Deep Inelastic Scattering DIS

Prelude: Antic "Gedankenexperiment"

Popular science book by Leon Ledermann "The God Particle":

Could we continue the slicing for ever or do we end up with some smallest unit?

Demokrit (460 - 371 v.Chr.):

"By convention hot, by convention cold, but in reality atoms and void, and also in reality we know nothing, since the truth is at bottom."

In search of the smallest particle

More than 2400 years after Demokrit we still ask the same question.

Employing the experimental methods of modern physics in search for answers.

Ernest Rutherford Interpretatio

E. Rutherford Nobel prize 1908 in Chemistry (not for this ingenious idea!)

Pioneer of Electron Scattering: Robert Hofstadter

Carriaa

Secondary emission monitor

Movable Faraday CUP

Beam

Viewing

Carriade

Graphs from R. Hofstadter's Nobel-Lecture, Dez. 11, 1961

Pioneers of High Energy Physics E_e (multi GeV)

J. Friedman

H. Kendall

Resolving the Structure of the Protons

In order to resolve even smaller struktures even higher energies are necessary

So far: Electron beams on fixed targes (+ μ , ν ,... on p,d,Fe ...)

 $k \xrightarrow{\theta}_{k'} \theta_{E'}$

Increasing the available centre-of-mass energy
 Colliding beams

■ "Recycle" particle beams → Storage Ring, Collider

HERA ep Collider: 1992-2007

Two colliding beam experiments: H1 and ZEUS ~0.5 fb⁻¹ collected per experiment approximately same amount of collisions with electrons and positrons of Left- and right-handed polarisation

 E_e = 27.5GeV, E_p = 920 GeV dedicated low Ep runs Ep = 460GeV,575 GeV

H1 & ZEUS Collaborations

Collaborations of 300-400 Physicists, at ~40 Institutes of ~15 Countries

Partons in the proton

Feynman's parton model: the nucleon is made up of pointlike constituents (later identified with quarks and gluons) which behave incoherently.

The probability f(x) for the parton f to carry the fraction x of the proton momentum is an intrinsic property of the nucleon and is process independent.

If I were thinking about an experiment where we collide protons with protons at, say, 14 (7)TeV: then this is great! Because:

-Protons are just a "beam of partons" (incoherent)
-The f(x)s, the "beam parameters", could be measured in some other process. (process independent)

Quarks and Gluons as partons

u(x): up quark distribution $\overline{u}(x)$: up anti-quark distribution etc.

Momentum has to add up to 1 ("momentum sum rule")

 $\int x [u(x) + \bar{u}(x) + d(x) + \bar{d}(x) + s(x) + \bar{s}(x) +] dx = 1$

Quantum numbers of the nucleon has to be right So for a proton: $\int [u(x)-\bar{u}(x)]dx=2 \qquad \int [d(x)-\bar{d}(x)]dx=1$

$$\int [s(x) - \bar{s}(x) + \dots] dx = 0$$

DIS kinematics

proton in " ∞ " momentum frame

No transverse momentum

 $0 \le x \le 1$

x = fractional longitudinal momentum carried by the struck parton

√s = ep cms energy
Q²=-q²= 4-momentum transfer squared
 (or virtuality of the "photon")

DIS kinematics

Everything we need can be reconstructed from the measurement of E'_e and Θ_e (in principle).

Deep Inelastic Scattering experiments

Deep Inelastic Scattering experiments

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010 18

Structure Functions within the Quark-Parton-Model

DIS =

- electron scatters off a charged constituent (parton) of the proton (= elastic scattering)
- identify the charged partons with QUARKS (= spin 1/2 fermions)
 - Quark-Parton-Model (QPM)

 $F_{L} = 0$

19

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010

IF, proton was made of 3 guarks each with 1/3 of proton's momentum:

The partons are point-like and incoherent then Q^2 shouldn't matter. \rightarrow Bjorken scaling: F₂ has no Q² dependence. Let's look at some data \rightarrow

Results from SLAC-MIT experiment

Seems to be

Proton Structure Function F₂

Seems to be NOT

So what does this mean..?

