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Overview of the Lectures

• Lecture I - Higher Order Calculations

– What are they?

– Why do we need them?

– What are the ingredients and where do they come from?

– Understanding and treating divergences

– Examples from e+e− annihilation

• Lecture II - Examples of Higher Order Calculations

– Parton Distribution Functions at higher order

– Lepton Pair Production at higher order

– Factorization scale dependence



• Lecture III - Hadronic Production of Jets, Hadrons, and Photons

– Single inclusive cross sections

– More complex observables and the need for Monte Carlo tech-
niques

– Overview of phase space slicing methods

• Lecture IV - Beyond Next-to-Leading-Order

– When is NLO not enough?

– Large logs and multiscale problems

– Resummation techniques



Lecture I - Outline

• Next-to-Leading-Order Calculations - what are they?

• Overview and ingredients

• Dealing with divergences

• Examples from e+e− annihilation

– Total cross section

– Infrared safe observables

– Thrust

– Jet cross sections

– Particle distributions



NLO Calculations - What are they?

Consider a generic hard scattering process for A + B → C + X in the
leading-logarithm approximation:

dσ(AB → C + X) =
1

2ŝ

∑

a,b,c

Ga/A(xa, M2
f ) dxa Gb/B(xb, M

2
f ) dxb

αn
s (µ2

r)|Mab→cd|
2 DC/c(zc, M

2
f ) dzc dPS(n)

• Ga/A(xa, M2
f )dxa is the probability of finding a parton a in a

hadron A with a momentum fraction x between xa and xa + dxa.

• DC/c(zc, M
2
f )dzc is the probability of finding a hadron C in a par-

ton c with a momentum fraction z between zc and zc + dzc.

• Mf denotes the factorization scale which serves to separate the
long- and short-distance parts of the scattering process



• The lowest order partonic subprocesses give an O(αn
s ) contribution

• αs is the one-loop running coupling

• µr is the renormalization scale chosen for αs

• ŝ is the partonic center of mass energy squared

• The parton distribution functions (PDFs) and the fragmentation
functions (FFs) are solutions of the appropriate DGLAP equations
in the leading-log approximation

To include higher order contributions we must examine how each of these
ingredients is modified.



Modifications for Next-to-Leading-Order Calculations

Basically, there are three steps to follow, some being easier than others

1. Choose an appropriate observable and calculate the contributing
subprocesses to the next order in the strong coupling

• These matrix elements must be integrated over the appropri-
ate phase space variables

• Some methods must be applied to deal with the divergences
which will appear

• Most of the material in these lectures will deal with this step

2. Use the two-loop approximation for the running coupling

3. Use NLO PDFS and FFs



Running Coupling

The running coupling αs is the solution to the following equation

Q2 dαs

dQ2
= β(αs)

where the β function has a perturbative expansion

β(αs) = −bα2
s(1 + b′αs + ...)

with b =
(33−2nf )

12π
and b′ =

153−19nf

2π(33−2nf )

where nf is the number of active parton flavors.

One can solve the above equation to get

t ≡ ln
Q2

µ2
=

Z αs(Q2)

αs(µ2)

dx

β(x)



• Neglecting b′, this equation has the solution

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)bt

• Suppose one is calculating an observable that is characterized by a single
large scale Q and that it has a perturbative expansion

σ = σ1αs(µ
2) + σ2α

2
s(µ

2) + . . .

• It would seem that our answer depends on both the scale Q and the
choice of µ

• But, physically, the answer shouldn’t depend on our choice of the scale
used to define αs, at least to the order in perturbation theory that we are
using. This is formally encoded in the Renormalization Group Equation.

• The solution of the RGE results in the introduction of the running cou-
pling and allows us to calculate the dependence on the choice of µ in
any given order



• For example, in the above case in lowest order we would have

σ ≈ σ1αs(Q
2) = σ1αs(µ

2)
X

j

`

−αs(µ
2)bt

´j

= σ1αs(µ
2)
ˆ

1 − αs(µ
2)bt + α2

S(µ2)(bt)2 + . . .
˜

• In this case the leading logarithms depending on µ have been summed
into the running coupling αs(Q

2)

• Note how in this example the terms are of the form

αs(µ
2)j+1tj

• For the leading-log approximation, only the one-loop term (b) is retained.



