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Overview of the Lectures

• Lecture I - Higher Order Calculations

– What are they?

– Why do we need them?

– What are the ingredients and where do they come from?

– Understanding and treating divergences

– Examples from e+e− annihilation

• Lecture II - Examples of Higher Order Calculations

– Parton Distribution Functions at higher order

– Lepton Pair Production at higher order

– Factorization scale dependence



• Lecture III - Hadronic Production of Jets, Hadrons, and Photons

– Single inclusive cross sections

– More complex observables and the need for Monte Carlo tech-
niques

– Overview of phase space slicing methods

• Lecture IV - Beyond Next-to-Leading-Order

– When is NLO not enough?

– Large logs and multiscale problems

– Resummation techniques



Lecture IV - Outline

• When is an NLO calculation not really NLO?

• Use Lepton Pair Production as an example

– dσ/dQ2 versus dσ/dQ2 dpT

– NLO pT distribution

• Two scale problems

• Large logs and the need for resummation

– Leading double log approximation

– kT resummation – going beyond leading double logs

• Threshold resummation - an overview

• Applications

– Hadron production

– Dihadron production

– Direct photon production

• Summary



When is an NLO Calculation not really NLO?

Recall our example of Lepton Pair Production from Lecture II where we cal-
culated dσ/dQ2

• LO qq → l+l−

• NLO qq → l+l− (1-loop)

• NLO qq → l+l−g and qg → l+l−q (tree graphs)

• Integrated over the additional variables for the radiated gluon or quark
in the case of the 2 → 3 subprocesses

• Factorized the resulting collinear singularities and absorbed into the
definition of the scale dependent PDFs

• PDFs with scale Mf = Q interpreted as having the effects of radiated
partons with pT s up to Q included



But what if we wanted to calculate dσ/dQ2 dpT ?

• The lowest order and the 1-loop virtual contributions are calculated with
lowest order kinematics - at this stage the lepton pair has no pT at the
matrix element level

• The O(αS) tree graphs give the first non-zero lepton pT at this stage of
the calculation

• But, the graphs are convoluted with the bare PDFs

OK - what if we just change the bare PDFs to the scale dependent PDFs?

• Hmmm. We would then be including the effects of radiated parton pT s
up to the value of the scale chosen for the PDFs

• But we are, at the same time, examining the pT of the lepton pair which
recoils against the radiated partons. Is there an inconsistency here?

No - not if we are content to calculate the pT distribution at values of pT which
are of the order of Q



Lesson: the tree graphs which, after integrating over the recoiling parton pT ,
contributed to the O(αS) correction for dσ/dQ2 are now giving the LO con-
tribution to the high Q tail of the pT distribution

What if we wanted the NLO pT distribution? We would have to do more!

• Include the 1-loop corrections to the O(αs) tree graphs

• Also include the O(α2
s) tree graphs

• With these ingredients one could generate NLO predictions for the pT

distribution in the region where pT is of the order of Q

But what if one was interested in the region where pT << Q?

There are several problems

• As noted before, the scale dependent PDFs contain the contributions
from integrating the radiated parton pT s up to O(Q) so there is a con-
tradiction if we ask for the pT of the lepton pair to be much less than
Q

• There are now two scales in the problem - pT and Q and if pT << Q one
can encounter large logs of the ratio Q/pT which should be resummed



The O(αS) subprocesses both give contributions which diverge as p−2
T as pT

goes to zero
These divergent terms are factorized and included in the scale dependent PDFs

We want to do a better calculation in the low pT region

• Have to figure out what to do with the low pT radiated partons

• Have to figure out what the scale should be for the PDFs



Simple Example - e+e− → l+l− + γ

• Discussion follows G. Parisi and R. Petronzio, Nucl. Phys. B154, 427
(1979)

• Avoids the complications due to the non-abelian nature of QCD and
initial state PDFs, but illustrates the physics

• Cross section for fixed lepton pair mass Q diverges as k−2
T , where kT is

the transverse momentum of the radiated photon

• For kT << Q we get

dσ

dQ2 dp2
T

=
4α3

3k2
T

1

SQ2

S2 + Q4

S − Q2

• Next, integrate over Q: 4m2
µ < Q2 < S − 2

√
SkT



• Letting σ0 = 4
3

πα2

S
and performing the integration over Q2 yields (keeping

only the most divergent term)

dσ

dk2
T

= σ0
α

π

ln S/k2
T

k2
T

• Next, consider a partially integrated cross section defined as

Σ(k2
T ) =

1

σ0

Z k2

T

0

dσ

dp2
T

dp2
T

• We know that there is a divergence at pT = 0. But, we also know that the
one loop corrections to our tree graphs will also contribute there and that if
we were to integrate over all pT we would get a finite result.