~1.6 fm (McAllister & Hofstadter '56)

Virtuality (4-momentum transfer) Q gives the distance scale r at which the proton is probed.

r≈ ħc/Q = 0.2fm/Q[GeV]

CERN, FNAL fixed target DIS: $r_{min} \approx 1/100$ proton dia.HERA ep collider DIS: $r_{min} \approx 1/1000$ proton dia.

HERA: E_e =27.5 GeV, E_P =920 GeV

So what do we expect F_2 as a function of x at a fixed Q^2 to look like?

Proton Structure Function F₂

How this change with Q² happens quantitatively described by the:

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (= DGLAP)equations

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010 27 DGLAP equations are easy to "understand" intuitively

First we have the four "splitting functions"

P_{ab}(z) : the probability that parton a will radiate a parton b with the fraction z of the original momentum carried by a.

Change of quark distribution q with Q^2 is given by the probability that q and g radiate q. Same for gluons:

$$\frac{dg(x,Q^2)}{d \ln Q^2} = \alpha_s \left[\sum q_f \otimes P_{qg} + g \otimes P_{gg} \right]$$

DGLAP fit (or QCD fit) extracts the parton distributions from measurements.

Step 1: parameterise the parton momentum density f(x) at some Q^2 , e.g.: $f(x)=Ax^B(1-x)^C(1+Dx+Ex^2)$

Step 2: find the parameters by fitting to DIS (and other) data using DGLAP equations to evolve f(x) in Q^2 .

Caveat! Not as easy: fit 4 PDFs (or 5), input one $F_2 = \sum e_q^2(q+\bar{q})$ (+ $\partial F_2/\partial \ln Q^2 \sim \alpha_s g(x)$) different measurements needed, e.g. fix target data (\rightarrow global PDF fits) ... or \rightarrow see next slide

HERA high Q² Data

Neutral Current Cross Section

$$\frac{d^2 \sigma^{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2^{\mp} \overline{\mp} Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \right] \qquad \begin{array}{c} Y_{\pm} = 1 \pm (1-y)^2 \\ \kappa = \frac{1}{4\sin^2\theta_w \cos^2\theta_w} \frac{Q^2}{Q^2 + M_Z^2} \end{array}$$

Generalized structure functions:

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} + \kappa(-v_{e} \pm P_{e}a_{e})F_{2}^{\gamma Z} + \kappa^{2}(v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})F_{2}^{Z}$$
$$x\tilde{F}_{3}^{\pm} = \kappa(-a_{e} \mp P_{e}v_{e})xF_{3}^{\gamma Z} + \kappa^{2}(2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))xF_{3}^{Z}$$

$$\begin{bmatrix} F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z} \end{bmatrix} = \sum_q \begin{bmatrix} e_q^2, 2e_q v_q, v_q^2 + a_q^2 \end{bmatrix} x(q + \bar{q})$$
$$\begin{bmatrix} xF_3^{\gamma Z}, xF_3^{Z} \end{bmatrix} = \sum_q \begin{bmatrix} e_q a_q, v_q a_q \end{bmatrix} 2x(q - \bar{q})$$

Charged Current Cross Section

$$\frac{d^2 \sigma^{CC}(e^{\pm}p)}{dx dQ^2} = (1 \pm P_e) \frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \tilde{\sigma}_{CC}^{e^{\pm}p}$$
CC reduced cross section

e⁺/e⁻ sensitive to different quark densities:

$$ilde{\sigma}_{CC}^{e^+p} = x \left[ar{u} + ar{c}
ight] + (1 - y)^2 x \left[d + s
ight]$$
 $ilde{\sigma}_{CC}^{e^-p} = x \left[u + c
ight] + (1 - y)^2 x \left[ar{d} + ar{s}
ight]$

CC gives sensitivity to different combinations of quarks as NC.