What about an NLO Calculation?

• In the simple example I have outlined, an NLO calculation would
include the term σ2α

2
s

• Expressing this in terms of the running coupling we have

σ2α
2
s(µ

2)[1 − 2αs(µ
2)bt + . . .]

• Notice that there is one less logarithm per power of αS than for the
lowest order term. We have included some subleading logarithms.

• We must examine other sources of subleading logs. One such place
is the expression used for the running coupling - using the two-
loop expression for β (keeping the b′ term) generates contributions
which are down by one logarithm

• So, for NLO calculations the two-loop term (b′) must be retained.



NLO PDFs

The PDFs satisfy a set of coupled equations (the DGLAP equations)

Q2 dGq(x, Q2)

dQ2
=

αs(Q
2)

2π

∫

dy

y

[

Pqq(y)Gq(
x

y
, Q2) + Pqg(y)Gg(

x

y
, Q2)

]

Q2 dGg(x, Q2)

dQ2
=

αs(Q
2)

2π

∫

dy

y

[

∑

q

Pgq(y)Gq(
x

y
, Q2) + Pgg(y)Gg(

x

y
, Q2)

]

The splitting functions have perturbative expansions

Pij(y) = P
(0)
ij +

αs

2π
P

(1)
ij

For the leading-log expansion only P
(0)
ij is retained, while for NLO PDFs

the P
(1)
ij contribution is retained, as well.



Comments

• The issue of how the PDFs are obtained from data will be discussed in a
later lecture, once we understand how NLO calculations are performed

• A similar set of DGLAP equations holds for the FFs (it involves the
transpose of the splitting function matrix) and the same perturbative
expansion is used.

The remaining ingredient for an NLO calculation is to include the next order
contribution from the squared matrix elements along with the appropriate
phase space factor.

• When one tries to perform the phase space integrals, divergences are
encountered

• The challenge is two-fold:

– Regulate the divergences (render them finite)

– Interpret and remove them, leaving a finite correction for some
observable



Why should we care about NLO calculations?

• LO calculations have a monotonic decrease as µr increases

• LO calculations have a monotonic decrease (increase) with increas-
ing Mf for x & .1 (x . .1)

• NLO calculations cancel some, but not all, of the scale dependences

• NLO calculations can improve the accuracy of the theoretical pre-
dictions as the hard scattering is now calculated to one order higher
in αs.

• Since there is one additional parton in the final state, one can gain
new information on jet substructure, angular distributions, etc.



NLO Matrix Element Overview

If the lowest order subprocess has an n-body final state, then at the next
order we have

• n-body final state one-loop diagrams. The interference between
these and the lowest order diagrams gives a cross section contribu-
tion that is one order higher in αs.

• n + 1-body final state contributions

When one tries to calculate these higher order terms one finds:

• Infrared (IR), collinear, and ultraviolet (UV) singularities from vir-
tual diagrams

• Soft singularities from some n + 1-body processes

• Collinear singularities from some regions of the n + 1 phase space

Start by considering the relatively simple process of e+e− annihilation.



e+e− annihilation

First, consider the 2 → 3 e+e− → qqg subprocess. Actually, it is easier to

consider the decay of a virtual photon of 4-momentum Q as shown below:

Q

p1

p2

p3

p1 + p3 p2 + p3

• Kinematics - use massless quarks and gluons.

• Define xi = 2Ei/Q, i = 1, 2, 3 in the overall center-of-mass system where
Q denotes the total energy ⇒ x1 + x2 + x3 = 2.

• (p1 + p3)
2 = 2p1 · p3 = (Q − p2)

2 = Q2(1 − x2)

• (p2 + p3)
2 = 2p2 · p3 = (Q − p1)

2 = Q2(1 − x1)

• The quark propagators from the above diagrams will give factors of
(1−x1) and (1−x2) in the denominator. x1 → 1 corresponds to ~p3 ‖ ~p2

while x2 → 1 corresponds to ~p3 ‖ ~p1. Note that if both x1and x2 →
1 then x3 → 0.



