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Overview of the Lectures

• Lecture I - Higher Order Calculations

– What are they?

– Why do we need them?

– What are the ingredients and where do they come from?

– Understanding and treating divergences

– Examples from e
+

e
− annihilation

• Lecture II - Examples of Higher Order Calculations

– Parton Distribution Functions at higher order

– Lepton Pair Production at higher order

– Factorization scale dependence



• Lecture III - Hadronic Production of Jets, Hadrons, and Photons

– Single inclusive cross sections

– More complex observables and the need for Monte Carlo tech-

niques

– Overview of phase space slicing methods

• Lecture IV - Beyond Next-to-Leading-Order

– When is NLO not enough?

– Large logs and multiscale problems

– Resummation techniques



Lecture III - Outline

• Overview of single particle inclusive calculations

– General Form

– Similarities to earlier examples

– Basic properties of the results

• Extension to more complex observables

– Problems with analytic calculations

– Need for Monte Carlo methods

– Methods to handle divergences

• Two-cutoff Phase Space Slicing Method

• Applications



Consider the forms of the lowest order calculations we have examined thus far

• DIS Structure Functions - Single integration over one PDF with a delta
function δ(η − x)

• Lepton Pair Production - Two integrations over a product of two PDFs
with one delta function δ(Q2 − xaxbS)

• In both cases the end result of the NLO calculation was to add an O(αs)
correction in addition to the delta function

• Now consider the hadroproduction process A + B → h + X where
A, B, and h are hadrons

• The basic cross section starts with an expression of the form

dσ(AB → h + X) =
1
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We can simplify this expression if we evaluate the two-particle phase space
factor using the Mandelstam variables

ŝ = (pa + pb)
2 t̂ = (pa − pc)

2 û = (pb − pc)
2

The two-body phase space factor is

dPS(2) =
d3pc

(2π)32Ec

d3pd

(2π)32Ed
(2π)4δ(pa + pb − pc − pd)

Exercise: Show that d3pd

2Ed

= d4pdδ(p2
d) and that δ(p2

d) = δ(ŝ+t̂+û) for massless
partons and hence that

dPS(2) =
1

8π2

d3pc

Ec
δ(ŝ + t̂ + û)



Things will further simplify if we introduce two dimensionaless variables which
vary between zero and one:

w = − ŝ + t̂

û
v = 1 +

t̂

ŝ

Finally, the parton and final state hadron momenta by are related by ph = zcpc

Exercise: Show that the invariant hadronic cross section can be written as

Eh
d3σ

dp3
h

=
X

abcd

Z

dxa dxb
dzc

z2
c

Ga/A(xa, M2
f )Gb/B(xb, M

2
f )Dh/c(zc, M

2
f )

1

16π2ŝ2v
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(Why did I call this the invariant cross section?)



We have the desired form of two PDFs times a FF times a squared amplitude
and factors times a delta function

Now, let’s look at the form of the NLO corrections

By now, we can anticipate what needs to be done

• Use the two-loop running coupling

• Use NLO PDFs

• Use 2 → 3 tree-level matrix elements and 2 → 2 loop corrections

• Use three particle phase space for the tree graphs

• Use dimensional regularization

• Factorize the collinear singularities associated with the PDFs and FFs

• This will result in an O(αS) correction to the preceding expression for
the invariant cross section



Three-body Phase Space

dPS(3) =
d3pc

(2π)32Ec

d3pd

(2π)32Ed

d3pe

(2π)32Ee
(2π)4δ(pa + pb − pc − pd − pe)

• An easy way to understand this is to think of the pdpe system as a
two-body system with a 4-vector pde = pd + pe

• This two-body system then has the standard two-body phase space fac-
tor in terms of the polar and azimuthal angles θ1 and θ2 in the d+ e cm
frame.

• Then we tack on the pc factor and evaluate it using two-body kinematics
for pa + pb → pc + pde

• Now, p2
de 6= 0, so the Mandelstam variables defined before now sat-

isfy ŝ + t̂ + û = p2
de where the Mandelstam variables are formed from

pa, pb, and pc



• The net effect is that w is no longer equal to one as it was for the lowest
order terms - it approaches one when partons d and e are parallel giving
p2

de = 0

• The three-body phase space factor in n dimensions is given by

dPS(3) =
ŝ

28π4Γ(1 − 2ǫ)

„

ŝ

4π

«−ǫ

v1−2ǫ(1 − v)−ǫw−ǫ(1 − w)−ǫ sin1−2ǫ θ1 sin−2ǫ θ2

• We will now be integrating over w and we see a factor (1 − w)−ǫ which
will regulate divergences at w = 1