Electroweak Unification

$$\begin{array}{l} \text{NC:} \ \displaystyle \frac{d\sigma}{dQ^2} \sim \displaystyle \frac{1}{Q^4} \\ \\ \begin{array}{l} \text{CC:} \ \displaystyle \frac{d\sigma}{dQ^2} \sim \displaystyle \frac{1}{(Q^2+M_W^2)^2} \end{array} \end{array}$$

EW component of SM: NC and CC cross sections are similar at $Q^2 \approx M_Z^2, M_W^2$

Data compared with SM

Good agreement over full range

Charged Current Cross Sections

Quark Antiquark Decomposition

Quark Antiquark Decomposition

Unpolarized reduced CC e⁺p cross section in bins of x as a function of $(1-y)^2$ \rightarrow Helicity structure of CC

Data are well described by SM calculations •ZEUS-JETS fit •global fits CTEQ6

Neutral Current: xF₃

PDF Fits on HERA I Data

Impressive reduction of uncertainties of combined analysis

Model uncertainty: variation of charm and bottom mass, starting scale Q_0^2 , Q_{min}^2 of included data, strange and charm fraction at starting scale

Comparison to Global Fits

🗾 🎉 🛵 🚳 Burk

Deep Inelastic Scattering

Second Lecture

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010 42

2nd Lecture: Outline

Yesterday:

 Developed a "picture" of the proton (PDFs and DGLAP evolution)

Today:

- Explore validity of this picture
- Ultimate precision of the HERA measurements
- Additional constraints on PDFs from HERA:
 - Jets, FL, Heavy Quarks
- Relation to Tevatron and LHC
- Polarized CC & NC (if time allows, beautiful physics!)

HERA's Surprise: The Strong Rise of F₂ towards low x

Low x, Large Parton Densities and Saturation

Combination of H1 and ZEUS Measurements

- Ultimate precision is obtained by combining the HI and ZEUS measurements
- The combination procedure is performed before QCD analysis:
 - The combination of data is performed using the χ^2 minimisation procedure χ^2 definition \rightarrow backup slides
 - 1402 of HERA I HI and ZEUS measurements were combined into 741 unique cross section points with 113 correlated systematic sources.
 - > Improvement on Statistical precision:
 - HI and ZEUS collected similar amounts of physics data.
 - > Improvement of Systematic precision:
 - HI and ZEUS are different detectors and use different analysis techniques;
 - The H1 and ZEUS cross sections have different sensitivities to similar sources of correlated systematic uncertainty.

Results of Combining H1 and ZEUS

The combination procedure yields a consistent data set:

- χ²/dof=637/656
- Before combination, the systematic errors are ~ 3 times larger than statistical for $Q^2 < 100 \text{ GeV}^2$
- After combination, the systematic errors are of same precision as the statistical errors, reaching 1% total precision!

HERA I +II Combined NC

H1 and ZEUS

HERA I+II Combined CC

 $\tilde{\sigma}_{CC} \sim (x \boldsymbol{u} + x c) + (1 - y)^2 (x \overline{d} + x \overline{s})$

QCD Analysis Framework

- Data Sets
 - HERA I combined data [JHEP01 (2010) 109]
 - add HERA-II data (NC+CC high Q2, low Ep, F2cc,...)
- QCD Fit settings:
 - NLO (and NNLO) DGLAP evolution equations
 - TR VFNS (as for MSTW08)
 - Other schemes were investigated as well:
 TR (optimal), ACOT (full and χ), FFNS
 - PDF parametrised at the starting scale Q₀²:
 - $G, u_{val}, d_{val}, \overline{U} = \overline{u}(+\overline{c}), \overline{D} = \overline{d} + \overline{s}(+\overline{b})$
 - $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$
 - Apply quark number and momentum sum rules
 - The optimum number of parameters chosen by saturation of the χ^2
 - central fit with 10 free parameters
 - χ²/dof=574/582