• To logarithmic accuracy we can write

1

σ0

Z S

0

dσ

dp2
T

dp2
T = 1 + O(α) × constant =

1
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T

0
. . . +
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• Therefore, we can write

Σ(k2
T ) = 1 − 1

σ0

Z S

k2

T

dσ

dp2
T

dp2
T

= 1 − α

π

Z S

k2

T

dp2
T

p2
T

ln
S

p2
T

= 1 − α

2π
ln2 S

k2
T

• Note that this is result is correct in the leading double log approximation.
O(α) terms which are constants or single logs are not included

• Now, what would happen if there were multiple photons emitted instead
of just one?



Consider a process where there is a fermion in the final state and then compare
it to one where there is a photon emitted from the fermion

p

p′ k

p

u(p) → u(p)
/ǫ/p

′

p′2

• Use p′ = p + k and use the fact that we are interested in soft photons -
drop k everywhere except where it would lead to a divergence

• The factor associated with the photon emission is now

u(p)
/ǫ/p

2p · k



• Using the Dirac equation, this may be simplified to

u(p)
p · ǫ
p · k

• Now, what about two soft photons?

p′ p + k1 p

k2 k1

• Repeat the above analysis and symmetrize the result by interchanging
the two photons and dividing by two

• The result is a factor

1

2

p · ǫ1
p · k1

p · ǫ2
p · k2



• Similarly, for n terms one gets

1

n!

p · ǫ1
p · k1

· · · p · ǫn

p · kn

• Soft photon emission factorizes!

• For n emissions we get a contribution to the cross section

1

σ0
dσ =

αn

n!
dk2

T1 . . . dk2
T nν(kT1) . . . ν(kT2)

• where ν(kT ) =
ln S/k2

T

k2

T

is the result for a single photon

• We want to calculate the contribution of the n photon term to the inte-
grated pT distribution given by Σ(k2

T )

• As a first attempt, ignore the correlations between the transverse mo-
menta of the emitted photons - treat them all as being independent



• Then the nth term is just

Σ(n)(k2
T ) =

1

n!

"

Z k2

T

0
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1
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»
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2π
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2π
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+ · · ·

• Summing over all n yields

Σ(k2
T ) = exp(− α

2π
ln2 S/k2

T )



Next, we can recover the differential cross section by taking a derivative of Σ

1

σ0

dσ

dk2
T

=
d

dk2
T

Σ(k2
T )

=
α

π

ln S/k2
T

k2
T

exp
“

− α

2π
ln2 S/k2

T

”

• Notice that as kT → 0 the differential cross section now vanishes, rather
than diverges

• Summing the leading double logs has tamed the divergence, but at the
price of a vanishing cross section. The suppression is too strong, as we
will see shortly

(Exercise: fill in the steps for the derivation of this result)



Interpretation

• Σ is referred to as a Sudakov form factor and it can be interpreted as
given the probability for emitting no photons with transverse momenta
greater than kT

• We enforced the independent emission hypothesis and neglected conser-
vation of transverse momentum. The only way to get a lepton pair with
zero transverse momentum, was to suppress all photon emission.

• The probability of emitting no photons in a collision which creates a
massive lepton pair is zero

• The lowest order divergence is actually just the first term in an expansion
of the exponential which vanishes at zero transverse momentum

How can we restore transverse momentum conservation?



Insert a δ function which enforces conservation of transverse momentum for
the emission of n photons

1

σ0

dσN

d2pT
=

1

n!

“α

π

”n
Z

d2kT1
. . . d2kTn

ν(kT1
) . . . ν(kTn

)δ2(~pT −~kT1
−· · ·−kTn

)

Next, use the Dirac representation of the δ function

δ2(~pT − ~kT1
− · · · − kTn

) =
1

(2π)2

Z

d2be−i~b·(~pT −~kT1
−···−~kTn

)

• Notice how the integrand still factorizes, even with the δ function in-
cluded

• Define the Fourier transform of ν by

ν̃(b) =
1

π

Z

d2kT ei~b·~kT ν(kT )



• The n photon emission contribution now looks like

1

σ0

dσ

d2pT
=

αn

4π2n!

