Jet Physics

Kenichi Hatakeyama

畠山 賢一

CTEQ - MCnet Summer School Lauterbad (Black Forest), Germany 26 July - 4 August 2010

Contents

- Introduction
 - What are jets?
 - QCD
 - History of Jets
 - Jet physics motivation
 - □ e⁺e⁻
 - 🛛 ер
 - Hadron collider
- Jet algorithms
- Jet reconstruction and calibration
 - Detector response for jets
 - Jet energy correction

- □ Jet production
 - Inclusive jets
 - New physics search with jets
 - Jet fragmentation
 - Underlying event
 - Boson+jets
 - Diffraction and exclusive production
- Jet commissioning and preparation at the LHC
 - Jet plus track and particle flow jet reconstruction
 - Boosted jets for Higgs and new physics searches
- □ Final remarks

Yesterday's Summary

□ Jets play important roles in various aspects of particle physics

- **QCD** studies: quark/gluon properties, QCD SU(3) structure, α_s , PDF, etc
- And searches for Higgs and physics beyond the Standard Model
 - □ As a signal or as a background source
- After many years of work, jet algorithms are quite established now
 - Infrared and collinear safe algorithms are available that work well for both experimentalists and theorists
 - Features of each algorithm is now well understood
- Jet energy calibration takes a lot of effort
 - The experience from the Tevatron greatly benefits LHC experiments
- Inclusive jet production at HERA (and Tevatron)
 - Provide important information for α_s and PDF

Inclusive Jet Production in pp(pp)

- \Box Test pQCD at highest Q².
- Unique sensitivity to new physics
 - Compositeness, new massive particles, extra dimensions, ...
- Constrain PDFs (especially high-gluons)
- \square Measure α_s

A Little History

Forward (High |y|) Jets

Forward jets probe high-x at lower Q^2 (= $-q^2$) than central jets

- Q² evolution given by DGLAP
- Essential to distinguish PDF and possible new physics at higher Q²
- □ Also, extend the sensitivity to lower x

Inclusive Jet Cross Section Measurement

- Challenges:
 - Triggering
 - Jet energy scale
 - Unfolding
 - Corrections for non-perturbative effects

Inclusive Jets at CDF

The measurement spans over 8 orders of magnitude in cross section

- A single trigger (online event selection) system cannot cover all
- Use different trigger samples
 - Trigger on single jets with different Pt thresholds and prescales
- Full Pt spectrum combined from seven different triggers

Inclusive Jets at CDF: Unfolding

- Unfolding correction accounts for finite jet energy resolution
 - Jets move in and outside a pt and y bin due to a finite resolution
 - A steeply falling spectrum gets gets affected
- □ There are several unfolding techniques:
 - Bin corrections
 - Regularized matrix inversion
 - Bayesian unfolding
- Used the bin correction method
 - Take a "true distribution" from MC
 - Smear it with full detector simulation
 - Reweight MC
 - Take the ratio of true / smeared in each bin - apply to data

Inclusive Jet Cross Section

Results with Kt alorithm PRD 75, 092006 (2007)

- **Test pQCD over 8 order of magnitude in d\sigma^2/dp_T dy**
- Highest p_T^{jet} > 600 GeV/c: shortest distance scale soon to be surpassed...

UE & Hadronization Correction

- Currently-available state-of-the-art next-toleading-order QCD predictions do not take into account:
 - J Underlying event (UE)
 - **Hadronization**

These effects are estimated using Monte Carlo event generator (Pythia) tuned to data.

UE & Hadronization Correction

Currently-available state-of-the-art next-toleading-order QCD predictions do not take into account:

- **1** Underlying event (UE)
- **Hadronization**

These effects are estimated using Monte Carlo event generator (Pythia) tuned to data.

UE & Hadronization Correction

Currently-available state-of-the-art next-toleading-order QCD predictions do not take into account:

- **1** Underlying event (UE)
- **Hadronization**

These effects are estimated using Monte Carlo event generator (Pythia) tuned to data.

