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NLO Matrix Element Overview

If the lowest order subprocess has an n-body final state, then at the next
order we have

• n-body final state one-loop diagrams. The interference between
these and the lowest order diagrams gives a cross section contribu-
tion that is one order higher in αs.

• n + 1-body final state contributions

When one tries to calculate these higher order terms one finds:

• Infrared (IR), collinear, and ultraviolet (UV) singularities from vir-
tual diagrams

• Soft singularities from some n + 1-body processes

• Collinear singularities from some regions of the n + 1 phase space

Start by considering the relatively simple process of e+e− annihilation.



e+e− annihilation

First, consider the 2 → 3 e+e− → qqg subprocess. Actually, it is easier to

consider the decay of a virtual photon of 4-momentum Q as shown below:

Q

p1

p2

p3

p1 + p3 p2 + p3

• Kinematics - use massless quarks and gluons.

• Define xi = 2Ei/Q, i = 1, 2, 3 in the overall center-of-mass system where
Q denotes the total energy ⇒ x1 + x2 + x3 = 2.

• (p1 + p3)
2 = 2p1 · p3 = (Q − p2)

2 = Q2(1 − x2)

• (p2 + p3)
2 = 2p2 · p3 = (Q − p1)

2 = Q2(1 − x1)

• The quark propagators from the above diagrams will give factors of
(1−x1) and (1−x2) in the denominator. x1 → 1 corresponds to ~p3 ‖ ~p2

while x2 → 1 corresponds to ~p3 ‖ ~p1. Note that if both x1and x2 →
1 then x3 → 0.



3-body Phase Space

Exercise: Show that

dPS3 =
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

(2π)4δ(Q − p1 − p2 − p3)

=
Q2

16(2π)3
dx1 dx2

Using this result it is straightforward to show that the differential cross
section can be written as

1

σ

dσ

dx1 dx2

= CF

αs

2π

x2
1 + x2

2

(1 − x1)(1 − x2)

For the total cross section, one should integrate over both x1 and x2. These

integrations diverge when either x1 or x2 or both approach unity.



Partial fraction the denominators:

1

(1 − x1)(1 − x2)
=

1

x3

„

1

(1 − x1)
+

1

(1 − x2)

«

• This shows that the double pole when both x1 and x2 approach unity
is due to a combination of a collinear divergence (x1 or x2 → 1) and a
soft divergence (x3 → 0).

• The problem now is how to generate a finite contribution to the total
cross section.

• We shall use dimensional regularization

– Analytically continue in the number of dimensions from n = 4 to
n = 4 − 2ǫ.

– For the soft and collinear singularities we will take ǫ < 0

– Converts logarithmic divergences into poles in ǫ.

– Note: we will use the substitution gs → gsµ
ǫ in order for the strong

coupling to remain dimensionless in n dimensions



Phase space becomes

dPSn
3 =

Q2

16(2π)3

„

Q2

4π

«−2ǫ „

1 − u2

4

«−ǫ
1

Γ(2 − 2ǫ)
x−2ǫ

1 dx1 x−2ǫ
2 dx2

where u = 1 − 2(1−x1−x2)
x1x2

• It is not obvious how this helps until you make a substitution x2 = 1−vx1

• The u dependent term introduces factors of (1 − v)−ǫ and (1 − x1)
−ǫ

• dx2 becomes x1dv

• Then note that
Z 1

0

dx(1 − x)−1−ǫ =
1

−ǫ
(1 − x)−ǫ|10 =

1

−ǫ

as long as ǫ < 0.

• The logarithmic divergence has, indeed, been converted into a pole in ǫ.



2 → 2 contribution

k

• The loop graph is O(αs) so the interference with the lowest order term
gives an O(αs) contribution to the cross section

• The loop integral has a denominator of the form: k2(p1 + k)2(p2 − k)2

• The denominator vanishes when k → 0 or when k is collinear with either
p1 or p2

• These singularities correspond to the same types as observed for the qqg
final state

• Can also use dimensional regularization to evaluate the loop contribution
in n-dimensions



Final Results

• After doing both of the integrations for the three-body , one arrives at

σ3 =
αs

2π
CF σ0

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

2

ǫ2
+

3

ǫ
+

19

2
− 2π2

3

–

where σ0 is the lowest order result.