• Why do we expect divergences at w = 1? This is the two-body limit
of three-body phase space. Either two partons have become collinear,
thereby behaving as one massless parton (collinear limit), or one of the
partons has zero momentum (soft limit)

• Either way, we expect to see factors like (1 − w)−1 coming from the
squared 2 → 3 matrix elements



• We also anticipate that the expansion in terms of plus distributions of
factors like (1 − w)−1−ǫ will generate terms involving

δ(1 − w),
1

(1 − w)+
, and

„

ln(1 − w)

1 − w)

«

+

• Of course, I picked singularities where partons d and e were collinear
or one was soft. Clearly there are regions where other pairs become
collinear. If c denotes the parton which fragments into the hadron, then
c can never be soft.

• Thus, there are other plus distributions than the ones I listed, but you
get the idea.

• At the end of the day, the basic structure of the answer looks like
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• Here the f coefficients are functions of v and w, the dots indicate other
plus regulators, and ff represents all the terms which do not involve
plus regulators or delta functions

• Note: The contributions from the loop diagrams contribute to fδ since
they have the same kinematics as the lowest order terms

• The actual calculation will be a bit more complex, since there are many
subprocesses to consider for a typical high-pT process, but this is the
general structure for each subprocess

• Note: some contributions won’t have a delta function piece since they
don’t have a counterpart in the lowest order (think of the gluon term in
DIS)

• Now, where would we expect this type of correction to be useful and
what are the properties of the corrections?



• Generally, the high-pT calculation outlined above is appropriate for
problems where there is one large scale

• This means that ŝ ∼ t̂ ∼ û

• In terms of the kinematic parameters of the observed hadron, this means
that the rapidity is not near the edge of phase space and that the trans-
verse momentum is large, i.e., xT = 2pT√

S
is neither near one nor near

zero

• In this region the NLO calculation will generally provide

– Reduced scale dependence

– A modest correction to the normalization of the lowest order result

• There may be some changes in the pT and y distributions due to the
presence of new subprocesses

• Note that in this example we have integrated over both of the recoiling
partons. This smooths out regions where there might otherwise have
been large corrections.

• Next, let’s look at how the reduction in scale dependence actually comes
about and how we might use this to our advantage



Scale dependence

• Consider a highly simplified example of jet production in hadron-hadron
scattering at large enough values of xT that only valence quark scattering
subprocesses need be considered.

• Denote the lowest order result for the invariant cross section by

E
d3σ

dp3
≡ σ = α2

s(µ)σ̂B ⊗ q(M) ⊗ q(M)

• Here σ̂B denotes the lowest order parton-parton scattering cross section
while q(M) denotes a quark PDF with factorization scale M

• I have separated out the running coupling which is evaluated at a renor-
malization scale µ

• ⊗ denotes a convolution

f ⊗ g =

Z 1

x

dy

y
f

„

x

y

«

g(y)



• With this same notation the NLO calculation will have the form

σ = α2
s(µ)σ̂B ⊗ q(M) ⊗ q(M)

+ 2bα3
s(µ) ln

µ2

p2
T

σ̂B ⊗ q(M) ⊗ q(M)

+ 2
α3

s(µ)

2π
ln

p2
T

M2
Pqq ⊗ q(M) ⊗ q(M)

+ α3
s(µ)K ⊗ q(M) ⊗ q(M)

• I have separated out the parts of the NLO correction which contain
explicit logs of µ or of M and have normalized then using pT

• K denotes the remainder of the NLO correction



Recall that

µ2 ∂αs(µ)

∂µ2
= −bα2

s + . . .

and that the nonsinglet PDF satisfies

M2 ∂q(x,M)

∂M2
=

αs

2π
Pqq ⊗ q(M)

• Now, calculate µ2 ∂σ
∂µ2

• The derivative of the first line gives a contribution which cancels a piece
of the derivative of the second line; the remaining derivatives of the
second, third, and fourth lines all give contributions of O(α4

s)

• The µ dependence is thus zero to O(α3
s) (Exercise: Fill in the steps to

show this)



• Now, calculate M2 ∂σ
∂M2

• Again, the derivative of the first line cancels a portion of the derivative of
the third and the remaining derivatives give results of O(α4

s) (Exercise:
Fill in the steps to show this)

• Both the renormalization and factorization scale dependences cancel to
the order calculated, although there is still residual scale dependence
due to higher order corrections

