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Overview of the Lectures

• Lecture I - Higher Order Calculations

– What are they?

– Why do we need them?

– What are the ingredients and where do they come from?

– Understanding and treating divergences

– Examples from e
+

e
− annihilation

• Lecture II - Examples of Higher Order Calculations

– Parton Distribution Functions at higher order

– Lepton Pair Production at higher order

– Factorization scale dependence



• Lecture III - Hadronic Production of Jets, Hadrons, and Photons

– Single inclusive cross sections

– More complex observables and the need for Monte Carlo tech-

niques

– Overview of phase space slicing methods

• Lecture IV - Beyond Next-to-Leading-Order

– When is NLO not enough?

– Large logs and multiscale problems

– Resummation techniques



Lecture II - Outline

• Deep Inelastic Scattering

– Formalism

– Lowest order contributions to the structure functions

– Next order corrections

– PDF definitions and convention dependence

• Lepton Pair Production

– M
2 and rapidity dependence

– Next order corrections and the infamous “K factor”

– Convention dependence

– Features of the higher order corrections to various distribu-

tions



Brief Overview of DIS

• Deep inelastic lepton-nucleon scattering uses the photon as a known
probe to investigate the structure of the nucleon

• DIS has played an important role in the determination of PDFs

• Could simply work with the cross section expressed in terms of PDFs

• Historical approach has been based on structure functions

• The basic idea is to remove as much of the known physics of the lepton
vertex as possible, constrain the remaining hadronic piece using gauge
invariance, current conservation, parity invariance (for the electromag-
netic interaction) and time reversal invariance and then express what is
left in terms of the hadronic structure functions F1 and F2 ( plus F3 for
weak interactions

• For PDF determinations it is often preferable to work directly with the
cross sections since that avoids any model-dependent assumptions asso-
ciated the extraction of the structure functions

• I will summarize here the structure function approach



Start with a few definitions for the process e−(k)+P (P ) → e−(k′) +X in the
target rest frame where M denotes the target mass

A

l
l

X

DIS

q2 = −Q2 = (k − k′)2 x = Q2/2Mν

E = k · P/M E′ = k′ · P/M

ν = P · q/M W 2 = (P + q)2 = M2 + Q2

„

1

x
− 1

«

y = ν/E = 1 − E′/E



The cross section can be written as

σ =
1

4ME

Z

d3k′

(2π)32E′
1

4

X

spins

X

X

NX
Y

n=1

Z

d3pn

(2π)32En

|Tfi|2(2π)4δ(k+P−k′−pX)

• The leptonic and hadronic parts have been written separately

• Can simplify this by being differential in the scattered lepton energy and
scattering solid angle.

• Can also express Tfi as

Tfi = e2u(k′)γµu(k)
1

q2
Jµ

• Here Jµ is the matrix element of the electromagnetic current operator
between the initial and final hadronic states



The end result is

dσ

dE′dΩ′ =
α2

Q4

„

E′

E

«
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Lµν = 2
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kµk′
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• Gauge invariance, current conservation, and parity conservation give

Wµν =
F1

M

„

gµν +
qµqν

Q2

«

+
F2

M2ν

„

P µ + qµ P · q

Q2

« „

P ν + qν P · q

Q2

«

• The structure functions F1 and F2 contain information on the structure of the
hadronic target

• Both depend on the 4-vectors P and q through Lorentz scalars such as Q2 and x



• In terms of these structure functions, one can write the cross section as

dσ

dxdQ2
=

4πα2

Q2

»

`

1 + (1 − y)2
´

F1 +
(1 − y)

x
(F2 − 2xF1)

–

• With these definitions, we can now examine the form of the structure
functions in the parton model

• Start with the basic definition of Wµν using a parton target of charge eq

p1

p2

q

Wµν =
(2π)3

2M

1

2

X

spins

N

Z

d3p2

(2π)32E2

δ4(p2−q−p1)e
2
q (u(p2)γµu(p1))