Z

d2be−i~b·~pT [ν̃(b)]n

• We see that the the exponentiation can now take place in impact pa-
rameter space

1

σ0

dσn

d2pT
=

1

4π2

Z

d2be−i~b·~pT σ̃(b)

where σ̃(b) = exp[αν̃(b)]

(Exercise: fill in the steps to derive this result)



Interpretation

• In the first case, the Sudakov form factor entered because we demanded
that we approach zero transverse momentum of the lepton pair by lim-
iting the transverse momenta of all the emitted photons individually

• By inserting the transverse momentum conserving delta function and
exponentiating in impact parameter space, we allowed for the possibility
of two or more photons balancing in transverse momentum and giving
a zero result

• Formally, these terms are subleading, but the leading terms vanish and
so the subleading terms become dominant

Extension to QCD

• This concept was extended to QCD by Collins, Soper, and Sterman
(Nucl.Phys.B250,199(1985))



• Need to take into account the transverse momentum of the incoming
quarks

– Normally integrated over, leading to the scale dependence of the
PDFs

– Factorization scale usually chosen to be on the order of the single
hard scale

– Now, the lepton pair pT will reflect the pT s of the incoming quarks

– PDF scale is chosen to be of the order of 1/b where b is the impact
parameter seen above

– b and pT are conjugate variables - large pT ↔ small b

– A scale of 1/b is large for large pT and small for small pT

• Classic application is to the lepton pair, W , or Z pT distributions



CSS Resummed Result

The resummed CSS result takes a relatively simple form with an exponentia-
tion in impact parameter space and a convolution with PDFs evaluated at a
scale 1/b

dσ

dQ2 dy dk2
T

=
4π2α2

9Q2S
(2π)−2

Z

d2bei~kT ·~b
X

j

e2
j

X
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X

b

Z 1
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, g(1/b))

+
4π2α2

9Q2S
Y (kT , Q, xa, xb)

with S(Q2, b) = exp
h

−
R Q2

1/b2
dµ2

µ2

h

ln
“

Q2

µ2

”

A(g(µ)) + B(g(µ))
ii



• The Y piece is the residual NLO non-log contribution

• One can see the resemblance to my earlier example modified by the
inclusion of the scale dependent PDFs

• In the expression for S, the A term sums the leading logarithms while
the B term sums the next-to-leading logs

• Here are some typical resummed results (from J. Qiu and X. Zhang,
Phys. Rev. D63:114011,2001) compared to data (D0 and Fermilab E-
288)
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• Note that by exponentiating in impact parameter space dσ
dk2

T

has a non-

zero intercept at kT = 0

• The D0 data are shown as dσ
dkT

which has a kinematic zero at kT = 0

• For both plots, however, the tree level calculation would diverge as kT →
0, whereas the b-space exponentiation describes the data nicely

Other Resummation Examples

Logarithms of variables other than kT can also occur - it depends on the type

of distribution one is calculating. The logs come from the same basic vertices

in the Feynman diagrams - they just appear in different ways and require

different types of treatments. Another example is provided by the threshold

logs we encountered previously in Lecture II



Threshold Resummation – Basic Physics

• For inclusive calculations, singularities from soft real gluon emis-
sion cancel against infrared singularities from virtual gluon emis-
sion

• Limitations on real gluon emission imposed by phase space con-
straints can upset this cancellation

• Singular terms still cancel, but there can be large logarithmic re-
mainders

• Classic example is thrust distribution in e+e− → jets



Consider the thrust distribution for small values of thrust, retaining the most
divergent term

1

σ

dσ

dT
=

αs

2π
CF

4

1 − T
ln

1

1 − T

• We recognize that as T → 1 the phase space for gluon emission is being
restricted

• We can use the same technique we used for the kT example - split the
integral over T into two pieces

• Let f(T ) =
R 1

T
dT 1

σ
dσ
dT

• Then we can write
Z 1

Tmin

dT
1

σ

dσ

dT
=

Z T

Tmin

dT
1

σ

dσ

dT
+ f(T ) = 1 + O(αS) × constant



• Hence, f(T ) is given by

F (T ) = 1 −
Z T

Tmin

dT (−4)
αs

2π
CF

ln(1 − T )

1 − T

= 1 − αS

π
CF ln2(1 − T )

• In the leading double log approximation this can be exponentiated to
give

f(T ) = e−
αs

π
CF ln2(1−T )

• Taking a derivative yields

1

σ

dσ

dT
= −2

αS

π
CF

ln(1 − T )

1 − T
e−

αs

π
CF ln2(1−T )

(Exercise: fill in the steps for this derivation)



• This gives a turnover as T → 1 which cures the divergence seen back in
Lecture I