3-body Phase Space

Exercise: Show that

dPS3 =
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3
(2π)4δ(Q − p1 − p2 − p3)

=
Q2

16(2π)3
dx1 dx2

Using this result it is straightforward to show that the differential cross
section can be written as

1

σ

dσ

dx1 dx2
= CF

αs

2π

x2
1 + x2

2

(1 − x1)(1 − x2)

For the total cross section, one should integrate over both x1 and x2. These

integrations diverge when either x1 or x2 or both approach unity.



Partial fraction the denominators:

1

(1 − x1)(1 − x2)
=

1

x3

„

1

(1 − x1)
+

1

(1 − x2)

«

• This shows that the double pole when both x1 and x2 approach unity
is due to a combination of a collinear divergence (x1 or x2 → 1) and a
soft divergence (x3 → 0).

• The problem now is how to generate a finite contribution to the total
cross section.

• We shall use dimensional regularization

– Analytically continue in the number of dimensions from n = 4 to
n = 4 − 2ǫ.

– For the soft and collinear singularities we will take ǫ < 0

– Converts logarithmic divergences into poles in ǫ.

– Note: we will use the substitution gs → gsµ
ǫ in order for the strong

coupling to remain dimensionless in n dimensions



Phase space becomes

dPSn
3 =

Q2

16(2π)3

„

Q2

4π

«−2ǫ„
1 − u2

4

«−ǫ
1

Γ(2 − 2ǫ)
x−2ǫ

1 dx1 x−2ǫ
2 dx2

where u = 1 − 2(1−x1−x2)
x1x2

• It is not obvious how this helps until you make a substitution x2 = 1−vx1

• The u dependent term introduces factors of (1 − v)−ǫ and (1 − x1)
−ǫ

• dx2 becomes x1dv

• Then note that
Z 1

0

dx(1 − x)−1−ǫ =
1

−ǫ
(1 − x)−ǫ|10 =

1

−ǫ

as long as ǫ < 0.

• The logarithmic divergence has, indeed, been converted into a pole in ǫ.



2 → 2 contribution

k

• The loop graph is O(αs) so the interference with the lowest order term
gives an O(αs) contribution to the cross section

• The loop integral has a denominator of the form: k2(p1 + k)2(p2 − k)2

• The denominator vanishes when k → 0 or when k is collinear with either
p1 or p2

• These singularities correspond to the same types as observed for the qqg
final state

• Can also use dimensional regularization to evaluate the loop contribution
in n-dimensions



Final Results

• After doing both of the integrations for the three-body , one arrives at

σ3 =
αs

2π
CF σ0

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

2

ǫ2
+

3

ǫ
+

19

2
−

2π2

3

–

where σ0 is the lowest order result.

• After doing the loop integral for the virtual contribution one gets

σv =
αs

2π
CF σ0

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

−
2

ǫ2
−

3

ǫ
− 8 +

2π2

3

–

• Adding the two together along with the lowest order result yields

σ = σ0(1 +
αs

π
)

• The poles in ǫ have all cancelled, leaving a finite higher order correction



Infrared Safety

• This is an example which will play out over and over in the following –
for a suitable defined inclusive observable there is a cancellation between
the soft and collinear singularities occurring in the real contributions and
those which occur in the loop contributions.

• It is imperative that this cancellation be allowed to occur when calcu-
lating any observable!

• Care must be taken when designing new observables to insure that they
do not distinguish between a configuration of partons and the same one
where a soft or collinear parton is added.

• Observables that respect this constraint are called infrared safe observ-
ables

• The requirement of infrared safety is a necessary condition for an ob-
servable to be calculable in perturbation theory.