† (u(p2)γνu(p1))

• N is a normalization factor to be defined below



• Use d3p2

2E2
= d4p2δ(p

2
2) to get

Wµν =
N

M
e2

qδ(p
2
2)

„

2p1µp1ν + p1µqν + p1νqµ +
q2

2
gµν

«

• Next, assume that the parton carries a fraction η of the target’s 4-
momentum and neglect target mass effects. Thus, p1 = ηP

• With this definition,

δ(p2
2) = δ[(p1 + q)2] = δ(q2 + 2p1 · q)

=
1

2Mν
δ(η − Q2

2Mν
) =

1

2Mν
δ(η − x)

• So, to this order, x is a measure of the momentum fraction carried by
the struck parton

• The normalization factor N corrects for the flux factor being that of the
parton, not the target hadron: N = 1/η



• The end result is

Wµν =
η

2M2ν
e2
qδ(η − x)

»

2PµPν +
Pµqν + Pνqµ

η
+

q2

2η2
gµν

–

• From this expression one can read off the results

F̂2 = ηe2
qδ(η − x) F̂2 = 2xF̂1

• I have used theˆsymbol to denote the contributions to the structure functions
at the parton level.

• The hadronic structure functions are given by weighting by the appropriate
PDF:

F2(x, Q2) = 2xF1(x, Q2)

=
X

q

e2
q

Z

dηq(η)ηδ(η − x) =
X

q

e2
qxq(x)

• One can see that to this order the structure functions are independent of Q2,
a phenomenon known as scaling



• We are now prepared to consider the higher order corrections to this
result, starting with corrections involving quarks in the initial state

• By now the procedure (if not the details) should be familiar

– Write the cross section expression in n dimensions to determine
the expression for the cross section in terms of the hadronic tensor

– Write the n-dimensional expression for the hadronic tensor at the
parton level for both the one-loop results and the real gluon radi-
ation graphs

– Add the results, cancelling the ǫ−2 contributions and some of the
ǫ−1 terms, as well

– Isolate the residual collinear singularities associated with the initial
state partons

– Factorize these collinear singularities and absorb them into the
bare quark and gluon PDFs



p1

p2

q

k

p3

p2

p1

• I will summarize the results of the steps outlined above. In the following,
let F2(x) = F2(x)/x. This will simplify the convolution notation. Then,
the full structure function can be written in terms of contributions from
quarks and gluons as

F2(x) =

Z

X

q

e2
q

h

F̂q
2 (z)q(y) + F̂g

2 (z)g(y)
i

δ(x − zy)dz dy

• With this notation, the lowest order result is F̂q
2 (z) = δ(1 − z)



• Using this same notation, the one-loop vertex correction to the lowest
order quark result is

F̂q,v
2 (z) = −αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
δ(1 − z)

„

2
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+

3

ǫ
+ 8 +
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3

«

• The contribution from the real emission graphs is

F̂q,r
2 (z) =

αs

2π
CF

„
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4πµ2

«−ǫ
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Γ(1 − 2ǫ)
»
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„
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ǫ2
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+ finite terms
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• Adding these two terms together yields the intermediate quark result

F̂q
2 (z) = δ(1 − z) +

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

Q2

4πµ2

«−ǫ »

−1

ǫ
Pqq(z) + f̃q

2

–

• f̃q
2 represents a finite correction term which will be detailed shortly

p1

p2

p3

The next contribution to consider is that from the photon gluon fusion process
shown above. The sequence of steps is the same as that for the gluon radiation
process with the result that

F̂g
2 (z) =

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

Q2

4πµ2

«−ǫ »

−2

ǫ
Pqg(z) + f̃g

2

–



• It is clear that there are uncancelled poles in ǫ in both the quark and
the gluon contributions

• These are collinear divergences which result from configurations where
two initial state partons are parallel to each other.