• The following plot shows the type of behavior which is typical of LO
and NLO calculations
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Understanding the scale dependences

• To simplify the discussion, consider the situation where µ = M , as in
the previous plot

• For the lowest order calculation we understand that increasing µ causes
the running coupling to decrease

• In the region of x & .1 an increase of M also causes the PDFs to decrease
- this is the region relevant for our high-pT jet example

• Thus, the LO calculation is a monotonically decreasing function of the
scale

• For the full NLO calculation, the first line (lowest order result) and the
last line (residual NLO result) both have the same type of monotonically
decreasing behavior as the scale increases

• The ln µ2

p2

T

factor in the second line causes this contribution to be negative

for µ < pT and to be positive once µ exceeds pT

• For the third line, recall that the convolution with the splitting function
gives a negative contribution in the region of interest since the slope of
the scaling violations is negative there



• Thus, for M < pT the third line is negative and it turns positive for
M > pT

• The explicit logs in lines 2 and 3 thus cause the NLO curve to be below
the LO curve if µ = M < pT and to be above it if the scales are greater
than pT , as shown in the plot
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• Note that this is an approximate argument and that there can be ex-
ceptions to it caused, for example by new channels opening in higher
order

• The exact crossover point depends on the relative sizes of the contribu-
tions from each of the four lines



“Which scale is best?”

There are various methods for guestimating the choice of scale in NLO pro-
cesses. Here are some examples:

• Principle of Minimal Sensitivity

– An exact calculation would have no scale dependence - perturbative
calculations are incomplete

– The PMS scheme enforces ∂σ
∂µ

= ∂σ
∂M

= 0

– In my example the full dependence on µ was displayed so one can
solve for the value of µ which makes the derivative zero - not the
same as having it be zero to O(α3

s)

– Similarly, can numerically solve for the value of M which forces
∂σ
∂M

to be zero

– For each kinematic point the plot of µ versus M gives a saddle
point structure and one can read off the correct values for both
scales



• Could also use a “1-scale” PMS scheme - then one can read off the
optimal scale from plots like the one shown previously which suggested
µ = M ≈ pT /2

• Method of Fastest Apparent Convergence

– Choose the scale such that NLO and LO calculations are equal

– All the higher order corrections are effectively absorbed into the
logs of the scales

There is no unique prescription for choosing the scales

• When the higher order corrections are under control, both schemes give
similar results of the order of the single large scale in the process

• In the plot shown earlier both schemes would suggest the choice of pT /2
which is close to the “natural” choice of pT

The ratio of the NLO and LO curves is just the K factor. It is obviously
very scale dependent. For the FAC scheme the K factor is defined to be
1!



More complicated observables

For the single particle cross section it is easy to calculate both the pT and y
distributions. However, there are other interesting observables

• Jets - one needs to be able to form jets of according to some jet definition
which may not be easy to express in terms of partonic variables

• One might wish to examine joint distributions involving more than one
particle

• Classic example - one might wish to calculate or measure the angular
distribution of the scattered partons in their center of mass frame. With
2 → 3 subprocesses, how do you define this?

• One might wish to place cuts (kinematic constraints) on the final state
particles. Sometimes this is easy (cuts in pT or y)

• Sometimes the Jacobian between the experimentally observed variables
and the parton level variables can not be easily calculated

• Suggests using a Monte Carlo formalism so that the cuts can be made
on an event-by-event basis

• But what about the divergent terms?



Next-to-Leading-Order Calculations – Recap

• Ingredients

– 2 → 2 O(α2
s) subprocesses, e.g., qq → qq, qg → qg, and gg → gg

– O(α3
s) one-loop corrections to 2 → 2 subprocesses

– 2 → 3 subprocesses such as qq → qqg, etc

• O(α3
s) terms have singular regions corresponding to soft gluons and/or

collinear partons

• Need a method to handle such singularities

• Observables involve many kinematic variables since we are interested in
going beyond the single particle case

• Jacobians from parton variables to hadron variables are complex

• Suggests using a Monte Carlo approach, but one which allows the sin-
gularities to be properly treated



Phase Space Slicing Monte Carlo

• See B. Harris and J.F. Owens hep-ph/0102128

• Work in n=4-2ǫ dimensions using dimensional regularization

• Notation:

– At the parton level: p1 + p2 → p3 + p4 + p5

– Let sij = (pi + pj)
2 and tij = (pi − pj)

2

• Partition 2 → 3 phase space into three regions

1. Soft: gluon energy Eg < δs
√

s12/2

2. Collinear: sij or |tij | < δcs12

3. Finite: everything else



• In soft region use the soft gluon approximation to generate a simple
expression for the squared matrix element which can be integrated by
hand

• In the collinear region use the leading pole approximation to generate a
simple expression which can be integrated by hand.