• However, the turnover occurs at αs ln(1−T ) = π
2CF

≈ 1.2, violating the

assumption that αs ln(1 − T ) << 1 (Exercise: show this)

• Must go further and include additional log terms, not just the double
logs

• However, this simple example serves as an introduction to the idea of
threshold resummation

More General Processes

• The general structure of more complex cross sections will be a general-
ization of what we have already seen

– Collinear singularities associated with the incoming and outgoing
partons - these are collected into jet functions

– Soft singularities associated with the emission of low-energy gluons
- these are collected into an overall soft function

– A hard scattering remainder that is finite



• The jet functions that describe the collinear singular region will contain
the “plus” distributions that we have already seen that describe the
real/virtual cancellations

• For a given observable one must show that

– The squared amplitude factorizes in the manner described above

– Phase space factorizes

– This will generally require some type of transform like the Fourier
transform we used in the kT case

– For threshold resummation this is usually a Mellin transform in-
volving moments of the cross section with respect to a large scaled
energy variable, e.g., τ = Q2/S for lepton pair production

– The physical cross section then obtained by taking the inverse
transformation after the exponentiation



Example – High-pT /high-mass particle production

• Phase space for gluon emission is limited near threshold in the parton-
parton scattering subprocess

• Steeply falling PDFs constrain real gluon emission when high-mass or
high-pT is required

• Expect threshold resummation to be important as xT → 1

• Define v = 1 + t/s and w = −u/(s + t).

• Threshold occurs at w = 1 (s + t + u = 0)

• dσ
dvdw

contains terms like αm
s

“

lnn(1−w)
1−w

”

+

• Can sum leading logs (n = 2m − 1), next-to-leading-logs (n = 2m − 2),
etc.

• “Threshold resummation is resummation of the ‘plus’ distributions”



High-pT π0 cross section

• Work by de Florian and Vogelsang (hep-ph/0501258) applies threshold
resummation to π0 production

• For fixed target experiments the center of mass energy is in the 20-40
GeV range while pT is typically 3-12 GeV ⇒ xT can be large

• The fragmentation fraction z (see Lecture I) will also be large when one
requires a high-pT hadron - the hadron will take most of the energy
of the fragmenting parton (jet) since taking a smaller fraction wastes
energy and the parton PDFs fall off rapidly in x (nature doesn’t want
to waste the available partonic center of mass energy)

• Large values of z relevant for fixed target energies leads to large threshold
resummation corrections (lnn(1 − z)/(1 − z))

• Enhancement is strongly energy dependent since the relevant values of
z decrease as one goes to higher energies at fixed pT (more energy is
available at fixed pT and the relevant values of z decrease)
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• Blue curves include the resummation corrections properly matched to
an existing NLO calculation in order to avoid double counting

• Note the reduced scale dependence of the resummed results
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• Note reduced enhancement at RHIC energy compared to the previous
fixed target results



Another Example – Dihadron Production

• Two PDFs and two FFs means there are four jet functions

• In the region of large M2/S where M is the dihadron mass we expect
large threshold logs

• Recent work by Almeidea, Sterman, and Vogelsang (Phys.Rev.D80:074016,2009)
confirms that the effects are large for fixed target experiments and that
they decrease as S is increased at fixed M

• Results also show decreased scale dependence



Direct Photon Production

• Same formalism applied to direct photon production has some interest-
ing features (Vogelsang and de Florian, Phys.Rev. D72 (2005) 014014)

– Direct subprocesses qq → γg and qg → γq are not enhanced sig-
nificantly

– Fragmentation subprocesses where the photon is radiated from an
outgoing quark, for example, are significantly enhanced as is the
case for hadron fragmentation processes

– End result is a large increase for predictions at fixed target energies
with a rapid fall off as the energy is increased at fixed pT



• Also see the expected decrease in the scale dependence

• Threshold resummation improves the agreement with the fixed target
experiments without adversely affecting the description of the high en-
ergy collider data



Summary

Here are some key points to remember

• NLO calculations are not always adequate for every observable

• NLO calculations are appropriate for processes where there is one large
scale

• In some regions of phase space the NLO corrections can actually become
LO if the lowest order contribution is suppressed

• Large logs can be generated when the phase space for additional gluon
radiation is restricted - look for two or more relevant scales

• Examples include low-pT lepton pair and vector boson production

• Threshold logs can be resummed and are especially relevant for un-
derstanding the energy dependence of fixed target hadron or photon
production relative to the high energy collider results

• There is more to perturbation theory than just the next order contribu-
tion!