• These divergent terms represent long distance physics reflecting the evo-
lution of the initial quark state before the hard scattering

• As such, they can be absorbed into the bare quark PDF using a proce-
dure analogous to that used for the FFs in Lecture I



Define a scale dependent quark PDF as

q(x, M2
f ) =

Z

dy dzδ(x − yz)

"

q(y)δ(1 − z) +
αs

2π

„

−1

ǫ

«

 

M2
f

4πµ2

!−ǫ

Γ(1 − ǫ)

Γ(1 − 2ǫ)
[Pqq(z)q(y) + Pqg(z)g(y)]

#

With this definition, all the remaining collinear divergences have been absorbed
into the definition of the scale-dependent PDFs. The finite parton-level struc-
ture functions have simple forms

F̂q
2 (z) = δ(1 − z) +

αs

2π

"

ln

 

Q2

M2
f

!

Pqq(z) + f̃q
2

#

F̂g
2 (z) =

αs

2π

"

ln

 

Q2

M2
f

!

Pqg(z) + f̃g
2

#



• The full structure is now given by

F2(x) =

Z

dy dz δ(x − yz)
X

q

e2
q

h

F̂q
2 (z)q(y,M2

f ) + F̂g
2 (z)g(y,M2

f )
i

• Now, it must be remembered that the F̂s in the above expression contain
dependences on both Q2 and M2

f in the form of ln Q2/M2
f

• Suppose that M2
f was chosen to be Q2? Then the log terms vanish

• In this case the result is rather simple:

F2(x, Q2) =
X

q

e2
qxq(x, Q2)

+
αs

2π

X

q

e2
qx

Z

dz

z

h

q(
x

z
,Q2)f̃q

2 (z) + g(
x

z
,Q2)f̃g

2 (z)
i



• The last expression shows that the potentially large logs of Q2 have been
absorbed into the quark PDFs leaving an O(αS) correction. But wait!
It gets even better ...

• When we subtracted the collinear singularities we had the freedom to
subtract additional finite terms - that was how we introduced the fac-
torization scale.

• Suppose we also subtracted out the f̃s? Then the last term would be
absent and the expression for F2 would remain the same as for the parton
model, but with Q2 dependent PDFs

• This scheme is referred to as the “DIS scheme.” It has seen some use
when describing DIS data

• However, the down side is that the PDFs now contain the finite correc-
tions from the f̃s and these must be subtracted out if the PDFs are to
be used in any other process

• It is much more common today to use the MS scheme as presented above.
That way the finite corrections are calculated on a case-by-case basis for
each process



MS DIS Corrections

For completeness, I give here the two finite DIS correction terms for F2

f̃q
2 (z) = CF

"

(1 + z2)

„

ln(1 − z)

1 − z

«

+

− 3

2

1

(1 − z)+

− 1 + z2

1 − z
ln z + 3 + 2z −

„

9

2
+

π2

3

«

δ(1 − z)

–

and

f̃g
2 (z) =

1

2

»

`

z2 + (1 − z)2
´

ln
1 − z

z
+ 8z(1 − z) − 1

–

I will refer back to these when we discuss the lepton pair production process

shortly



DGLAP Equations

• It is all well and good to have a simple expression for F2 in terms of
scale-dependent PDFs, but where do the PDFs come from and how do
you calculate their dependence on the scale?

• Refer back to the definition I introduced for the scale-dependent PDFs

• The scale entered through a term

−1

ǫ

 

M2
f

4πµ2

!−ǫ

Γ(1 − ǫ)

Γ(1 − 2ǫ)
=

−1

ǫ
+ ln

 

M2
f

µ2

!

− ln(4π) + γE + . . .

