pdf.html

Initial conditions nonperturbative; evolution perturbative (DGLAP):

dfb(x, Q2)

d(lnQ2)
=
∑

a

∫ 1

x

dz

z
fa(x

′, Q2)
αs

2π
Pa→bc

(

z =
x

x′

)



Peaking of PDF’s at small x and of QCD ME’s at low p⊥
=⇒ most of the physics is at low transverse momenta . . .
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. . . but New Physics likely to show up at large masses/p⊥’s



At NLO PDFs are not physical objects and not required positive definite:
σ = σ̂ ⊗ PDF, and both can be negative.

Dangerous for LO MCs: recently introduce new MC-adapted PDFs
• allow

∑

i
∫ 1
0 xfi(x, Q2) > 1 as “built-in K factor”

• use NLO-calculated pseudodata as target for tunes

Current usage:
• conventional: CTEQ 5L, CTEQ 6L, CTEQ 6L1, MSTW 2008 LO
• MC-adapted: MRST LO* and LO**; CT09 MC1, MC2 and MCS



Colour flow in hard processes

One Feynman graph can correspond to several possible colour flows,
e.g. for qg → qg:
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while other qg → qg graphs only admit one colour flow:
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so nontrivial mix of kinematics variables (ŝ, t̂)

and colour flow topologies I, II:

|A(ŝ, t̂)|2 = |AI(ŝ, t̂) + AII(ŝ, t̂)|
2

= |AI(ŝ, t̂)|
2 + |AII(ŝ, t̂)|

2 + 2Re
(

AI(ŝ, t̂)A
∗
II(ŝ, t̂)

)

with Re
(

AI(ŝ, t̂)A
∗
II(ŝ, t̂)

)

6= 0

⇒ indeterminate colour flow, while
• showers should know it (coherence),
• hadronization must know it (hadrons singlets).
Normal solution:

interference

total
∝

1

N2
C − 1

so split I : II according to proportions in the NC → ∞ limit, i.e.

|A(ŝ, t̂)|2 = |AI(ŝ, t̂)|
2
mod + |AII(ŝ, t̂)|

2
mod

|AI(ŝ, t̂)|
2
mod = |AI(ŝ, t̂) + AII(ŝ, t̂)|

2

(

|AI(ŝ, t̂)|
2

|AI(ŝ, t̂)|
2 + |AII(ŝ, t̂)|

2

)

NC→∞

|AII(ŝ, t̂)|
2
mod = . . .



Process Libraries

Traditionally generators come each with its own subprocess library,
handcoded since before the days of automatic code generation.

Subprocess lists with hundreds of entries look impressive,
and are useful to rapidly get going, but:

⋆ Processes usually only in lowest nontrivial order
⇒ need programs that include HO loop corrections to cross sections,

alternatively do (p⊥, y)-dependent rescaling by hand?

⋆ No multijet topologies (except in SHERPA)
⇒ have to trust shower to get it right,

alternatively match to HO (non-loop) ME generators

⋆ Spin correlations often absent or incomplete (in PYTHIA)
e.g. top produced unpolarized, while t → bW+ → bℓ+νℓ decay correct

⇒ have to use external programs when important

⋆ New physics scenarios appear at rapid pace
⇒ need to have a bigger class of “one-issue experts” contributing code

=⇒The Les Houches Accord



The Les Houches Accord

Specialized Generator

=⇒ Hard Process

Les Houches Interface
(event file, or commonblock)

HERWIG or PYTHIA

(Resonance Decays)

Parton Showers
Underlying Event

Hadronization
Ordinary Decays

Some Specialized Generators:
• AcerMC: ttbb, . . .
• ALPGEN: W/Z+ ≤ 6j,

nW + mZ + kH+ ≤ 3j, . . .
• CalcHEP: generic LO
• Comix: generic LO
• CompHEP: generic LO
• GRACE+Bases/Spring:

generic LO+ some NLO loops
• HELAC–PHEGAS: generic LO
• MadCUP: W/Z+ ≤ 3j, ttbb

• MadGraph+HELAS: generic LO
• MCFM: NLO W/Z+ ≤ 2j,

WZ, WH, H+ ≤ 1j

• O’Mega+WHIZARD: generic LO

Apologies for all unlisted programs



Do it yourself

MadGraph, CompHEP and CalcHEP can easily be run interactively:
• user specifies process, e.g. gg → W+ud, and cuts
• program finds all contributing lowest-order Feynman graphs,
• the required amplitudes/cross sections are calculated,
• phase-space is sampled and unweighted to give parton-level events,
• parton-level properties can be histogrammed,
• Les Houches Accord =⇒ complete events.