Scheme	TRVFNS
Evolution	QCDNUM17.02
Order	NLO
Q_0^2	$1.9 \ { m GeV^2}$
$f_s = s/D$	0.31
Renorm. scale	Q^2
Factor. scale	Q^2
Q^2_{min}	$3.5 \ { m GeV^2}$
$\alpha_S(M_Z)$	0.1176
M_c	$1.4 { m GeV}$
M_b	$4.75~{\rm GeV}$

Sources of PDF uncertainties at HERA

Experimental Uncertainties:

Consistent data sets → use Δχ² = I

Model Uncertainties:

following variations have been considered

Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
m_c [GeV]	1.4	1.35	1.65
m_b [GeV]	4.75	4.3	5.0
Q^2_{min} [GeV ²]	3.5	2.5	5.0

Parametrisation Uncertainties:

- An envelope formed from PDF fits using other variants of parametrisation form at the starting scale:
 - ${\bf \nabla}~$ Scanning of 11 parameter space
 - ∇Q_0^2 variation and negative gluon parametrisation
 - ${\bf \nabla}~$ Relaxing assumptions used for central fit

HERAPDF1.5 vs. HERAPDF1.0

• xg, xu_v, xd_v, xSea (xSea=x \overline{U} +x \overline{D}) at the starting scale Q₀²=1.9 GeV²

 Inclusion of the HERA II data reduces the uncertainties on PDFs in the high x region especially visible on the valence distributions!

21

See HERAPDF1.5(prel) vs HERAPDF1.0

Fits to New Combined HERA data: HERAPDF1.5

- Propagate new data through QCD fit analysis to produce a new set of HERAPDFs: HERAPDF1.5
 - For preliminary studies use same settings as for HERAPDF1.0
 - Parametrisation uncertainty will be further investigated for final release.

Fits to New Combined HERA data: HERAPDF1.5

- Propagate new data through QCD fit analysis to produce a new set of HERAPDFs:
 - NC & CC inclusive same settings as for HERAPDF1.0
 - Parametrisation uncertainty will be further investigated for final release.

Jet production in DIS (HERA)

Jet measurements in Breit frame

ZEUS

Jet production cross-section used in QCD fit \rightarrow

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010

Gluon distributions

Photon Proton Scattering

- DIS ep scattering may be interpreted as scattering of an virtual photon off an proton
- The virtual photon may be transversely or longitudinally polarized

γp Cross Sections:

$$\sigma_T^{\gamma p} = \frac{4\pi\alpha}{Q^2} 2 x F_1 = \frac{4\pi\alpha}{Q^2} (F_2 - F_L)$$

$$\sigma_L^{\gamma p} = \frac{4\pi\alpha}{Q^2} (F_2 - 2 x F_1) = \frac{4\pi\alpha}{Q^2} F_L$$

$$\frac{\sigma_L^{\gamma p}}{\sigma_T^{\gamma p}} = R = \frac{F_L}{F_2 - F_L}$$

Longitudinal Structure Function F_L

Scattering of longitudinally polarized photons on quarks in helicity frame

$$F_L \propto \sigma_L = 0 \qquad \qquad F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} \sum_q z e_q^2 (q + \bar{q}) + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) \cdot zg \right] - access to gluon density$$

Measurement of FL

Measure cross sections $\sigma_r = F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2)$ at same *x* and Q² but different y = Q²/x·s $\xrightarrow{Y^2}$ vary s

- Change proton beam energy to change cms energy
 - E_p = 920 GeV, High Energy Run (HER)
 - E_p = 575 GeV, Medium Energy Run (MER):
 - E_p = 460 GeV, Low Energy Run
- Large lever arm in y^2/Y_+
- Measure at high y in LER
- Extended measurement to high y region $y = 1 - E'_e / E_e (1 - \cos \theta) \rightarrow \text{high } y \text{ means low } E'_e$

Combined low E_p Cross Sections

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010

Extracted F_L and F₂

- First F₂ measurement without assumptions on F_L
- Data support a non-zero F_L

 Predictions for F₂ and F_L are consistent with data

Extracted F_1 – medium & high Q^2

Extracted $F_L - Low Q^2$

H1 Preliminary F

H1 + ZEUS Combined F

Good agreement between data and predictions for $Q^2 > 10 \text{ GeV}^2$. F_L at low Q^2 above prediction using HERAPDF1.0

HERAPDF including low E_p data

H1 and ZEUS (prel.)