Differential Observables

• In order to further test the theory one would like to have more informa-
tion than that provided buy the total cross section

• The phase space integrations obscure a lot of information which should
be tested by comparison with data

• An example of an infrared safe observable - Thrust

T = max~n

P

i |~pi · ~n|
P

i |~pi|

• Vary the choice of the thrust axis ~n in order to maximize T

• 2 parton final state: ~n lies along p1 and T=1



• If one of the partons emits a collinear parton, then nothing changes and
T = 1

• If a soft gluon is emitted, then in the limit of zero energy nothing changes
and T = 1

• The various divergent contributions seen previously all lie at T = 1 so
that the cancellations still occur

• T 6= 1 yields information on the relative angular distributions of the
three final state partons

• Note: no jet definition is required in order to study the thrust distribu-
tion

• Note: A spherically symmetric multiparton final state: T=1/2



• The thrust distribution is easily calculable: T = max [xi]

• Integrate dσ/dx1 dx2 over x1 and x2 subject to the above constraint

• Result is

1

σ

dσ

dT
= CF

αs

2π

»

2(3T 2 − 3T + 2)

T (1 − T )
ln

„

2T − 1

1 − T

«

−
3(3T − 2)(2 − T )

(1 − T )

–

0.6 0.7 0.8 0.9 1

T
0.01

0.1

1

10

100

1/
σ 

dσ
/d

T

• Expected divergence as T → 1 is evident

• Perturbative corrections become large in this region - a better treatment
is needed



Comments on Jet Algorithms

• At lowest order, one associates final state partons with jets. One might
therefore expect that the O(αs) calculation would shed information on
both the 2- and 3-jet cross sections

• In order to define a jet cross section, one needs an infrared safe jet
definition

• Such a definition must not distinguish between a parton and two collinear
partons or between a parton and a parton plus a soft parton

• Examples include Sterman-Weinberg jets, cone jets, kT algorithms, and
many more

• The key point I wish to make is that whatever algorithm is used, it must
allow for the cancellation between the soft and collinear singularities
from the real emission graphs for an n−body process and those from
the (n − 1)-body virtual graphs

• This point will become of great importance when we discuss NLO pro-
grams based on phase space slicing techniques



Fragmentation Functions

• What if one wants to study the hadronic composition of the final state?

• What if you don’t want to use a jet observable which depends on choosing
a specific jet algorithm?

• What if your detector is optimized for particle detection, but not for
reconstructing jets?

• One solution is to introduce Fragmentation Functions (FFs)

DC/c(z) dz is the probability of getting a hadron C from a parton c with
a fraction of the parton’s momentum fraction between z and z + dz

• Lowest order form for e+e− → hadrons

1

σ

dσh

dz
=
X

q

e2
q

ˆ

Dh/q(z) + Dh/q(z)
˜

• How can we extend this concept to include the O(αs) corrections that
we have been studying?



Virtual Contributions

• These are easy, as we have already done the work! The virtual contri-
bution, σv, calculated previously has the same final state structure as
the lowest order term.

• It can be included along with the lowest order term by just multiplying
the previous expression by 1 + σv

σ0

Three-body Contribution

• This one is more complicated - there are now three partons in the final
state and each can give rise to hadrons

• Not only do we have quark and antiquark FFs, but now we also have to
include a possible gluon FF.

• The basic structure should be familiar:

dσ

dz
=

1

2Q
(PhaseSpace) (Squared matrix elements) (FFs)

• Of course, this is all done in n dimensions in order to regularize the soft
and collinear divergences



• Bear with me - this is going to get complicated, but there is a reason for
all of this

• Plugging the appropriate terms into the above expression yields

dσ
dz

=
1

2Q

Q2

16(2π)3

„

Q2

4πµ2

«−2ǫ Z Z
„

1− u2

4

«−ǫ
1

Γ(2− 2ǫ)
x−2ǫ
1 dx1 x−2ǫ

2 dx2

8(e g µ2ǫ)2

(1− x1)(1− x2)
[(n− 2)(x2

1 + x2
2) + 2(n− 4)(n− 2)(2(1− x1 − x2) + x1x2)]

e2
q

ˆ

Dh/q(y)δ(z − yx1) + Dh/q(y)δ(z − yx2) + Dh/g(y)δ(z − yx3)
˜

dy

• We recognize some familiar structures from the total cross section cal-
culation, but the structure is more complex

• How can we do the integrations with the unknown FFs in the integrands?

• How can we ensure that the proper soft and collinear cancellations take
place?

• Proceed as in the total cross section case. Consider the first term and
make the substitution x2 = 1 − vx1.