May 11, event

Theoretical Predictions

- □ The best available theoretical predictions for inclusive jet cross sections at pp & ep are from next-to-leading order (NLO) pQCD
 - S. Ellis, Z. Kunszt, and D. Soper, PRL 64, 2121 (1990).
 - W. Giele, E. Glover, and D. Kosower, NPB 403, 633 (1993).
 - Z. Nagy, PRD 68, 094002 (2003).

- Next-to-next leading order pQCD predictions have been in "will come soon" for quite some years.
 - 2-loop (O(α_s^4)) term from threshold corrections (N. Kidonakis, J. F. Owens, PRD 63, 054019) is available and used in some analysis

Inclusive Jet Cross Section

- Run II Tevatron measurements are in agreement with NLO predictions
 - Both in favor of somewhat softer gluons at high-x
- Experimental uncertainties: smaller than PDF uncertainties
- Used in recent global QCD fits

Midpoint: R=0.7, f_{merge}=0.75

.

Cone versus Kt Algorithm Results

Cone algorithm tend to merge two energetic clusters with large separation (>R_{cone}=D) more than the k_T algorithm.

- Non-pertubative (UE+hadronization) effects
 larger for the k_T algorithm
 - σ(k_T) ~ σ(cone) at the hadron level.

Measured $\sigma(k_T) / \sigma(\text{cone})$ in general agreement with the expecation. Robust data-theory comparisons

PDF with Recent Tevatron Jet Data

Tevatron Run II data lead to softer high-x gluons (more consistent with DIS data)

Inclusive Jets at the LHC

ATLAS-CONF-2010-050

□ Jet energy scale uncertainty 5-10% range (c.f. 1-3% at the Tevatron)

Strong Coupling Constant

$$\sigma_{jet} = (\sum_{n} \alpha_{s}^{n} \boldsymbol{c}_{n}) \otimes f_{1}(\alpha_{s}) \otimes f_{2}(\alpha_{s})$$

- Only data points at 50 < p_T < 145 GeV/c which do not have much contributions to PDF (x<~0.2) - avoid dependence on PDF
- □ MSTW2008NNLO PDFs (EPJC 64,653) $[\alpha_s(Mz)=0.107-0.127 (21 \text{ sets})]$
- □ NLO + 2-loop threshold corrections
- □ Extend HERA (& e^+e^-) results to high Pt (highest scale α_s so far)

3.5-4.2% precision

New Physics Searches with Jets

Dijet Mass Resonance Search

Dijet Resonances are predicted in many new physics models.

quark models by a factor ~25 (due to

color, spin and chirality effects)

Dijet Mass Spectrum

Phys. Rev. D 79, 112002 (2009)

January 18, 2010

Results from the LHC

Resonance Mass [GeV]

Similar analyses at the LHC already started to surpass the Tevatron mass exclusions with ~300 nb⁻¹
 See lecture q* mass limit: 870 GeV from CDF, 1.29 TeV from ATLAS by K. Rabbertz

Dijet Angular Distribution

Variable: $\chi_{dijet} = \exp(|y_1 - y_2|)$ at LO, related to CM scattering angle $\chi_{dijet} = \frac{1 + \cos \theta *}{1 - \cos \theta *}$

QCD scattering ~ flat in χ_{dijet}

New physics, like

- quark compositeness
- extra spatial dimensions (LED)
- → Peak centrally (low χ_{dijet})
- $\frac{1}{\sigma} \frac{u\sigma}{d\chi_{dijet}}$: Normalized distribution (reduce experimental and theoretical uncertainties)

Dijet Angular Distribution

dσ $\sigma \textit{d}\chi_{\textit{dijet}}$

: Normalized distribution (reduce experimental and theoretical uncertainties)

TeV-1 ED

Results from the LHC

 $\square LHC will become competitive with the Tevatron limit of \Lambda > 2.8 TeV (D0, 1fb-1) with 4 pb⁻¹$ See lecture