• PDFs from the new fit agree very well with HERAPDF1.0

Data sets	HERAPDF1.0	+ Low Energy data
Total χ^2 /dof	574/582	818/806

However, The $Q^2 \ge 5$ GeV² cut brings large improvement in χ^2 [818/806 \rightarrow 698/771] and it yields different shapes for gluon and sea PDFs.

 for HERAPDF1.0, Q² cut variation is included in the model uncertainty, but it had smaller effect.

Variants of Predictions for F_L

Heavy Quarkproduction in DIS

Fixed Flavour–Number Scheme (FFNS)

c (b)only from hard scattering,3 (4) active flavours in p

Zero Mass Variable Flavour–Number Scheme (ZM-VFNS)

 $\boldsymbol{c},\boldsymbol{b}$ active flavours in \mathbf{p}

resums $\log(Q^2/m^2)$

c,b: massless partons: ZM-VFNS fails at $Q^2 \leq \mathcal{O}(m_Q^2)$

needed at high-energy colliders

 $c,b\ \mathsf{PDFs}$ can be directly tested in DIS

leading order: boson-gluon fusion

Direct access to g(x)

FFNS spoiled when Q^2 , $p_T \gg m_Q$ e.g. large $\log(Q^2/m_Q^2)$

Heavy Flavour Tagging

Different experimental techniques used (combined) for heavy flavour tagging:

- Decay spectra
 p_T^{rel} of lepton to jet axis
- Lifetime information Measure impact parameter with respect to primary vertex (beamspot)
- Meson identification
 D^{*±} tagging ("Golden Decay")

H1 + ZEUS Charm Measurements

- ZEUS, *D**+, HERA I, L=82+37 *pb*⁻¹ (hep-ex/9908012, hep-ex/0308068)
- H1, D*+, HERA I, L=47 pb⁻¹ (hep-ex/0608042)
- H1, D*+, HERA II prel., L=340 pb⁻¹ (high-Q² part: arXiv:0911.3989)
- ZEUS, D⁺, D⁰, 2005 data, L=134 pb⁻¹ (arXiv:0704.3562 [hep-ex])
- ZEUS, μ, 2005 data, L=121 pb⁻¹ (arXiv:0904.3487 [hep-ex])
- H1, lifetime tag, HERA I, L=57 pb⁻¹ (hep-ex/0411046, hep-ex/0507081)
- H1 lifetime tag, HERA II prel, L=189 pb^{-1} (now in arXiv:0907.2643)

 D^* + signal (ZEUS HERA-I 98-00)

(H1 lifetime tag)

Measurement: Visible Cross Section

Example:

Semileptonic decays into μ

Simultaneous extraction of charm and beauty cross sections

Charm Structure Function: F₂^{cc}

 $F_2^{c\bar{c}}$ is the part of the F_2 structure function with a $c\bar{c}$ in the final state:

$$\frac{d^2 \sigma^{c\bar{c}}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} Y_+ \left[F_2^{c\bar{c}}(x, Q^2) - \frac{y^2}{Y_+} F_L^{c\bar{c}}(x, Q^2) \right]$$
$$Y_+ = 1 + (1-y)^2$$

(note: definition may differ from that used by theorists, see Forte et al. arXiv:1001.2312)