• After doing the loop integral for the virtual contribution one gets

σv =
αs

2π
CF σ0

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

− 2

ǫ2
− 3

ǫ
− 8 +

2π2

3

–

• Adding the two together along with the lowest order result yields

σ = σ0(1 +
αs

π
)

• The poles in ǫ have all cancelled, leaving a finite higher order correction



• In the previous example the integration over the full phase space for
the real emission generated poles which cancelled against corresponding
poles from the loop graphs

• What if the integration over the real emission phase space was limited?

• What if the integration involved fragmentation functions (FFs) or PDFs
whose analytic form was not known?

• We might encounter terms like

Z 1

z

dx1 xn−1
1 (1 − x1)

m−1Dh/q(z/x1)

• Note the non-zero lower limit on the integral which is forced by the
argument of the FF

• How are we to do this integral in order to pull out the singular terms
when we don’t know the analytic form for the FF?

• Enter the “+” distribution!

• This distribution will enable us to extract the poles in ǫ from integrals
of the above form



Consider

I =

Z 1

0

dw (1 − w)−1−ǫ f(w)

=

Z 1

0

dw (1 − w)−1−ǫ [f(1) + (f(w) − f(1))]

= −f(1)

ǫ
+

Z 1

0

dw
f(w) − f(1)

1 − w

ˆ

1 − ǫ ln(1 − w) + O(ǫ2)
˜

= −f(1)

ǫ
+

Z 1

0

dw
f(w) − f(1)

1 − w
− ǫ

Z 1

0

dw
ln(1 − w)

1 − w
[f(w) − f(1)] + O(ǫ2)

≡ −f(1)

ǫ
+

Z 1

0

dw
f(w)

(1 − w)+
− ǫ

Z 1

0

dw

„

ln(1 − w)

1 − w

«

+

f(w) + O(ǫ2)

This last expression allows us to make the following identification

(1 − w)−1−ǫ = −δ(1 − w)

ǫ
+

1

(1 − w)+
− ǫ

„

ln(1 − w)

1 − w

«

+



• The astute reader will no doubt have noticed that the previous derivation
involved integrals extending from zero to one. What if the lower limit
is non-zero?

• The derivation can be repeated and the only difference will be in the
δ-function term. There we will get (recall that ǫ < 0)

1

ǫ
(1 − w)−ǫ|1a = −1

ǫ
(1 − a)−ǫ

= −1

ǫ

»

1 − ǫ ln(1 − a) +
ǫ2

2
ln2(1 − a) + . . .

–

= −1

ǫ
+ ln(1 − a) − ǫ

2
ln2(1 − a) + . . .

• The regulators under the integral signs behave the same way as when
the lower limit was zero.



• Schematically we can write

1

(1 − w)+
=

1

(1 − w)a
+ ln(1 − a)δ(1 − w)

and

„

ln(1 − w)

1 − w

«

+

=

„

ln(1 − w)

1 − w

«

a

+
1

2
ln2(1 − a)δ(1 − w)

There are several important points to notice about these regulators

• We derived these expressions by adding and subtracting f(1) and then
rearranging the integrations. When the lower limit is non-zero, the can-
cellation between these two terms with f(1) is no longer exact and there
is a remainder involving logs of (1 − a)

• As the lower limit, a, approaches 1 these logs can become large.

• This could happen with the fragmentation functions if we were interested
in the region of large z.



• These logs are called “threshold” logs and physically what is happening
is that the phase space for additional gluon radiation is being limited
by the requirement that z be large. These large logs must be resummed
via a procedure referred to as “soft gluon” or “threshold” resummation

• Remember the idea of incomplete cancellation between the virtual and
real contributions with a finite remainder consisting of potentially large
logarithms



When is an NLO Calculation not really NLO?