Jet Fragmentation

Particle Multiplicities in Quark & Gluon Jets

- Difference of particle multiplicities in gluon and quark jets r = Nch(gluon jet) / Nch(quark jet): Naive expectation = $C_A/C_F = 9/4$
- Calculations (for partons):
 - various extensions of NLLA: r=1.5-1.7 (depends on Q=E_{jet}θ_{cone}) (differ from 9/4 due to higher order corrections & energy conservation)
- Data: 15+ papers from e+e
 - r=1.0-1.5 (not all consistent)
- **CDF** analysis:
 - Dijet events with M_{jj}~100 GeV gluon jet fraction ~ 60%
 - γ-jet events with M_{γj}~100 GeV
 gluon jet fraction ~ 20%
 - Measure N_{jj} and N_{γj} inside
 15-30° cone around jet axis
 - Resolve for N_g , N_q and their ratio: $r \sim 1.6\pm0.2$

Jet Shape: Energy Flow Inside a Jet

Integrated jet shape: the average fraction of jet Pt that lies inside a cone of radius r concentric to the jet axis

- Give insights into the transition between the parton produced in the hard process and the observed spray of hadrons
- □ Sensitive to quark / gluon jet differences
- Proper modeling of particle composition, multiplicity, momentum distribution is critical for e.g. jet response modeling in MC:

2 hadronc with Pt=50 GeV/c \neq 20 hadrons with Pt=5 GeV

due to calorimeter non-linearity

Jet Shape - Gluon vs Quark Jets

Gluon jets are broader than quark jets

Jet Shape - Jet Pt Dependence

- More quark jets at higher Pt in inclusive jet production
- □ Jets of the same flavor are becoming more collimated at high Pt due to running of α_s

July 26 - August 4, 2010

П

Jet Shape - MC Tunes

Sensitive to MC parton shower and underlying event model tunings

Jet Shape - MC Tunes

Sensitive to Monte Carlo parton shower and underlying event model tunings

- Cluster frag. (Herwig), string frag. mass & Pt ordered (Pythia), ...
- Different underlying event tunes

Jet Shape - LHC

Need more work on systematic uncertainties to become sensitive to different underlying event tunes

See lecture by K. Rabbertz

Underlying Event

Underlying Event

everything except hard scatter

- □ NOT the same as Min-Bias
- Not independent of hard scatter (includes ISR/FSR/MPI)

UE contributes to jets

- Not well understood theoretically (non-perturbative contributions)
- □ Good model essential for jet physics
Underlying Event

everything except hard scatter

Jet production:

- Transverse region sensitive to UE
- High statistics jet sample
- □ Studies in various dijet topologies

Drell-Yan production:

- Transverse and toward regions (excluding lepton-pairs) sensitive to UE
- Cleaner environment (Z/γ* carries no color)
- Limited statistics

Underlying Event in Jet Events

- Charged tracks with Pt>0.5 GeV & $|\eta|<1$
- Tuned PYTHIA (Tune A) doing "ok" generally
- TransMAX: "soft" and "semi-hard" components
- **TransMIN:** dominated by "soft" component
- TransDIF = TransMAX-TransMIN : sensitive to the semi-hard component of UE. Well described by Tuned PYTHIA (w/ multiple parton interactions)

Underlying Event in Jet Events

- Now, looking at all particles including neutrals (instead of charged particles only with p_T>0.5 GeV/c)
- Similar trend observed

UE in DY and Jet Production

<u>Comparisons between jet and</u> <u>Drell-Yan production:</u>

- Similar trend in jet and DY events: UE universality!
- Tuned Pythia describe data reasonably well.

Underlying Event: Tevatron \rightarrow LHC

Extrapolation to the LHC energy has been rather ambiguous

- Large model dependence on LHC predictions from Tevatron data
- PYTHIA models favour ln²(s); PHOJET suggests a ln(s) dependence.