• This introduces factors of (1 − x1)
−ǫ and (1 − v)−ǫ

• The v integrations can be done using

Z 1

0

dv vn−1 (1 − v)m−1 = B(n,m) =
Γ(n)Γ(m)

Γ(n + m)

• This generates explicit poles in ǫ through terms like

B(−ǫ, 1 − ǫ) =
Γ(−ǫ)Γ(1 − ǫ)

Γ(1 − 2ǫ)
= −

1

ǫ

Γ(1 − ǫ)2

Γ(1 − 2ǫ)

• Can do the y integration using the δ function



• We are left with terms like

Z 1

z

dx1 xn−1
1 (1 − x1)

m−1Dh/q(z/x1)

• Note the non-zero lower limit on the integral which is forced by the
argument of the FF

• How are we to do this integral in order to pull out the singular terms
when we don’t know the analytic form for the FF?

• Enter the “+” distribution!

• This distribution will enable us to extract the poles in ǫ from integrals
of the above form



Consider

I =

Z 1

0

dw (1 − w)−1−ǫ f(w)

=

Z 1

0

dw (1 − w)−1−ǫ [f(1) + (f(w) − f(1))]

= −
f(1)

ǫ
+

Z 1

0

dw
f(w) − f(1)

1 − w

ˆ

1 − ǫ ln(1 − w) + O(ǫ2)
˜

= −
f(1)

ǫ
+

Z 1

0

dw
f(w) − f(1)

1 − w
− ǫ

Z 1

0

dw
ln(1 − w)

1 − w
[f(w) − f(1)] + O(ǫ2)

≡ −
f(1)

ǫ
+

Z 1

0

dw
f(w)

(1 − w)+
− ǫ

Z 1

0

dw

„

ln(1 − w)

1 − w

«

+

f(w) + O(ǫ2)

This last expression allows us to make the following identification

(1 − w)−1−ǫ = −
δ(1 − w)

ǫ
+

1

(1 − w)+
− ǫ

„

ln(1 − w)

1 − w

«

+



• The astute reader will no doubt have noticed that the previous derivation
involved integrals extending from zero to one. What if the lower limit
is non-zero?

• The derivation can be repeated and the only difference will be in the
δ-function term. There we will get (recall that ǫ < 0)

1

ǫ
(1 − w)−ǫ|1a = −

1

ǫ
(1 − a)−ǫ

= −
1

ǫ

»

1 − ǫ ln(1 − a) +
ǫ2

2
ln2(1 − a) + . . .

–

= −
1

ǫ
+ ln(1 − a) −

ǫ

2
ln2(1 − a) + . . .

• The regulators under the integral signs behave the same way as when
the lower limit was zero.



• Schematically we can write

1

(1 − w)+
=

1

(1 − w)a
+ ln(1 − a)δ(1 − w)

and

„

ln(1 − w)

1 − w

«

+

=

„

ln(1 − w)

1 − w

«

a

+
1

2
ln2(1 − a)δ(1 − w)

There are several important points to notice about these regulators

• We derived these expressions by adding and subtracting f(1) and then
rearranging the integrations. When the lower limit is non-zero, the can-
cellation between these two terms with f(1) is no longer exact and there
is a remainder involving logs of (1 − a)

• As the lower limit, a, approaches 1 these logs can become large.

• This could happen with the fragmentation functions if we were interested
in the region of large z.



• These logs are called “threshold” logs and physically what is happening
is that the phase space for additional gluon radiation is being limited
by the requirement that z be large. These large logs must be resummed
via a procedure referred to as “soft gluon” or “threshold” resummation

• Remember the idea of incomplete cancellation between the virtual and
real contributions with a finite remainder consisting of potentially large
logarithms

• After this interlude, we can go back to the fragmentation calculation



• We have done the y and v integrations, leaving integrals of the form

Z 1

z

dx1 xn−1
1 (1 − x1)

m−1Dh/q(z/x1)

• Terms with m = −ǫ will give poles proportion to δ(1 − x1)

• Doing the x1 integration will give pole terms proportional to Dh/q(z)
which can now be combined with the lowest order terms

• In this way we can extract the divergent pieces needed for the cancella-
tion with the virtual contributions