CompHEP/CalcHEP (matrix-elements-based, good for ∼≤ 4 outgoing):
http://theory.sinp.msu.ru/comphep/

http://theory.sinp.msu.ru/∼pukhov/calchep.html

MadGraph (amplitude-based, can handle ∼≤ 7 outgoing):
http://madgraph.physics.uiuc.edu/

Comix (in Sherpa): powerful new framework based on recursion relations

. . . but
• stiff price to pay for each additional parton =⇒ optimized LO libraries,
• confined to lowest-order processes =⇒ NLO libraries.



Ready-made libraries

Many leading-order (LO) ones, e.g.:
•ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, QQ+ ≤ 6j, . . .

http://mlm.home.cern.ch/mlm/alpgen/

•AcerMC: ttbb, WWbb, . . .
http://borut.home.cern.ch/borut/

• VECBOS: W/Z+ ≤ 4j

• TopReX: tt, . . .

Not as many NLO, but still quite a few, e.g.
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

http://mcfm.fnal.gov/

• NLOJet++: 2j, 3j
http://nagyz.web.cern.ch/nagyz/Site/NLOJet++

• PHOX family: photons + jets
http://wwwlapp.in2p3.fr/lapth/PHOX FAMILY/main.html

• MNR: cc, bb
• VBFNLO: WW, WZ, ZZ, . . . (incl. Higgs contribution)

http://www-itp.particle.uni-karlsruhe.de/∼vbfnloweb/

• HIGLU: gg → H

• PROSPINO: q̃q̃, q̃g̃, g̃g̃



Orientation Matrix elements Detour: New models Survey of tools ME Limitations Detour: NLO

FEYNRULES: Implementing new models made easy

Aim
Portable, transparent & reproducible implementation of
(nearly arbitrary) new physics models.

In most codes: New models
given by new particles, their
properties & interactions.

Output to standard ME
generators enabled
(MADGRAPH, SHERPA, . . . )

Various models already implemented & validated
for a list: http://feynrules.phys.ucl.ac.be

F. Krauss IPPP

Introduction to Event Generators (borrowed from Frank Krauss)



Parton Showers
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• Final-State (Timelike) Showers
• Initial-State (Spacelike) Showers
• Matching to Matrix Elements



Divergences

Emission rate q → qg diverges when
• collinear: opening angle θqg → 0

• soft: gluon energy Eg → 0

Almost identical to e → eγ

(“bremsstrahlung”),
but QCD is non-Abelian so additionally
• g → gg similarly divergent
• αs(Q2) diverges for Q2 → 0

(actually for Q2 → Λ2
QCD)

Big probability for one emission =⇒ also big for several
=⇒ with ME’s need to calculate to high order and with many loops

=⇒ extremely demanding technically (not solved!), and
involving big cancellations between positive and negative contributions.

Alternative approach: parton showers



The Parton-Shower Approach

2 → n = (2 → 2) ⊕ ISR ⊕ FSR

q

q

Q

Q

Q2

2 → 2

Q2
2

Q2
1

ISR

Q2
4

Q2
3

FSR

FSR = Final-State Rad.;

timelike shower
Q2

i ∼ m2 > 0 decreasing

ISR = Initial-State Rad.;

spacelike shower

Q2
i ∼ −m2 > 0 increasing

2 → 2 = hard scattering (on-shell):

σ =

∫∫∫

dx1 dx2 dt̂ fi(x1, Q2) fj(x2, Q2)
dσ̂ij

dt̂

Shower evolution is viewed as a probabilistic process,
which occurs with unit total probability:
the cross section is not directly affected,

but indirectly it is, via the changed event shape



Technical aside: why timelike/spacelike?

Consider four-momentum conservation in a branching a → b c

a

b

c

p⊥a = 0 ⇒ p⊥c = −p⊥b

p+ = E + pL ⇒ p+a = p+b + p+c

p− = E − pL ⇒ p−a = p−b + p−c

Define p+b = z p+a, p+c = (1 − z) p+a

Use p+p− = E2 − p2
L = m2 + p2

⊥

m2
a + p2

⊥a

p+a
=

m2
b + p2

⊥b

z p+a
+

m2
c + p2

⊥c

(1 − z) p+a

⇒ m2
a =

m2
b + p2

⊥

z
+

m2
c + p2

⊥

1 − z
=

m2
b

z
+

m2
c

1 − z
+

p2
⊥

z(1 − z)

Final-state shower: mb = mc = 0 ⇒ m2
a =

p2
⊥

z(1−z)
> 0 ⇒ timelike

Initial-state shower: ma = mc = 0 ⇒ m2
b = −

p2
⊥

1−z < 0 ⇒ spacelike



Doublecounting

A 2 → n graph can be “simplified” to 2 → 2 in different ways:

=

g → qq ⊕ qg → qg

or

g → gg ⊕ gg → qq

or deform

FSR

to

ISR

Do not doublecount: 2 → 2 = most virtual = shortest distance

Conflict: theory derivations often assume virtualities strongly ordered;
interesting physics often in regions where this is not true!