• The partial derivative of this term with respect to ln M2
f is just one, so

the derivative projects out the coefficient of this term which is just the
convolution of the splitting function and the appropriate PDF



• The result is known as the set of DGLAP (Dokshitzer-gribov-Lipatov-
Altarelli-Parisi) Equations

• They take the form

∂q(x, t)

∂t
=

αs(t)

2π

Z 1

x

dy

y

»

Pqq(y)q(
x

y
, t) + Pqg(y)g(

x

y
, t)

–

∂g(x, t)

∂t
=

αs(t)

2π

Z

1

x

dy

y

»

Pgq(y)q(
x

y
, t) + Pgg(y)g(

x

y
, t)

–

• here t = ln M2
f /µ2 and I have introduced two additional splitting func-

tions beyond the two we had already encountered.

• These coupled integro-differential equations may be solved iteratively by
computer, given a set of initial boundary conditions at some scale

• The boundary conditions on the initial PDFs may be parametrized and
then varied to fit a wide variety of data. This is the heart of the global
fitting program for determining PDFs, about which more will be said in
a later lecture



Extension to Other Processes

We have seen how to define scale-dependent quark PDFs in the case of DIS. The
next step is to apply these PDFs in another process. A simple example which
builds on what we have done is that of Lepton Pair Production, sometimes
referred to as the Drell-Yan process

• At the lowest order there is only one subprocess: qq → γ∗ → l+l−
• This process is of historic and practical importance - continue the idea

of using a known electromagnetic probe to study hadronic structure

• This is just the time-reversed process from the e+e− example

• The cross section at the parton level is just the same as for the e+e−

example except that we have to average of the numbers of colors in the
initial state. The result is

σ(S) =
4π

9

α2

S



• Denote the parton 4-vectors in the hadron-hadron center-of-mass by

pa = xa

√
S

2
(1, 0, 0, 1) pb = xb

√
S

2
(1, 0, 0,−1)

• These yield Q2 = (pa + pb)
2 = xaxbS where S denotes the overall

hadronic center-of-mass energy squared and Q denotes the lepton pair
invariant mass.

• The lepton pair mass distribution is then given by

dσ

dQ2
= σ(Q2)

Z

dxa dxb

X

q

e2
q

ˆ

q(xa, M2
f )q(xb, M

2
f ) + q ↔ q

˜

δ(Q2 − xaxbS)

= σ(Q2)

Z 1

τ

dxa

xaS

X

q

e2
q

ˆ

qa(xa, M2
f )qb(τ/xa, M2

f ) + q ↔ q
˜

Here I have used τ = Q2/S



• Can also easily calculate the rapidity distribution at fixed Q2

– y = 1

2
ln
“

E+pl

E−pl

”

– E = (xa + xb)
√

S/2 pl = (xa − xb)
√

S/2

– Combining these yields y = 1

2
ln
“

xa

xb

”

– Exercise: Combine with Q2 = xaxbS to get xa
b

=
√

τ exp(±y)

• Insert δ
h

y − 1

2
ln
“

xa

xb

”i

into the expression for dσ/dQ2 and do the xa

integration to get

dσ

dy dQ2
=

σ(Q2)

S

X

q

e2
q

ˆ

qa(xa, M2
f )qb(xb,M

2
f ) + q ↔ q

˜

• Sometimes also use the variable xF = 2pl√
S

• Exercise: Use dy = dpl

E
to show that dσ

dQ2 dxF
= dσ

dQ2 dy

1

xa+xb
and that

xF = xa − xb = 2
√

τ sinh(y)



Time to get on the Soap Box

Some people are fond of saying something like “QCD says that in lowest order the
lepton pair is produced with no transverse momentum.” This statement is false. Let’s
see why.

• It is true, that for the qq → l+l− subprocess, the lepton pair has the same
transverse momentum as the qq initial state

• It is also true that we have used kinematics in which we treat the initial partons
as being collinear with the beam

• However, the PDFs in the cross section expressions are the scale-dependent
PDFs and carry an argument M2

f
.