July 26 - August 4, 2010

Results from the LHC

- □ New results are becoming available from the LHC
- Pythia tunes describe the gross features of the data but often fail in details
- Phojet MC underestimates the UE at 7 TeV
- The LHC measurements as well as Tevatron and RHIC measurements will help in understanding the properties of UE and multiple parton interactions

by J. Grosse-Oetringhaus

W/Z + Jets

W/Z+Jets Production

- W/Z+jets are critical for physics at the Tevatron and LHC: top, Higgs, SUSY, and other BSM
- □ NLO pQCD calculations are available up to >=2(3) jets
- □ Many Monte Carlo tools are available
 - LO + Parton shower Monte Carlo (Pythia, Herwig,)
 - Matched tree level matrix element + parton shower Monte Carlo (Alpgen, Sharpa,)
- These calculations and tools need "validation" by experimental measurements

Z + (1, 2, 3) Jets

See lecture by J. Owen

Testing Monte Carlo Models: favor Alpgen with low scale

Leading jet in Z + jet + X

Second jet in Z + 2jet + X

Third jet in Z + 3jet + X

Phys. Lett. B 669, 278 (2008), arXiv:0903.1748, arXiv:0907.4286 See also W+jets, CDF, Phys. Rev. D 77, 011108(R).

Diffractive Dijet and Exclusive Dijet Production

Diffractive Scattering

- We usually study so-called non-diffractive events, in which both incoming hadrons break up.
- In a significant fraction pp(bar) events, both hadrons (elastic) or one hadron (diffractive) stays intact (escape in beampipe)
- Cannot apply perturbation theory (no hard scale)
- **Study diffractive events containing high Pt jets (diffractive jets)**

July 26 - August 4, 2010

Diffractive Dijet Production

Use high Pt jets as a probe to П determine the partonic structure of the diffractive exchange (F^D_{ii})

- Diffractive dijet cross section
 - $\sigma(\overline{p}p \to \overline{p}X) \approx F_{jj} \otimes F_{jj}^{D} \otimes \hat{\sigma}(\to jj)$

+ CDF data

E^{jet1,2} ≥ 7 GeV

 $|t| \le 1.0 \text{ GeV}^2$

DIS

 $0.035 \le \xi \le 0.095$

Compare with diffractive PDF from diffractive DIS

0.1

p (P)

p (P')

breakdown for diffraction

ß

Diffractive Structure Function

□ Measure F_{jj}^{D} in double pomeron exchange (DPE) dijet production (both p and pbar stay intact)

- Single diffractive dijet is suppressed (factor~10) in hadron-hadron collisions, but double pomeron process has no "extra" suppression
- Fit to "rapidity gap survival probability" models
 - Suppression due to soft particle re-scattering spoil the diffractive signature

Exclusive Higgs / Dijet Production

Exclusive Higgs production?

- Event consists of nothing but leading protons and Higgs
- Will allow accurate Higgs properties from protons @ LHC
- Exclusive Higgs production too rate at the Tevatron, but can test/calibrate exclusive production model with dijet production

Exclusive Higgs

Exclusive Dijet

Observation of Exclusive Dijet

Search strategy:

CDF, PRD 77, 052004 (2008) Also DØ Note 6042-CONF (2010)

Observation of Exclusive Dijet

- Search strategy:
 - Reconstruct dijet mass fraction :

 $R_{jj} = M_{jj} / M_x$

Look for enhancement at high R_{ii} ~ 1

At the LHC:

- Expected SM exclusive Higgs cross section is ~ 3fb (much higher in certain MSSM scenarios)
- The forward proton detectors (FP420/HPS/AFP) have been proposed/planned to explore this channel
- Can allow accurate mass determination and spin.

ICD.