From Matrix Elements to Parton Showers

0

1 (q)

2 (q)

i
3 (g)

0

1 (q)

2 (q)

i
3 (g)

e+e− → qqg

xj = 2Ej/Ecm ⇒

x1 + x2 + x3 = 2

mq = 0 :
dσME

σ0
=

αs

2π

4

3

x2
1 + x2

2

(1 − x1)(1 − x2)
dx1 dx2

Rewrite for x2 → 1, i.e. q–g collinear limit:

1 − x2 =
m2

13

E2
cm

= Q2

E2
cm

⇒ dx2 = dQ2

E2
cm

x1 ≈ z ⇒ dx1 ≈ dz

x3 ≈ 1 − z

q

q

g

⇒ dP =
dσ

σ0
=

αs

2π

dx2

(1 − x2)

4

3

x2
2 + x2

1

(1 − x1)
dx1 ≈

αs

2π

dQ2

Q2

4

3

1 + z2

1 − z
dz



Generalizes to DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz

Pq→qg =
4

3

1 + z2

1 − z

Pg→gg = 3
(1 − z(1 − z))2

z(1 − z)

Pg→qq =
nf

2
(z2 + (1 − z)2) (nf = no. of quark flavours)

Iteration gives final-state parton showers

Need soft/collinear cut-offs
to stay away from

nonperturbative physics.

Details model-dependent, e.g.

Q > m0 = min(mij) ≈ 1 GeV,

zmin(E, Q) < z < zmax(E, Q)

or p⊥ > p⊥min ≈ 0.5 GeV



The Sudakov Form Factor

Conservation of total probability:
P(nothing happens) = 1 − P(something happens)

“multiplicativeness” in “time” evolution:
Pnothing(0 < t ≤ T) = Pnothing(0 < t ≤ T1) Pnothing(T1 < t ≤ T)

Subdivide further, with Ti = (i/n)T , 0 ≤ i ≤ n:

Pnothing(0 < t ≤ T) = lim
n→∞

n−1
∏

i=0

Pnothing(Ti < t ≤ Ti+1)

= lim
n→∞

n−1
∏

i=0

(

1 − Psomething(Ti < t ≤ Ti+1)
)

= exp



− lim
n→∞

n−1
∑

i=0

Psomething(Ti < t ≤ Ti+1)





= exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

=⇒ dPfirst(T) = dPsomething(T) exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)



Example: radioactive decay of nucleus

t

N(t)

N0

naively: dN
dt = −cN0 ⇒ N(t) = N0 (1 − ct)

depletion: a given nucleus can only decay once

correctly: dN
dt = −cN(t) ⇒ N(t) = N0 exp(−ct)

generalizes to: N(t) = N0 exp
(

−
∫ t
0 c(t′)dt′

)

or: dN(t)
dt = −c(t) N0 exp

(

−
∫ t
0 c(t′)dt′

)

sequence allowed: nucleus1 → nucleus2 → nucleus3 → . . .

Correspondingly, with Q ∼ 1/t (Heisenberg)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz exp



−
∑

b,c

∫ Q2
max

Q2

dQ′2

Q′2

∫

αs

2π
Pa→bc(z

′) dz′





where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that
∑

b,c
∫ ∫

dPa→bc ≡ 1 ⇒ convenient for Monte Carlo
(≡ 1 if extended over whole phase space, else possibly nothing happens)



Q2
1

Q2
2

Q2
3

Q2
4 Q2

5

Sudakov form factor provides

“time” ordering of shower:

lower Q2 ⇐⇒ longer times

Q2
1 > Q2

2 > Q2
3

Q2
1 > Q2

4 > Q2
5

etc.

Sudakov regulates singularity for first emission . . .

Q

dP/dQ

ME

PS

?

. . . but in limit of repeated soft
emissions q → qg (but no g → gg)
one obtains the same inclusive
Q emission spectrum as for ME,
i.e. divergent ME spectrum
⇐⇒ infinite number of PS emissions
Proof: as for veto algorithm (what is
probability to have an emission at Q

after 0, 1, 2, 3, . . . previous ones?)