Consider the example of Lepton Pair Production where a calculation of dσ/dQ2

would entail

• LO qq → l+l−

• NLO qq → l+l− (1-loop)

• NLO qq → l+l−g and qg → l+l−q (tree graphs)

• Integrate over the additional variables for the radiated gluon or quark
in the case of the 2 → 3 subprocesses

• Factorize the resulting collinear singularities and absorb them into the
definition of scale dependent PDFs

• PDFs with scale Mf = Q interpreted as having the effects of radiated
partons with pT s up to Q included



But what if we wanted to calculate dσ/dQ2 dpT ?

• The lowest order and the 1-loop virtual contributions are calculated with
lowest order kinematics - at this stage the lepton pair has no pT at the
matrix element level

• The O(αS) tree graphs give the first non-zero lepton pT at this stage of
the calculation

• But, the graphs are convoluted with the bare PDFs

OK - what if we just change the bare PDFs to the scale dependent PDFs?

• Hmmm. We would then be including the effects of radiated parton pT s
up to the value of the scale chosen for the PDFs

• But we are, at the same time, examining the pT of the lepton pair which
recoils against the radiated partons. Is there an inconsistency here?

No - not if we are content to calculate the pT distribution at values of pT which
are of the order of Q



Lesson: the tree graphs which, after integrating over the recoiling parton pT ,
contributed to the O(αS) correction for dσ/dQ2 are now giving the LO con-
tribution to the high Q tail of the pT distribution

What if we wanted the NLO pT distribution? We would have to do more!

• Include the 1-loop corrections to the O(αs) tree graphs

• Also include the O(α2
s) tree graphs

• With these ingredients one could generate NLO predictions for the pT

distribution in the region where pT is of the order of Q

But what if one was interested in the region where pT << Q?

There are several problems

• As noted before, the scale dependent PDFs contain the contributions
from integrating the radiated parton pT s up to O(Q) so there is a con-
tradiction if we ask for the pT of the lepton pair to be much less than
Q

• There are now two scales in the problem - pT and Q and if pT << Q one
can encounter large logs of the ratio Q/pT which should be resummed



The O(αS) subprocesses both give contributions which diverge as p−2
T as pT

goes to zero
These divergent terms are factorized and included in the scale dependent PDFs

We want to do a better calculation in the low pT region

• Have to figure out what to do with the low pT radiated partons

• Have to figure out what the scale should be for the PDFs



Simple Example - e+e− → l+l− + γ

• Discussion follows G. Parisi and R. Petronzio, Nucl. Phys. B154, 427
(1979)

• Avoids the complications due to the non-abelian nature of QCD and
initial state PDFs, but illustrates the physics

• Cross section for fixed lepton pair mass Q diverges as k−2
T , where kT is

the transverse momentum of the radiated photon

• For kT << Q we get

dσ

dQ2 dk2
T

=
4α3

3k2
T

1

SQ2

S2 + Q4

S − Q2

• Next, integrate over Q: 4m2
µ < Q2 < S − 2

√
SkT



• Letting σ0 = 4
3

πα2

S
and performing the integration over Q2 yields (keeping

only the most divergent term)

dσ

dk2
T

= σ0
α

π

ln S/k2
T

k2
T

• Next, consider a partially integrated cross section defined as

Σ(k2
T ) =

1

σ0

Z k2

T

0

dσ

dp2
T

dp2
T

• We know that there is a divergence at pT = 0. But, we also know that the
one loop corrections to our tree graphs will also contribute there and that if
we were to integrate over all pT we would get a finite result.

• To logarithmic accuracy we can write

1

σ0

Z S

0

dσ

dp2
T

dp2
T = 1 + O(α) × constant =

1

σ0

Z k2

T

0
. . . +

1

σ0

Z S

k2

T

. . .