D mesons (or μ) production measured in "visible" phase space typically $|\eta(D^*)| < 1.5$, $p_T(D^*) > 1.5$ GeV $F_2^{c\bar{c}}$ extracted using theory-based correction:

$$F_2^{c\bar{c}}(x,Q^2) = \sigma_{\text{vis,bin}} \frac{F_2^{c\bar{c},\text{theo.}}(x,Q^2)}{\sigma_{\text{vis,bin}}^{\text{theo.}}}$$

Similarly for inclusive lifetime tagging: experiments mostly sensitive to events with several central high- p_T tracks
Combined $F_2^{c\bar{c}}$ to individual measurements

- method similar to inclusive combination arxiv:0911.0884
- 156 measurements + 54 correl. syst.
 ⇒ 46 combined points
- data are compatible $\chi^2/ndof = 88/110$
- precision 7 10% for 6.5 $\leq Q^2 \leq$ 60 GeV^2
- $Q^2 \leq 4 \text{ GeV}^2$ $D^* \text{ HERA-I data}$
- $Q^2 \leq 20 \text{ GeV}^2$ sizeable correlated theoretical uncertainty

Combined $F_2^{c\bar{c}}$ vs. various Theories

H1-ZEUS combined F^{cc}₂ vs. HERAPDF1.0

- HERAPDF 1.0 fit to inclusive HERA I data
- RT GM-VENS (as MSTW08)
- Central curve: $m_c = 1.4 \text{ GeV}$

band: $m_c = 1.3 \text{GeV} \text{ (upper)}$ $m_c = 1.65 \text{GeV}$ (lower)

[pole mass (PDG): 1.47 - 1.83 GeV]

Adding combined $F_2^{c\bar{c}}$ to HERAPDF1.0 Fit

• Fit HERA I + $F_2^{c\bar{c}}$ $Q^2 > 3.5 \text{ GeV}^2$ $(Q^2 = 2 \text{ GeV}^2 \text{ bin} \text{ excluded})$

41 charm points

- RT GM-VFNS
- $m_c = 1.4 \text{ GeV}$ $\chi^2_{\text{charm}} = 134.5/41$ $m_c = 1.65 \text{ GeV}$ $\chi^2_{\text{charm}} = 43.5/41$

A parton at x at Q^2 is a source of partons at x' < x at $Q'^2 > Q^2$.

> In fact, any parton at x > x' at Q^2 is a source.

To know the parton density at x', Q'^2 it's necessary (and sufficient) to know the parton density in the range: $x' \leq x \leq 1$ at some lower Q^2 .

If you know the partons in range $x' \leq x \leq 1$ at some Q^2 , then you know the partons in the range $x' \leq x \leq 1$ for all $Q'^2 > Q^2$. What does this mean for the LHC? \rightarrow

A. Dizit

LHC (or hadron-hadron) parton kinematics

Predictions for LHC using partons from DIS

Examples:

HERAPDF1.0 vs. Tevatron Data

- Predictions for high-E_T jet cross-sections with full uncertainties compared to the D0 data
- DIS data from HERA predicts Tevatron jets production from ppbar process.
 - Z and W at Tevatron are well predicted by HERAPDF1.0
- Hence, there is a universal description of partonic processes and all can be described with: HERA input, SM couplings and pQCD evolution!

HERAPDF1.0 vs. Tevatron Data

• Hence, there is a universal description of partonic processes and all can be described with: HERA input, SM couplings and pQCD evolution!

Deep Inelastic Scattering with Polarized Leptons:

Demonstration of the chiral structure of electroweak interactions

84

Charged Current Cross Section

$$\frac{d^2 \sigma^{CC}(e^{\pm}p)}{dx dQ^2} = (1 \pm P_e) \frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \tilde{\sigma}_{CC}^{e^{\pm}p}$$
CC reduced cross section

e⁺/e⁻ sensitive to different quark densities:

$$ilde{\sigma}_{CC}^{e^+p} = x \left[ar{u} + ar{c}
ight] + (1 - y)^2 x \left[d + s
ight]$$
 $ilde{\sigma}_{CC}^{e^-p} = x \left[u + c
ight] + (1 - y)^2 x \left[ar{d} + ar{s}
ight]$

CC gives sensitivity to different combinations of quarks as NC.