• The intermediate answer for the next order contribution after adding the
virtual contribution to the three real fragmentation pieces is as follows

dσ

dz
=

αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
X

q

e2
q

Z

dx dy δ(z − xy)
`

Dh/q(y) + Dh/q(y)
´

»

δ(1 − x)

„

−
2

ǫ2
−

3

ǫ
+

2

ǫ2
+

3

2ǫ

«

−
1

ǫ

1 + x2

(1 − x)+
+ f̃q(x)

–

+
αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

X

q

e2
q

Z

dx dy δ(z − xy) 2 Dh/g(y)

„

−
1

ǫ

1 + (1 − x)2

x
+ f̃g(x)

«

• See that the 1
ǫ2

terms cancel, but that there are some remaining 1
ǫ

pieces

• How should these be interpreted and what can we do about them?



• These are residual collinear singularities associated with the quark prop-
agators going on shell in the collinear quark+gluon configuration

• On-shell propagators are associated with long range physics and should
not be associated with the hard scattering correction that we are calcu-
lating.

• Factorize the remaining collinear singularities and absorb them into the
bare FFs.

• We need to define a scheme to tell us how much of the finite contributions
to subtract along with the ǫ pole terms. Use

1

ǫ

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
=

1

ǫ
+ ln(4π) − γE − ln

M2
f

µ2
− ln

Q2

M2
f

+ . . .

• The MS scheme (Minimal Subtraction) says to subtract only the pole
term

• The MS scheme (Modified Minimal Subtraction) says to also subtract
the ln(4π) − γE terms



• In addition, I have introduced a factorization scale Mf and I will subtract

the ln
M2

f

µ2 term, as well. Technically, each choice of Mf defines a new

scheme, but we usually refer to all of them as being the MS scheme

• In order to absorb the collinear singularities in the bare FFs, introduce
a scale-dependent FF

Dh/q(z, M2
f ) = Dh/q(z)+

αs

2π

Z

dx dy δ(z − xy)

„

−
1

ǫ

«

 

M2
f

4πµ2

!

−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
»

CF

„

1 + x2

(1 − x)+
+

3

2
δ(1 − x)

«

Dh/q(y) + CF
1 + (1 − x)2

x
Dh/g(y)

–

• Replacing the bare FFs by the above scale-dependent FFs will cancel
the remaining collinear singularities



• The final result takes the form

1

σ

dσ

dz
=
X

q

e2
q

ˆ

Dh/q(z,M2
f ) + Dh/q(z,M2

f )
˜

+
αs

2π

X

q

e2
q

Z 1

z

dx

x

h

Dh/q(
z

x
, M2

f ) + Dh/q(
z

x
, M2

f )
i

"

ln
Q2

M2
f

Pqq(x) + f̃q

#

+
αs

2π

X

q

e2
q

Z 1

z

dx

x
2Dh/g(

z

x
, M2

f )

"

ln
Q2

M2
f

Pgq(x) + f̃g

#

• Here I have used two splitting functions defined as

Pqq(x) = CF

“

1+x2

(1−x)+
+ 3

2
δ(1 − x)

”

and Pgq(x) = CF

“

1+(1−x)2

x

”



• Note that I have substituted the scale-dependent FFs on the right hand
side - this is allowed to this order

• Note that the results simplify considerably if we choose Mf = Q

• In this case the ln Q2

M2
f

terms disappear and all of the logs have been

absorbed in the scale-dependent FFs



Summary

In this lecture we have seen the following

• The typical ingredients for the hard scattering subprocesses include

– The lowest order expressions for the relevant subprocesses

– The 1-loop virtual corrections to these subprocesses

– The expressions for the relevant next order subprocesses

• The real processes generally have both soft and collinear singularities

• After renormalization, the loop graphs also contribute soft and collinear
singularities

• For suitable observables these singularities cancel, leaving finite higher
order corrections

• Observables for which this occurs are said to be infrared safe

• If one wants to study specific details of the hadronic final state, then
Fragmentation Functions can be introduced.

• In the next order there will be uncancelled collinear singularities which
can be absorbed into the bare FFs by defining scale-dependent FFs