• Therefore, we can write

Σ(k2
T ) = 1 − 1

σ0

Z S

k2

T

dσ

dp2
T

dp2
T

= 1 − α

π

Z S

k2

T

dp2
T

p2
T

ln
S

p2
T

= 1 − α

2π
ln2 S

k2
T

• Note that this is result is correct in the leading double log approximation.
O(α) terms which are constants or single logs are not included

• Now, what would happen if there were multiple photons emitted instead
of just one?



Consider a process where there is a fermion in the final state and then compare
it to one where there is a photon emitted from the fermion

p
p′ k

p

u(p) → u(p)
/ǫ/p

′

p′2

• Use p′ = p + k and use the fact that we are interested in soft photons -
drop k everywhere except where it would lead to a divergence

• The factor associated with the photon emission is now

u(p)
/ǫ/p

2p · k



• Using the Dirac equation, this may be simplified to

u(p)
p · ǫ
p · k

• Now, what about two soft photons?

p′ p + k1 p

k2 k1

• Repeat the above analysis and symmetrize the result by interchanging
the two photons and dividing by two

• The result is a factor

1

2

p · ǫ1
p · k1

p · ǫ2
p · k2



• Similarly, for n terms one gets

1

n!

p · ǫ1
p · k1

· · · p · ǫn

p · kn

• Soft photon emission factorizes!

• For n emissions we get a contribution to the cross section

1

σ0
dσ =

αn

n!
dk2

T1 . . . dk2
T nν(kT1) . . . ν(kT2)

• where ν(kT ) =
ln S/k2

T

k2

T

is the result for a single photon

• We want to calculate the contribution of the n photon term to the inte-
grated pT distribution given by Σ(k2

T )

• As a first attempt, ignore the correlations between the transverse mo-
menta of the emitted photons - treat them all as being independent



• Then the nth term is just

Σ(n)(k2
T ) =

1

n!

"

Z k2

T

0

dp2
T

α

π

ln S/p2
T

p2
T

#n

=
1

n!

»

1 − α

2π

ln2 S/k2
T

k2
T

–n

=
(−1)n

n!

“ α

2π
ln2 S/k2

T

”n

+ · · ·

• Summing over all n yields

Σ(k2
T ) = exp(− α

2π
ln2 S/k2

T )



Next, we can recover the differential cross section by taking a derivative of Σ

1

σ0

dσ

dk2
T

=
d

dk2
T

Σ(k2
T )

=
α

π

ln S/k2
T

k2
T

exp
“

− α

2π
ln2 S/k2

T

”

• Notice that as kT → 0 the differential cross section now vanishes, rather
than diverges

• Summing the leading double logs has tamed the divergence, but at the
price of a vanishing cross section. The suppression is too strong, as we
will see shortly

(Exercise: fill in the steps for the derivation of this result)



Interpretation

• Σ is referred to as a Sudakov form factor and it can be interpreted as
given the probability for emitting no photons with transverse momenta
greater than kT

• We enforced the independent emission hypothesis and neglected conser-
vation of transverse momentum. The only way to get a lepton pair with
zero transverse momentum, was to suppress all photon emission.

• The probability of emitting no photons in a collision which creates a
massive lepton pair is zero

• The lowest order divergence is actually just the first term in an expansion
of the exponential which vanishes at zero transverse momentum

How can we restore transverse momentum conservation?



Insert a δ function which enforces conservation of transverse momentum for
the emission of n photons

1

σ0

dσn

d2pT
=

1

n!

“α

π

”n
Z

d2kT1
. . . d2kTn

ν(kT1
) . . . ν(kTn

)δ2(~pT −~kT1
−· · ·−kTn

)

Next, use the Dirac representation of the δ function

δ2(~pT − ~kT1
− · · · − kTn

) =
1

(2π)2

Z

d2be−i~b·(~pT −~kT1
−···−~kTn

)

• Notice how the integrand still factorizes, even with the δ function in-
cluded

• Define the Fourier transform of ν by

ν̃(b) =
1

π

Z

d2kT ei~b·~kT ν(kT )



• The n photon emission contribution now looks like

1

σ0

dσn

d2pT
=

αn

4π2n!