Polarized Charged Current cross section

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010

86

Total Charged Current Cross Section

ZEUS and H1 in agreement with SM

Polarised CC Cross Sections

Predictions of SM give good description of data

Neutral Current Cross Section

$$\frac{d^2 \sigma^{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2^{\mp} \mp Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \right] \qquad \begin{array}{l} Y_{\pm} = 1 \pm (1-y)^2 \\ \kappa = \frac{1}{4\sin^2\theta_w \cos^2\theta_w} \frac{Q^2}{Q^2 + M_Z^2} \end{array}$$

Generalized structure functions:

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} + \kappa(-v_{e} \pm P_{e}a_{e})F_{2}^{\gamma Z} + \kappa^{2}(v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})F_{2}^{Z}$$
$$x\tilde{F}_{3}^{\pm} = \kappa(-a_{e} \mp P_{e}v_{e})xF_{3}^{\gamma Z} + \kappa^{2}(2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))xF_{3}^{Z}$$

$$\begin{bmatrix} F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z} \end{bmatrix} = \sum_{q} \begin{bmatrix} e_q^2, 2e_q v_q, v_q^2 + a_q^2 \end{bmatrix} x(q + \bar{q})$$
$$\begin{bmatrix} xF_3^{\gamma Z}, xF_3^{Z} \end{bmatrix} = \sum_{q} \begin{bmatrix} e_q a_q, v_q a_q \end{bmatrix} 2x(q - \bar{q})$$

Polarized NC measurements

The charge dependent polarization asymmetries in neutral currents \rightarrow direct measure of EW effects

Polarization asymmetries (A) sensitive to ratio of γZ interference term to F_2 A is proportional to $a_e v_q$ combination

$$A \pm = \frac{2}{P_R - P_L} \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)} \simeq \mp \kappa a_e \frac{F_2^{\gamma Z}}{F_2}$$

neglecting Z term, the generalized structure function F_2 is expressed:

$$\begin{split} \tilde{F}_2^{\pm} &\approx F_2^{\gamma} + \kappa (-v_e \pm P_e a_e) F_2^{\gamma Z} \\ \text{At LO:} \ \ F_2^{\gamma Z} &= x \sum_q 2e_q v_q (q + \bar{q}) \end{split}$$

Data well described by SM

Combined EW and QCD Fits

Extend NLO QCD fits of NC/CC HERA data to fit also the light u and d couplings to Z H1: a'la HERAPDF1.0 NLO QCD fit ZEUS: a'la ZEUS-JETS NLO QCD fit $a_q = I_q^3 \rightarrow (a_u = +1/2; a_d = -1/2)$ Z a_q, v_q

Summary

What have we learnt from DIS in the last 30 -35years?

- Verified the basic idea of QPM
- Established QCD as the theory of the strong interaction
- Measurement of essential parameters: Parton
 Distribution Functions, αs(MZ) and the running of α_s
- Discovery of neutral currents
- Vivid demonstration of the unification of weak interaction and electromagnetism at high Q2
- Verification of the chiral structure of electroweak interactions (polarized cross sections)

Final Remarks

There are many other DIS physics topics I did not cover here.

- Electoweak physics (?)
- Jet physics (algorithms, substructure, running of α_s , ...)
- Polarized DIS (polarized targets)
- Diffraction, Exclusive Vector Meson production
- low Q² physics, transition to non-perturbative QCD
- Beyond the SM searches
- Future machines (LHeC)

New fixed target experiments High x, nuclear corrections,...

• ...