• Resulting expressions have explicit poles from soft and collinear singu-
larities

• Factorize initial and final state mass singularities and absorb into the
fragmentation and distribution functions

• Add soft and collinear integrated results to the 2 → 2 contributions –
singularities cancel

• Generate finite region contributions in 4 dimensions using usual Monte
Carlo techniques

• End results is a set of two-body weights and a set of three-body weights.

• Both are finite and both depend on the cutoffs δs and δc

• Cutoff dependence cancels for sufficiently small cutoffs when the two
sets of weights are added at the histogramming stage



Simple Example

Consider the integral of a quantity which has a pole at x = 0. Using dimen-
sional regularization, one has an integral of the form

F =

Z 1

0

dx x−1−ǫf(x).

For x very near zero, approximate f(x) by f(0) yielding

F ≈ f(0)

Z δ

0

dxx−1−ǫ +

Z 1

δ

dx x−1−ǫf(x)

The first integral can be done analytically. The second is finite and can be
evaluated with ǫ = 0.

F ≈ −f(0)

ǫ
+ f(0) log δ +

Z 1

δ

dx
f(x)

x
.

The second integral can be done numerically. The dependence on the cutoff δ
cancels for sufficiently small values of δ



Another Simple Example

Consider the example from Lecture I of the total cross section for e+e− →
hadrons. The complete first order QCD correction is simply αs

π
.

• Phase space can be written in terms of two variables. It is convenient
to choose these to be s35 and s45.

s45

s35

S

C

C

m

m

δcs12

δcs12δss12

δss12

• This sketch shows the soft, hard collinear, and finite regions of phase
space



• The 1-loop virtual corrections lie at the origin in the lower left and are included
in the soft region

• In the soft region the squared matrix element takes on a relatively simple form
which may be integrated to yield

dσS = dσ0

»

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

4πµ2
r

s12

«ǫ– „
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2

ǫ2
+

As
1

ǫ
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0

«

with

As
2 = 2CF

As
1 = −4CF ln δs

As
0 = 4CF ln2 δs

• The final state hard collinear contribution can be simplified in the collinear
region and easily integrated to yield

dσq→qg
HC = dσ0

»

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

4πµ2
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«ǫ– „

Aq→qg
1

ǫ
+ Aq→qg

0

«



with

Aq→qg
1 = CF (3/2 + 2 ln δs)

Aq→qg
0 = CF

ˆ

7/2 − π2/3 − ln2 δs − ln δc (3/2 + 2 ln δs)
˜

• The virtual contribution is given by

dσV = dσ0

»

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

4πµ2
r

s12

«ǫ– „

Av
2

ǫ2
+

Av
1

ǫ
+ Av

0

«

with

Av
2 = −2CF

Av
1 = −3CF

Av
0 = −2CF (4 − π2/3)

• The full two-body weight is given by the sum dσS+dσV+2dσq→qg
HC . The factor

of two occurs since there are two quark legs, either of which can emit a gluon.



• At this point we have a finite result since As
2 + Av

2 and As
1 + Av

1 + 2Aq→qg
1

both separately add up to zero

• The finite two-body weight is given by

σ(2) =

Z

dσ0

“ αs

2π

”

`

As
0 + Av

0 + 2Aq→qg
0

´

while the three-body contribution is given by

σ(3) = σHC =
1

2s12

Z

HC

X

|M3|
2dPS3

• The final result is shown in the following figure as a positive three-body weight,
a negative two-body weight and the finite sum



• The results are plotted versus δs with δc = δs/300

• The solid horizontal line is the exact result

• The method converges nicely, provided that the cut-offs are small enough

• Note: the small triangular regions denoted by m in the phase space figure are
not included in the calculation. Their contribution can be included, but it is
of order δc/δs and is negligible provided that δc << δs



Hadron Pair Production

• Two cutoff phase space slicing technique was originally motivated by the
need for a NLO calculation for Fermilab experiment E-711

• NLO calculation needed in order to reduce the scale dependence

– Two powers of αs

– Two PDFs

– Two FFs

– In the typical kinematic region all six factors cause the cross section
to decrease as the scale is increased

• Would like to examine the parton-parton scattering process angular dis-
tribution