Z

d2be−i~b·~pT [ν̃(b)]n

• We see that the the exponentiation can now take place in impact pa-
rameter space

1

σ0

dσ

d2pT
=

1

4π2

Z

d2be−i~b·~pT σ̃(b)

where σ̃(b) = exp[αν̃(b)]

(Exercise: fill in the steps to derive this result)



Interpretation

• In the first case, the Sudakov form factor entered because we demanded
that we approach zero transverse momentum of the lepton pair by lim-
iting the transverse momenta of all the emitted photons individually

• By inserting the transverse momentum conserving delta function and
exponentiating in impact parameter space, we allowed for the possibility
of two or more photons balancing in transverse momentum and giving
a zero result

• Formally, these terms are subleading, but the leading terms vanish and
so the subleading terms become dominant

Extension to QCD

• This concept was extended to QCD by Collins, Soper, and Sterman
(Nucl.Phys.B250,199(1985))



• Need to take into account the transverse momentum of the incoming
quarks

– Normally integrated over, leading to the scale dependence of the
PDFs

– Factorization scale usually chosen to be on the order of the single
hard scale

– Now, the lepton pair pT will reflect the pT s of the incoming quarks

– PDF scale is chosen to be of the order of 1/b where b is the impact
parameter seen above

– b and pT are conjugate variables - large pT ↔ small b

– A scale of 1/b is large for large pT and small for small pT

• Classic application is to the lepton pair, W , or Z pT distributions



CSS Resummed Result

The resummed CSS result takes a relatively simple form with an exponentia-
tion in impact parameter space and a convolution with PDFs evaluated at a
scale 1/b

dσ

dQ2 dy dp2
T

=
4π2α2

9Q2S
(2π)−2

Z

d2bei~pT ·~b
X

j

e2
j

X

a

Z 1

xa

dξa

ξa
Ga/A(ξa, 1/b)

X

b

Z 1

xb

dξb

ξb
Gb/B(ξb, 1/b)

e−S(Q2,b)Cja(
xa

ξa
, g(1/b))Cjb(

xb

ξb
, g(1/b))

+
4π2α2

9Q2S
Y (pT , Q, xa, xb)

with S(Q2, b) = exp
h

−
R Q2

1/b2
dµ2

µ2

h

ln
“

Q2

µ2

”

A(g(µ)) + B(g(µ))
ii



• The Y piece is the residual NLO non-log contribution

• One can see the resemblance to my earlier example modified by the
inclusion of the scale dependent PDFs

• In the expression for S, the A term sums the leading logarithms while
the B term sums the next-to-leading logs

• Here are some typical resummed results (from J. Qiu and X. Zhang,
Phys. Rev. D63:114011,2001) compared to data (D0 and Fermilab E-
288)
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• Note that by exponentiating in impact parameter space dσ
dk2

T

has a non-

zero intercept at kT = 0

• The D0 data are shown as dσ
dkT

which has a kinematic zero at kT = 0

• For both plots, however, the tree level calculation would diverge as kT →
0, whereas the b-space exponentiation describes the data nicely

• I will discuss kT -resummation further in my lecture on vector boson
production

Other Resummation Examples

Logarithms of variables other than kT can also occur - it depends on the type
of distribution one is calculating. The logs come from the same basic vertices
in the Feynman diagrams - they just appear in different ways and require
different types of treatments. Another example is provided by the threshold
logs we encountered previously in our discussion of the “plus” distributions



Threshold Resummation – Basic Physics

• For inclusive calculations, singularities from soft real gluon emission can-
cel against infrared singularities from virtual gluon emission

• Limitations on real gluon emission imposed by phase space constraints
can upset this cancellation

• Singular terms still cancel, but there can be large logarithmic remainders

• Classic example is thrust distribution in e+e− → jets

T = max~n

P

i |~pi · ~n|
P

i |~pi|

• Vary the choice of the thrust axis ~n in order to maximize T

• 2 parton final state: ~n lies along p1 and T=1



• If one of the partons emits a collinear parton, then nothing changes and
T = 1

• If a soft gluon is emitted, then in the limit of zero energy nothing changes
and T = 1