Coherence

QED: Chudakov effect (mid-fifties)

e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing



The Common Showering Algorithms (LEP era)

Three main approaches to showering in common use:

Two are based on the standard shower language
of a → bc successive branchings:

q

q

g

g

g

g

g

q

q

HERWIG: Q2 ≈ E2(1 − cos θ) ≈ E2θ2/2

PYTHIA: Q2 = m2 (timelike) or = −m2 (spacelike)

One is based on a picture of dipole emission ab → cde:

qq

qq

g

q

q

g

g

ARIADNE: Q2 = p2
⊥; FSR mainly, ISR is primitive;

there instead LDCMC: sophisticated but complicated



Ordering variables in final-state radiation (LEP era)

PYTHIA: Q2 = m2

y

p2
⊥

large mass first
⇒ “hardness” ordered

coherence brute
force

covers phase space
ME merging simple

g → qq simple
not Lorentz invariant

no stop/restart
ISR: m2 → −m2

HERWIG: Q2 ∼ E2θ2

y

p2
⊥

large angle first
⇒ hardness not

ordered
coherence inherent
gaps in coverage

ME merging messy
g → qq simple

not Lorentz invariant
no stop/restart

ISR: θ → θ

ARIADNE: Q2 = p2
⊥

y

p2
⊥

large p⊥ first
⇒ “hardness” ordered

coherence inherent

covers phase space
ME merging simple
g → qq messy
Lorentz invariant
can stop/restart

ISR: more messy



Data comparisons (LEP)

All three algorithms do a reasonable job of describing LEP data,
but typically ARIADNE (p2

⊥) > PYTHIA (m2) > HERWIG (θ)

de
t.

 c
or
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 c
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. . . and programs evolve to do even better . . .



Orientation An analogy DGLAP Gluon radiation Quantum effects

Features of dipole showers
Quantum coherence on similar grounds for angular and
kT -ordering, typical ordering in dipole showers by k⊥.

Many new shower formulations in past few years, many
(nearly all) based on dipoles in one way or the other.

Seemingly closer link to NLO calculations: Use
subtraction kernels like antennae or Catani-Seymour
kernels.

Typically: First emission fully accounted for.

F. Krauss IPPP

Introduction to Event Generators (borrowed from Frank Krauss)



Orientation An analogy DGLAP Gluon radiation Quantum effects

Survey of existing showering tools

Tools evolution AO/Coherence

Ariadne k⊥-ordered by construction

Herwig angular ordering by construction
Herwig++ improved angular ordering by construction

Pythia old: virtuality ordered by hand
new: k⊥-ordered by construction

Sherpa virtuality ordered by hand
(like old Pythia)
new: k⊥-ordering by construction

Vincia k⊥-ordered by construction

F. Krauss IPPP

Introduction to Event Generators (borrowed from Frank Krauss)



Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

Pq→qg ≈
∫

dQ2

Q2

∫

dz
αs

2π

4

3

1 + z2

1 − z

≈ αs ln

(

Q2
max

Q2
min

)

8

3
ln

(

1 − zmin

1 − zmax

)

∼ αs ln2

Rate for n emissions is of form:

Pq→qng ∼ (Pq→qg)
n ∼ αn

s ln2n

Next-to-leading log (NLL): inclusion of all corrections of type αn
s ln2n−1

No existing generator completely NLL (NLLJET?), but
• energy-momentum conservation (and “recoil” effects)
• coherence
• 2/(1 − z) → (1 + z2)/(1 − z)

• scale choice αs(p2
⊥) absorbs singular terms ∝ ln z, ln(1 − z)

in O(α2
s) splitting kernels Pq→qg and Pg→gg

• . . .
⇒ far better than naive, analytical LL



Summary Lecture 2

• Hard processes: •
⋆ Simple ones: probably built-in in PYTHIA/HERWIG ⋆

(SHERPA has complete internal ME generator, HERWIG partial)
⋆ Multiparton LO: external generator + Les Houches Accord ⋆

⋆ NLO: not easily related to physical events ⋆

• Parton Showers: •
⋆ 2 kinds: initial-state and final-state ⋆

⋆ related to and derived from matrix elements ⋆

⋆ Sudakov form factor ensures sensible physics ⋆

⋆ Ordering variable ambiguous: θ, p2
⊥, m2 ⋆

⋆ Constraints from coherence arguments, and from data ⋆

⋆ In state of continuous development ⋆

⋆ More to come tomorrow! ⋆