• This dependence on the factorization scale comes from integrating over the pT

of the additional partons emitted from the initial state (either radiated gluons
or quarks and antiquarks created by gluons)

• Thus, QCD radiation causes the incoming partons to have non-zero transverse
momenta, but these are integrated out when the scale-dependent PDFs are
used

• We make an approximation when we treat the partons given by the integrated
PDFs as having zero transverse momenta

• This approximation is valid for the so-called leading logarithm terms



• Thus, QCD predicts that the lepton pair will have a transverse momentum
distribution, but we have integrated over it (even if we didn’t realize it) when
we use the expressions given previously.

• Then, how do we undo the integration? And what value should we use for
M2

f
?

Choosing the Factorization Scale

• The factorization scale Mf can be understood as setting the upper limit on the
integration over the transverse momenta of the partons emitted in the initial
state evolution

• The leading-log contributions from higher order subprocesses have been in-
cluded in the scale-dependent PDFs

• So, if one wants to calculate the cross section for producing a lepton pair of
mass Q then a choice of Mf ≈ Q would be appropriate.

• This is not exact, since the true upper limit of the transverse momentum inte-
gration would be given by a more complicated expression involving a function
of τ and y multiplying Q. But in the leading-log approximation the choice Q

is acceptable.

• Of course, any constant times Q is equally acceptable as long as the constant
isn’t too large (or too small) since then one would generate spurious large
logarithms



PT Distribution

So, given the preceding discussion, how does one calculate the lepton pair pT distri-
bution? Answer - Go to higher order!

• To calculate the pT spectrum we will have to consider having the lepton pair
recoil against at least one parton. The subprocesses are

– Compton process: qg → l+l−q

– Annihilation process qq → l+l−g

• Using these subprocesses one can calculate a pT distribution, but it will be a
leading order prediction for the pT dependence

• There is still the issue of the scale choice, but at the leading-log level any
choice on the order of Q is acceptable. Another popular choice is something

like
q

Q2 + p2
T

• Now, suppose that you were to integrate these subprocesses over pT ? This
would give an O(αs) contribution to the cross section.

• One way of thinking about this is that you would be doing the pT integra-
tion of these two subprocesses exactly, thereby going beyond the leading-log
approximation outlined earlier.

• We will return to the issue of the pT spectrum in Lecture IV



Next Order Correction to dσ
dQ2

q

q

l−

l+

Let’s write the lowest order expression for the cross section as follows:

dσ

dQ2
=

σ(Q2)

S

Z

dxa

xa

dxb

xb

X

e2
q [q(xa)q(xb) + q ↔ q] δ(1 − z)

where z = Q2

xaxbS

Now, consider the virtual corrections - these are the same as in the e+e−

example. One simply replaces δ(1 − z) in the above expression by

δ(1 − z)

"

1 +
αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

− 2

ǫ2
− 3

ǫ
− 8 +

2π2

3

–

#

Next, we must consider the contributions from the Compton and annihilation

subprocesses



Annihilation Contribution

• By now, the steps should be familiar - square the matrix element in n-dimensions,
multiply by 3-body n-dimensional phase space, and divide by the flux factor

• Perform the relevant phase space integrations using the changes of variables
and the “+” distributions outlined in the e+e− case

• Add to the preceding results for the lowest order and virtual contributions

• The ǫ−2 terms will cancel, as will some of the ǫ−1 terms, leaving some residual
ǫ pole terms.

• Factorize these remaining singular terms and absorb them into the bare PDFs,
leaving a residual finite O(αs) correction

• As before, the factorization of the initial state collinear singularities will be
facilitated by the introduction of a mass factorization scale Mf



The full annihilation contribution, including the lowest order and virtual con-
tributions, at the parton level prior to the mass factorization step is

δ(1 − z) +
αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
"

δ(1 − z)

„

−3

ǫ
− 8 +

2π2

3

«

− 2

ǫ

1 + z2

(1 − z)+
+ 4(1 + z2)

„

ln(1 − z)