Some health warnings:

- Most of what I talked about is a leading-order picture. In practice, most things are done at least to next-to-leading order. At NLO, the interpretation of the results are not as straight-forward.
- Many people worry about whether we are not missing something fundamentally with the picture of DGLAP equations.
 - Much of the data are at very low x: DGLAP is a lnQ^2 approximation. Why aren't ln(1/x) terms important...or are they? \rightarrow BFKL equations.
 - The density of the partons, especially that of the gluons is getting very high. When and where should we worry about "shadowing", "gluon recombination" etc.
 - The idea of incoherence of partons may be breaking down in some kinematic regions: phenomenon of "hard diffraction" is difficult to understand in terms of partons without correlations to each other.

χ^2 Definition

$$\chi^{2}_{\exp}(M^{i,\operatorname{true}},\Delta\alpha_{j}) = \sum_{i} \frac{\left[M^{i,\operatorname{true}} - \left(M^{i} + \sum_{j} \frac{\partial M^{i}}{\partial \alpha_{j}} \Delta\alpha_{j}\right)\right]^{2}}{\sigma_{i}^{2}} + \sum_{j} \frac{\Delta\alpha_{j}^{2}}{\sigma_{\alpha_{j}}^{2}}$$

measured central values

 $M^{-i} \sigma_i$ statistical and uncorrelated systematic uncertainties

 $\frac{\sigma_{\alpha_j}}{\partial M_i}$ correlated uncertainty $\frac{\partial M_i}{\partial \alpha_j}$ Sensitivity of the data to the systematic source *j*

 $M^{i,\text{true}}$ Fitted H1-ZEUS combined cross section

 $\frac{\partial M^{i}}{\partial \alpha_{i}} \Delta \alpha_{j}$ Fitted shift of the /data due to the systematic source j

If $\Delta \alpha_i = 0$ it coincides with a standard average

Caution: Most errors are provided as relative errors, a smaller value of cross section has smaller absolute error bias toward smaller averages Can be avoided by modified χ^2 definition: insert $M^{i,true}$

Modified χ^2 definition

Caution: Most errors are provided as relative errors, a smaller value of cross section has smaller absolute error, bias toward smaller averages Can be avoided by modified χ^2 definition:

$$\chi^{2}_{\exp}\left(M^{i,\text{true}},\Delta\alpha_{j}\right) = \sum_{i} \frac{\left[M^{i,\text{true}} - \left(M^{i} + \sum_{j} \frac{\partial M^{i}}{\partial \alpha_{j}} \frac{M^{i,\text{true}}}{M^{i}} \Delta\alpha_{j}\right)\right]^{2}}{\left(\sigma_{i} \frac{M^{i,\text{true}}}{M^{i}}\right)^{2}} + \sum_{j} \frac{\Delta\alpha_{j}^{2}}{\sigma_{\alpha_{j}}^{2}}$$

Normalization uncertainty is clearly a relative (multiplicative).

Are other systematic errors as additive or multiplicative errors?
Choice of best treatment is debatable. Does it matter?
Impact is mostly negligible, except at very large Q2 and x where statistical errors and fluctuation are largest.

How to deal with this freedom in systematic error treatment? \rightarrow Additional correlated uncertainty of averaged data points

F_2 at medium Q^2

New measurement (L = 22pb⁻¹, 2000) combined with published results (96/97)

 $s_r \sim F_2 (12 < Q^2 < 150 \text{GeV}^2, y < 0.6)$

impressive accuracy 1.3 - 2%

NC Measurement at low Q²

•Measurement presented as effective γ*p cross section

 precision of combined measurements better than 2%

 Smooth transition from perturbative to non-perturbative regime at Q² ~ 1GeV²

Total Photon-Proton Cross Section

Diffraction: A New Class of Events at HERA

LPS

FPS

100

Diffraction: Further "constituents" in the proton?

Diffractive vs Inclusive DIS: x-dependence β (Diff. DIS) \Leftrightarrow x (DIS)

weak dependence on β , similar to the photon (few partons ?)

Partonic Structure of Diffraction