GeVI

Run Number: 208856

Event Number: 50853397 M_. = 125 GeV

 $\Delta = 0.93$

σ_{jj}^{exci} (R_j>0.8) (pb) 0 0, 00 0 0, 00

10⁻¹

More News on Jets from the LHC

Jet Plus Track (JPT) Jets

- Jets have been primarily measured by the calorimeters
- □ Main idea: Improve using tracks
 - Tracking system measure charged hadrons better than calorimeter (in-calo-cone tracks)
 - Recover also charged hadrons leaking outside the jet area (outof-calo-cone tracks)
 - Similar techniques in OPAL, H1, CDF, ...

- □ Algorithm:
 - Subtract average expected response of in-calo-cone tracks from calorimeter measurement and add tracks
 - Add momentum of "out-of-cone" tracks

- Basic idea:
 - Reconstruct and identify all different types of particles
 - Apply corresponding calibrations
 - The list of "particles" is given to the jet clustering algorithm

~1% at 100 GeV

July 26 - August 4, 2010

Use HCAL Granularity: 0.1 ($\Delta\eta \times \Delta\phi$) Energy resol: ~100%/ \sqrt{E}

Particles clustered in jets

Jet

Charged hadron (solid) Photon (dashed line)

Neutral hadron (dotted line)

JPT and PF Jets Performance

JPT jets and especially PF jets improve both jet response and resolution significantly

July 26 - August 4, 2010

Jet Substructure in Higgs & New Physics Searches

- Basic idea: At LHC, even ~m_{EW} or >m_{EW} particles are often highly boosted, and they produce a single massive jet. Identify them by looking at subjets.
- Discussed in many literatures:
 - Z. Phys. C62 (1994) 127; Seymour
 - Comput.Phys.Commun.153(2003)85; Butterworth, Cox, Forshaw
 - arXiv:0802.2470; Butterworth, Davison, Rubin, Salam
 - arXiv:0806.0023; Thaler and Wang
 - arXiv:0806.0848; Kaplan, Rehermann, Schwartz, Tweedie
 - arXiv: 0903.5081; Ellis, Vermilion, Walsh
 - and many others

New Physics Search in Boosted Top-Jets

- TTbar resonances often appears in BSM models (Randall-Sundrum Kaluza-Klein gluons, Z', etc)
- Top quark has the largest branching fraction in all hadronic channel (46%)

- □ If the new particle is heavy, "boosted" tops will create a single jet
 → dijet events
- □ Can we detect them? How can we suppress the huge QCD BG?
 - Discriminate top from non-top based on subjets
 - Use # of subjets, top mass
 (3-jet mass) & W mass
 (2-jet mass) as discriminant

arXiv:0806.0848; Kaplan, Rehermann, Schwartz, Tweedie, CMS EXO-09-002

July 26 - August 4, 2010

New Physics Search in Boosted Top-Jets

- Procedure:
 - Find "hard jets" with the Cambridge-Aachen algorithm (R=0.8, Pt>250 GeV, |y|<2.5)</p>
 - Reverse the clustering sequence
 - □ throw out soft cluster (Pt fraction<0.05).
 - CA algo is favorable in this step.
 - Find 3 or 4 hard subjets? Take highest 3 subjets.
 - Subjet masses? (without b-tagging information)
 - Efficiency 46% for Pt>0.6-0.7 TeV
 - With ~200 pb-1, start to be sensitive realistic BSM scenarios

W

July 26 - August 4, 2010

CTEQ Summer School 2010

Boosted Higgs

- Higgs search in the WH channel, which is most sensitive channel for low mass Higgs at the Tevatron, "has been" considered challenging at the LHC.
 - Overwhelming W/Z background \rightarrow Little sensitivity (S/B~1%)
- Working with boosted Higgs brought a hope to this channel (H and W/Z Pt>200 GeV)
- In contrast to the boosted top case, b-tagging is critical. Need a good btagging in the boosted environment

Summary & Remarks

- Jet results at the Tevatron have reached high precision, and provided critical information on
 - PDF
 - α_{s}
 - Monte Carlo tunings

All Tevatron experience benefits LHC physics

- □ LHC started to deliver physics results with jets
 - Rich QCD program planned at LHC has just started
- Jets play important roles in Higgs and new searches both as a part of signal and as an important background to be understood
 - New physics might be around the corner !