• The various divergent contributions seen previously all lie at T = 1 so
that the cancellations still occur

• T 6= 1 yields information on the relative angular distributions of the
three final state partons

• Note: no jet definition is required in order to study the thrust distribu-
tion

• Note: A spherically symmetric multiparton final state: T=1/2



• The thrust distribution is easily calculable: T = max [xi]

• Integrate dσ/dx1 dx2 over x1 and x2 subject to the above constraint

• Result is

1

σ

dσ

dT
= CF

αs

2π

»

2(3T 2 − 3T + 2)

T (1 − T )
ln

„

2T − 1

1 − T

«

− 3(3T − 2)(2 − T )

(1 − T )

–

0.6 0.7 0.8 0.9 1

T
0.01

0.1

1

10

100

1/
σ 

dσ
/d

T

• Expected divergence as T → 1 is evident

• Perturbative corrections become large in this region - a better treatment
is needed



Consider the thrust distribution for small values of thrust, retaining the most
divergent term

1

σ

dσ

dT
=

αs

2π
CF

4

1 − T
ln

1

1 − T

• We recognize that as T → 1 the phase space for gluon emission is being
restricted

• We can use the same technique we used for the kT example - split the
integral over T into two pieces

• Let f(T ) =
R 1

T
dT 1

σ
dσ
dT

• Then we can write
Z 1

Tmin

dT
1

σ

dσ

dT
=

Z T

Tmin

dT
1

σ

dσ

dT
+ f(T ) = 1 + O(αS) × constant



• Hence, f(T ) is given by

f(T ) = 1 −
Z T

Tmin

dT (−4)
αs

2π
CF

ln(1 − T )

1 − T

= 1 − αS

π
CF ln2(1 − T )

• In the leading double log approximation this can be exponentiated to
give

f(T ) = e−
αs

π
CF ln2(1−T )

• Taking a derivative yields

1

σ

dσ

dT
= −2

αS

π
CF

ln(1 − T )

1 − T
e−

αs

π
CF ln2(1−T )

(Exercise: fill in the steps for this derivation)



• This gives a turnover as T → 1 which cures the divergence shown for
the lowest order expression

• However, the turnover occurs at αs ln(1−T ) = π
2CF

≈ 1.2, violating the

assumption that αs ln(1 − T ) << 1 (Exercise: show this)

• Must go further and include additional log terms, not just the double
logs

• However, this simple example serves as an introduction to the idea of
threshold resummation

More General Processes

• The general structure of more complex cross sections will be a general-
ization of what we have already seen

– Collinear singularities associated with the incoming and outgoing
partons - these are collected into jet functions

– Soft singularities associated with the emission of low-energy gluons
- these are collected into an overall soft function

– A hard scattering remainder that is finite



• The jet functions that describe the collinear singular region will contain
the “plus” distributions that we have already seen that describe the
real/virtual cancellations

• For a given observable one must show that

– The squared amplitude factorizes in the manner described above

– Phase space factorizes

– This will generally require some type of transform like the Fourier
transform we used in the kT case

– For threshold resummation this is usually a Mellin transform in-
volving moments of the cross section with respect to a large scaled
energy variable, e.g., τ = Q2/S for lepton pair production

– The physical cross section then obtained by taking the inverse
transformation after the exponentiation



Threshold Resummation

• Why use a Mellin transform?

• If Sudakov form factors give a supression, how is it that threshold re-
summation can give rise to an enhancement of the cross section?

• Useful to run through an example by Catani, Mangano, and Nason in
hep-ph/9806484.

Prompt photon production

Consider the ET distribution integrated over rapidity

dσ

d ET
(xT , ET )

where xT = 2ET /
√

S. One might be more accustomed to thinking of the
cross section as a function of S and ET , but it is convenient to have only one
dimensionful variable.