1 − z

«

+

− 2
1 + z2

1 − z
ln

One can recognize the familiar splitting function Pqq(z) in this expression. The
result can be simplified to

δ(1 − z) − 2

ǫ

αs

2π

 

M2
f

4πµ2

!−ǫ

Γ(1 − ǫ)

Γ(1 − 2ǫ)
Pqq(z) +

αs

2π
2Pqq(z) ln

Q2

M2
f

+
αs

2π
fq(z)

where fq(z) represents a finite O(αS) correction as in the DIS example and I

have kept the factorization scale dependent term separate from fq



Compton Subprocess

• The same procedure as outlined on the preceding slides is followed for
the Compton subprocess

• This time there is no lower order term and there are no virtual correc-
tions

• The only singularity is the collinear singularity associated with the gluon
splitting vertex

• The full Compton result using the same normalization as for the anni-
hilation result is

−1

ǫ

αs

2π
Pqg(z)

 

M2
f

4πµ2

!−ǫ

+
αs

2π
Pqg(z) ln

 

Q2

M2
f

!

+
αs

2π
fg(z)



• At this point the final step is to factorize the remaining collinear terms
into the bare PDFs

• This is easily done using the expressions given previously as I have al-
ready isolated the appropriate subtraction terms for the MS scheme.

• Restoring the full normalization for the cross section we get

dσ

dQ2
=

σ(Q2)

S

Z

dxa

xa

dxb

xb

"

X

q

e2
q

ˆ

q(xa, M2
f )q(xb, M

2
f ) + a ↔ b

˜

·
"

δ(1 − z) +
αs

2π

 

2Pqq(z) ln

 

Q2

M2
f

!

+ fq(z)

!#

+
X

q

e2
q

ˆ`

q(xa, M2
f ) + q(xa, M2

f )
´

g(xb,M
2
f ) + a ↔ b

˜

αs

2π

 

Pqg(z) ln

 

Q2

M2
f

!

+ fg(z)

!#



The relatively simple expression on the previous page contains many of the elements
that characterize NLO calculations in general

• The chosen form strongly suggests the choice Mf = Q which follows from the

fact that the phase space factor
“

Q2

4πµ2

”−ǫ

is given in terms of Q2 which sets

the natural scale for the process

• There is explicit Mf dependence in the NLO term which partially cancels that
contained in the lowest order term

• To see this, take a derivative with respect to ln M2
f

of the cross section expres-
sion

– The derivative of q(xa, M2
f
) gives a contribution of

αs

2π
[Pqq ⊗ q + Pqg ⊗ g]

where ⊗ is shorthand for the convolution of the PDF and splitting func-
tion. This follows from the DGLAP equations for the scale dependence
of the PDFs

– The derivative of the NLO correction gives a similar term, but with a

minus sign coming from the ln

„

Q2

M2

f

«

factors



• The cancellation is not exact, but is correct up to the next order in αs

(Exercise: Show this)

• This is a feature which is typical of NLO calculations and is one of the
reasons for why they are important - they generally, but not always,
feature a decreased scale dependence relative to the leading-order calcu-
lation

For completeness here are the remaining factors in the NLO calculation

fq(z) = CF

»

δ(1 − z)(−8 +
2π2

3
)

+4(1 + z2)

„

ln(1 − z)

1 − z

«

+

− 2
1 + z2

1 − z
ln z

#

and

fg(z) =
1

2

»

ln
1 + z2

z

ˆ

z2 + (1 − z)2
˜

+
1

2
+ 3z − 7z2

–



Comments

• If you compare the expressions for the fs in the Lepton Pair Production
case to those in the DIS case for F2 you will see some features in common,
but also some differences

– In both cases there are combinations of delta function terms, plus
regulators, and other z-dependent terms

– The dependence on the plus regulators is different

• The differences stem from the fact that in both case we are integrating
over an additional parton in the final state, but the phase space is dif-
ferent in the two cases - we have an spacelike photon in the initial state
for one and a timelike photon in the final state for the other

• Remember that the plus regulators are related to the limitations placed
on parton emission near threshold and these constraints are different in
the two cases



• The change from space-like to time-like Q2 also affects terms involving
ln Q2 since the argument will be negative for one of the processes.