Acknowledgement

Many thanks to:

N. Valeras, B. Gary, M. Zielinski, C. Glasman, J. Houston, S. Rapoccio, F. Beaudette, A. Bhatti, Ia Iashivili, A. Korytov, G. Salam, M. Seymour, M. Albrow and others

Backup

Tevatron \rightarrow **LHC Parton Kinematics**

July 26 - August 4, 2010

CTEQ Summer School 201 From J. Stirling (U. Durham) 68

Inclusive Jets with k_T Algorithm

SISCone Vs Midpoint

 SISCone is preferred theoretically due to infrared and collinear safety at all orders of pQCD (Midpoint only up to NNLO)

- No explicit jet cross section measurement with SISCone at the Tevatron, but a MC study was performed
- Differences of a few percent at the particle level reduces to ~1% at the parton level
 - Negligible effect

Dijet Angular Distribution PRL. 94, 221801 (2005)

- Azimuthal angle between the two leading jets
 - Sensitive to higher order radiation w/o explicitly measuring radiated jets
- **Shape Analysis:** 1 $d\sigma$

 $\sigma_{dijet} \ d\Delta \phi$

- Less sensitive to theoretical (hadronization, underlying event) and experimental (JEC, luminosity) uncertainties
- Test of pQCD predictions
- Important for e.g. tuning MC parameters (ISR)

Dijet Angular Distribution PRL. 94, 221801 (2005)

- Azimuthal angle between the two leading jets
 - Sensitive to higher order radiation w/o explicitly measuring radiated jets
- **Shape Analysis:** 1 $d\sigma$

 $\sigma_{dijet} \ d\Delta \phi$

Less sensitive to theoretical (hadronization, underlying event) and experimental (JEC, luminosity) uncertainties

Test of pQCD predictions
 Important for e.g. tuning MC parameters (ISR)

Results from the LHC See lecture by K. Rabbertz

Comparisons between preliminary data and different models show good agreement with Pythia & Herwig, but less agreement with MadGraph at low Pt

July 26 - August 4, 2010

#1: Our tool

The Cambridge/Aachen jet alg.

Dokshitzer et al '97 Wengler & Wobisch '98

Work out $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2$ between all pairs of objects *i*, *j*; Recombine the closest pair; Repeat until all objects separated by $\Delta R_{ij} > R$. [in FastJet]

Gives "hierarchical" view of the event; work through it backwards to analyse jet

Cam/Aachen algorithm

Allows you to "dial" the correct R to keep perturbative radiation, but throw out UE

#2: The jet analysis

Start with high-pt jet

- 1. Undo last stage of clustering (\equiv reduce R): $J \rightarrow J_1, J_2$
- 2. If $max(m_1, m_2) \lesssim 0.67m$, call this a mass drop [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.

3. Require $y_{12} = \frac{\min(p_{t1}^2, p_{t2}^2)}{m_{12}^2} \Delta R_{12}^2 \simeq \frac{\min(z_1, z_2)}{\max(z_1, z_2)} > 0.09$ [else goto 1] dimensionless rejection of asymmetric QCD branching

4. Require each subjet to have *b*-tag [else reject event] Correlate flavour & momentum structure

#3: jet filtering

At moderate p_t , R_{bb} is quite large; $UE \& pileup \ degrade \ mass \ resolution$ $\delta M \sim R^4 \Lambda_{UE} \frac{p_t}{M}$ [Dasgupta, Magnea & GPS '07]

Filter the jet

- Reconsider region of interest at smaller $R_{filt} = \min(0.3, R_{b\bar{b}}/2)$
- Take 3 hardest subjets b, \bar{b} and leading order gluon radiation

End