The leading order expression at the parton level will have subprocess cross
sections

dσ̂

d ÊT

(x̂T , ÊT )

where theˆsymbol denotes a quantity at the parton level. For this example,
we’ll consider only subprocesses where the photon is directly produced by the
hard scattering, e.g., qq → γg and qg → γq so that for the photon ÊT = ET .
We can then write the cross section as

dσγ(xT , ET )

dET
=

1

E3
T

X

ab

Z 1

0

dx1 Ga(x1, µ
2
F )

Z 1

0

dx2 Gb(x2, µ
2
F )

Z 1

0

dx δ

„

x − xT

x1x2

«

σ̂ab→γ(x, ET )

where the δ function insures that x̂T = xT and σ̂ = E3
T

dσ̂
d ET

The trick is to find a way to disentangle the dependence on x1, x2, and x that
is enforced by the δ function



Define moments of the cross section and PDFs by

σγ,N (ET ) =

Z 1

0

dx2
T

`

x2
T

´N−1
E3

T
dσγ(xT , ET )

dET

Ga,N (µ2
F ) =

Z 1

0

dxxN−1Ga(x, µ2
F )

It is straightforward to show (this is a good exercise) that

σγ,N (ET ) = Ga,N+1Gb,N+1σ̂γ,N

so that the moments of the cross section factorize



One can easily calculate the moments of the PDFs, but we need an expres-
sion for the moments of the parton subprocesses which takes into account the
threshold logs we want to resum. The result is

σ̂
(res)
ab→γ,N (ET , µ2, µ2

F ) = ααs(µ
2)σ̂

(0)
ab→γ,NCab→γ(αS(µ2), Q2/µ2, Q2/µ2

F )

∆ab→γ
N+1 (αs(µ

2), Q2/µ2, Q2/µ2
F )

where Q2 = 2E2
T . Here the C functions do not contain any dependence on N

and are calculable as a power series in αs.
The N dependent soft gluon factors are given by

∆ab→γd
N (αs(µ

2), Q2/µ2, Q2/µ2
F ) =

∆a
N (αs(µ

2), Q2/µ2, Q2/µ2
F )∆b

N (αs(µ
2), Q2/µ2, Q2/µ2

F )

Jd
N (αs(µ

2), Q2/µ2, Q2/µ2
F )∆

(int)ab→γd
N (αS(µ2), Q2/µ2)



In the MS scheme, the factors associated with initial state radiation are given
by

∆a
N = exp

(

Z 1

0

dz
zN−1 − 1

1 − z

Z (1−z)2Q2

µ2

F

dq2

q2
Aa(αs(q

2)) + O(αs(αs ln N)k)

)

For the present purpose it is sufficient to evaluate this factor in the the leading
double log approximation. Neglecting the running of αs in the q2 integral and
using Aa = αs

π
Ca with Ca = CF for a quark leg or CA for a gluon leg, the

q2 integral yields 2 ln(1 − z) + ln(Q2/µ2). The leading contribution to the
argument of the exponential is then

2
αs

π
Ca

Z 1

0

dz
zN−1 − 1

1 − z
ln(1 − z)



The z integral just gives the moments of the plus distribution
“

ln(1−z)
1−z

”

+

The z integral has a leading term of 1
2

ln2 N so we get

∆a
N ≃ exp

h

2Ca
αs

2π
ln2 N

i

The function Jd
N has a similar form

Jd
N = exp

(

Z 1

0

dz
zN−1 − 1

1 − z

"

Z (1−z)Q2

(1−z)2Q2

dq2

q2
Aa(αs(q

2))

+
1

2
Bd(αs((1 − z)Q2))

–

+ O(αs(αs ln N)k)

ff

and contains soft gluon effects related to the final state parton d. The difference
in the limits on the q2 integral gives a result

Jd
N ≃ exp

n

−Cd
αs

2π
ln2 N

o



Finally, the factor ∆
(int)
N contains soft gluon interference effects involving glu-

ons from different legs. It is, however, subleading and can be ignored for the
purposes of this discussion.