• Re(−1)−ǫ = Re exp(−iπǫ) = 1 − ǫ2π2 + · · ·
• This multiplies ǫ−2 and so generates a contribution proportional to π2

• Historically, the existence of these π2 terms played an important role in
understanding the QCD description of these two processes

This brings us to the idea of the infamous “K Factors”

Aside: Why infamous? Because they don’t have a unique definition and
they aren’t true factors!!



K factors

• The idea of K factors started innocently enough. In the 1980s the early
Lepton Pair Production experimental results were compared with exist-
ing predictions based on leading order PDFs and the lowest order hard
scattering expressions

• The results were given as the ratio of the data to the predictions and
this ratio was called the K factor, i.e. the amount one would have to
multiply the theoretical predictions by in order to describe the data

• The early comparisons showed that this result was about 2, which seemed
like a real problem for QCD

• The explanation came when NLO calculations became available

• Almost all of the NLO correction is associated with a large contribution
proportional to δ(1 − z)

• To understand this requires several steps...



• First, consider that leading order PDFs fitted to DIS data (that was all we
had at first) essentially have all of the higher order corrections absorbed into
the PDFs themselves

• This would be equivalent to using the DIS factorization convention where
f

q
2

and f
g
2

are absorbed into the PDFs

• But then, when one calculates the Lepton Pair Production cross section these
DIS corrections must be removed from the PDFs. In this DIS scheme we must
replace fq by fq − f

q
2

and similarly for the gluon terms

• The coefficient of the delta function term is then
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relative to which the lowest order term is just 1 (Exercise: Show this)

• For Q ≈ 5 GeV this correction changes the lowest order term by about 1.8,
i.e., a K factor of nearly 2!

• In this case, the bulk of the correction comes from the π2 terms which appear
in the delta function term and so the correction is roughly a constant times
the lowest order results

• And, so, the idea of a K factor has been with us ever since



Comments

• One should be worried that the next order correction is so large - is perturba-
tion theory converging?

• Feynman:

1

1 − x
= 1 + x + . . . and ex = 1 + x + . . .

For x ≈ 1 the first diverges while the second gives about 2.7

• As it turns out a significant part of the correction term exponentiates so the
second example is closer to what is happening

• In this example the kinematics of the NLO correction delta function piece is
the same as for the lowest order, so the correction is essentially a multiplicative
constant

• This does not happen very often

• In the more usual case there are many different subprocesses in the NLO calcu-
lation and they can have very different dependences on the process kinematics

• Various phase space factors can cause the higher order parton emission contri-
butions to contribute differently in different regions of phase space



• So, in general the ratio of the NLO to LO calculations (the so-called
theoretical K factor) will depend on the kinematic variables and will not

be a constant

• Furthermore, there is the issue of the scale dependence. The NLO and
LO terms have different scale dependences. They partially cancel each
other, which is a good thing.

• This has the effect that the ratio of the two terms will depend strongly
on the chosen factorization scale

• But if the so-called K factor depends on the scale choice, then how can
it be a uniquely defined “factor”?

It Can’t!

I’ll have more examples of this in a later lecture



Summary

• We’ve seen the basics of NLO calculations in DIS and Lepton Pair

Production

• We’ve seen now the collinear singularities associated with initial

state radiation can be factorized and absorbed into the PDFs

• We’ve see the basic structure of the corrections including the plus

regulators which are related to an incomplete cancellation between

the loop and real emission graphs

• We’ve seen examples of the convention dependence associated with

the process of factorization

• The next step is to investigate how to handle more complicated

observables in processes involving more partons in the final state