• Difficult to map the partonic variables to the observed variables which
suggests a Monte Carlo approach



• Kinematic variables for the dihadron system

– Mass of the dihadron system M

– Rapidity of the hadron pair Y

– Cosine of the scattering angle in the parton-parton system cos θ∗

– Transverse momentum of the dihadron system pT pair

– Event sample may also involve cuts being placed on the transverse mo-
menta and rapidities of the individual hadrons

• Technique is the same as outlined previously

• Two-body weight consists of

– Lowest order contributions

– virtual contributions

– Collinear contributions

– Soft contributions

• Three-body weights consist of all the finite 2 → 3 contributions

• Generate both sets of weights and add together at the histogramming stage



0 5 10 15
M (GeV)

0.001

0.01

0.1

1

10

100

d2 σ/
dM

 d
Y

  (
nb

 G
eV

−
1 )

p N −−> (h
+
+h

−
) + (h

+
+h

−
) + X

√s = 38.8 GeV   −0.4 < Y < 0.2   pTpair < 2 GeV 

E 711
NLO  µ = .7 M  (upper)
NLO  µ = M  (lower)
LO  µ = .7 M  (upper)
LO  µ  = M  (lower)

• NLO results significantly higher than LO results

• Scale dependence reduced, but still significant



Angular distributions

• Boost to frame where the two hadron system has zero longitudinal momentum

• Calculate cosine of the angle between each hadron and the beam direction

• Won’t be the same since the two hadrons aren’t exactly back to back (trans-
verse momenta need not be the same in this frame because of fragmentation
effects, for example)

• Use average of the two values

• Scale choice: for dσ/dM only have one variable with the dimension of mass to
use for the scale - M

• For dσ/d cos θ∗ at fixed M , one could choose M again or something like
M sin θ∗ which is proportional to the transverse momentum of the individ-
ual hadrons

• Use two choices: M and the average of the two squared pT values
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Choice of < p2
T > gives a steeper curve, in better agreement with the data. At

fixed M larger cos θ∗ gives a smaller scale which increases the cross section.



When NLO Doesn’t Do the Job

Consider the distribution of the azimuthal angle between the two observed
hadrons. The kinematics appropriate for the lowest order calculation gives
this as a delta function at φ = π. The NLO calculation gives an additional
parton in the final state

• Can calculate the tail of the distribution far from φ = π

• As φ approaches π the additional parton is forced either to be collinear
or soft ⇒ divergences at φ = π

• Calculation breaks down at this point ⇒ need additional partons so that
the constraint φ = π can be satisfied without forcing the partons to be
soft or collinear

• Need to use resummation techniques

• Similar comments pertain to the pT pair distribution
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Theoretical distributions with just one additional parton are too narrow



• If experimental cuts are placed on φ or on the pT of the pair, then too
much of the theory will be included compared to the data

• Must use large kinematic regions in these variables if the theory and
experiment are to agree

• Both distributions are δ-functions at lowest order

• Correct description requires the use of the appropriate resummation
formalism

• Will get misleading results if cuts are placed on a distribution which is
not well described by the theory

• If different experiments use different cuts on these variables in order to
define their event sample, then it may appear that the theory is in better
agreement with one than the other

• Better to integrate over the variable in question if the acceptance of the
experiment allows it



Classic situation

• Some experimenters place tight cuts on φ and on pT pair in order to make
the events “look more like the lowest order predictions”

• At lowest order these cuts include all the lowest order theory, but only
a small fraction of the data

• At NLO, the weights at the two-body boundary are negative - you have
to integrate over the 2 → 3 events to get a positive result

Bad things happen when tight cuts are used to define a “lowest order”
sample



Other Applications

• Processes where phase space slicing type methods have been used include

– γ, γ + jet, and γ + hadron processes

– Jet and dijet production

– Single hadron and dihadron production

– Vector boson and diboson production

– and many others

• Method provides an improved treatment of isolation cuts in photon pro-
cesses

• Method has proven to be useful for dihadron and photon-hadron tomog-
raphy in high energy nuclear collisions

• Method is useful for jet studies, as different jet algorithms can be im-
plemented easily at the parton level



Summary

• Have seen how the NLO formalism works for single particle production
in hadron-hadron processes

• Have looked at more complicated observables and correlations

• Have seen how Phase Space Slicing techniques allows one to use flexible
Monte Carlo techniques while ensuring that the singularities are properly
factorized

• Have examined some examples and applications of this technique

• Have looked at some cases where NLO calculations are not sufficient to
describe the data and more terms are required