In the leading double log approximation used here we have the following results
for the two direct photon subprocesses:

σ̂
(res)
qg→γq,N ≃ σ̂

(0)
qg→γq,N exp

n

[2CF + 2CA − CF ]
αs

2π
ln2 N

o

= σ̂
(0)
qg→γq,N exp

n

(CF + 2CA)
αs

2π
ln2 N

o

> σ̂
(0)
qg→γq,N

and

σ̂
(res)
qq→γg,N ≃ σ̂

(0)
qq→γg,N exp

n

[2CF + 2CF − CA]
αs

2π
ln2 N

o

= σ̂
(0)
qq→γg,N exp

n

(4CF − CA)
αs

2π
ln2 N

o

> σ̂
(0)
qq→γg,N

We see that both subprocesses are enhanced with the qg getting a larger en-

hancement than that for qq



Interpretation

The radiation factor Jd
N associated with the final state parton shows the ex-

pected Sudakov suppression. However, the factors associated with the initial
state radiation show an enhancement. The explanation lies in realizing that
the cross section has been factorized into the product of two MS PDFs and
the partonic subprocess and that the evolution of the PDFs involves a partial
resummation via the DGLAP equations. Thus, what is seen in the ∆a

N factors
is what remains after the factorization.
This leads to a simple pattern

• Expect a Sudakov suppression for legs associated with jets

• Expect an enhancement for legs associated with PDFs or FFs

Of course, this is all qualitative since I retained only the leading double log

terms



Which processes might have large threshold corrections?

• Dihadron production AB → h1h2 +X: two PDFs and two FFs suggests
a large enhancement due to threshold log resummation

• Single hadron production AB → h1 + X: two PDFs, one FF, and one
final state jet suggests a somewhat lesser effect

• Inclusive jet or dijet production: two PDFs and two final state jets
suggests even less of an enhancement.



High-pT π0 cross section

• Work by de Florian and Vogelsang (hep-ph/0501258) applies threshold
resummation to π0 production

• For fixed target experiments the center of mass energy is in the 20-40
GeV range while pT is typically 3-12 GeV ⇒ xT can be large

• The fragmentation fraction z will also be large when one requires a high-
pT hadron - the hadron will take most of the energy of the fragmenting
parton (jet) since taking a smaller fraction wastes energy and the parton
PDFs fall off rapidly in x (nature doesn’t want to waste the available
partonic center of mass energy)

• Large values of z relevant for fixed target energies leads to large threshold
resummation corrections (lnn(1 − z)/(1 − z))

• Enhancement is strongly energy dependent since the relevant values of
z decrease as one goes to higher energies at fixed pT (more energy is
available at fixed pT and the relevant values of z decrease)



pT(GeV)

pp → π0+X        E∗ d3σ/dp3 (pb/GeV2)

ζ=1

ζ=1/2
ζ=2
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• Blue curves include the resummation corrections properly matched to
an existing NLO calculation in order to avoid double counting

• Note the reduced scale dependence of the resummed results



pT(GeV)

pp → π0+X        E∗ d3σ/dp3 (mb/GeV2)
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• Note reduced enhancement at RHIC energy compared to the previous
fixed target results



Another Example – Dihadron Production

• Two PDFs and two FFs suggests a large enhancement

• In the region of large M2/S where M is the dihadron mass we expect
large threshold logs

• Recent work by Almeidea, Sterman, and Vogelsang (Phys.Rev.D80:074016,2009)
confirms that the effects are large for fixed target experiments and that
they decrease as S is increased at fixed M

• Results also show decreased scale dependence



Summary

Here are some key points to remember

• NLO calculations are not always adequate for every observable

• NLO calculations are appropriate for processes where there is one large
scale

• In some regions of phase space the NLO corrections can actually become
LO if the lowest order contribution is suppressed

• Large logs can be generated when the phase space for additional gluon
radiation is restricted - look for two or more relevant scales

• Examples include low-pT lepton pair and vector boson production

• Threshold logs can be resummed and are especially relevant for un-
derstanding the energy dependence of fixed target hadron or photon
production relative to the high energy collider results

• There is more to perturbation theory than just the next order contribu-
tion!


