
CTEQ-MCnet School 2010
Lauterbad, Germany

26 July - 4 August 2010

Introduction to
Monte Carlo Event Generators

Torbjörn Sjöstrand
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1. (today) Introduction and Overview; Monte Carlo Techniques

2. (today) Matrix Elements; Parton Showers I

3. (tomorrow) Parton Showers II; Matching Issues

4. (tomorrow) Multiple Parton–Parton Interactions

5. (Wednesday) Hadronization and Decays; Generator Status



Disclaimer 1

These lectures will not cover:

⋆ Heavy-ion physics:
• without quark-gluon plasma formation, or
• with quark-gluon plasma formation.

⋆ Specific physics studies for topics such as
• B production,
• Higgs discovery,
• SUSY phenomenology,
• other new physics discovery potential.

They will cover the “normal” physics that will be there
in (essentially) all LHC pp events, from QCD to exotics:
⋆ the generation and availability of different processes,
⋆ the addition of parton showers,
⋆ the addition of an underlying event,
⋆ the transition from partons to observable hadrons, plus
⋆ the status and evolution of general-purpose generators.



Disclaimer 2

ICHEP is on in Paris, with many new LHC results announced.

At this school there will be four experimental talks on first LHC results.
My lectures will help to give background, but show very few LHC plots.



Read More

These lectures (and more):
http://home.thep.lu.se/∼torbjorn/ and click on “Talks”

Peter Skands, European School of High Energy Physics, June 2010:
http://home.fnal.gov/∼skands/slides/

Many presentations at the MCnet Summer School, Lund, July 2009:
http://conference.ippp.dur.ac.uk/

conferenceOtherViews.py?view=ippp&confId=264#2009-07-01

Many presentations at the CTEQ–MCnet Summer School, Aug 2008:
http://conference.ippp.dur.ac.uk/

conferenceOtherViews.py?view=ippp&confId=156

Bryan Webber, MCnet school, Durham, April 2007:
http://www.hep.phy.cam.ac.uk/theory/webber/

Peter Richardson, CTEQ Summer School lectures, July 2006:
http://www.ippp.dur.ac.uk/∼richardn/talks/

The “Les Houches Guidebook to Monte Carlo Generators
for Hadron Collider Physics”, hep-ph/0403045
http://arxiv.org/pdf/hep-ph/0403045
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Why Generators? (I)
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Figure 2: Top mass distribution for the data (solid histogram), the W+jets back-ground (dots), and the sum of background + Monte Carlo t�t for Mtop = 175 GeV/c2(dashed). The background distribution has been normalized to the 1.4 backgroundevents expected in the mass-�t sample. The inset shows the likelihood �t used todetermine the top mass. 15
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Why Generators? (II)

• Allow theoretical and experimental studies of
complex multiparticle physics

• Large flexibility in physical quantities that can be addressed

• Vehicle of ideology to disseminate ideas
from theorists to experimentalists

Can be used to

• predict event rates and topologies
⇒ can estimate feasibility

• simulate possible backgrounds
⇒ can devise analysis strategies

• study detector requirements
⇒ can optimize detector/trigger design

• study detector imperfections
⇒ can evaluate acceptance corrections



A tour to Monte Carlo

. . . because Einstein was wrong: God does throw dice!
Quantum mechanics: amplitudes =⇒ probabilities

Anything that possibly can happen, will! (but more or less often)



The structure of an event

Warning: schematic only, everything simplified, nothing to scale, . . .

p
p/p

Incoming beams: parton densities
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Hard subprocess: described by matrix elements
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Resonance decays: correlated with hard subprocess
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Initial-state radiation: spacelike parton showers
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Final-state radiation: timelike parton showers



p
p/p

u
g

W+

d

c s

Multiple parton–parton interactions . . .



p
p/p

u
g

W+

d

c s

. . . with its initial- and final-state radiation



Beam remnants and other outgoing partons



Everything is connected by colour confinement strings

Recall! Not to scale: strings are of hadronic widths



The strings fragment to produce primary hadrons



Many hadrons are unstable and decay further
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2Plenary ECFA, Frascati

These are the particles that hit the detector



The Monte Carlo method

Want to generate events in as much detail as Mother Nature
=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σfinal state = σhard processPtot,hard process→final state

(appropriately summed & integrated over non-distinguished final states)

where Ptot = PresPISRPFSRPMIPremnantsPhadronization Pdecays

with Pi =
∏

j Pij =
∏

j
∏

kPijk = . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )

LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)
=⇒ several thousand choices

(of O(100) different kinds)



Generator Landscape

Hard Processes
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specialized often best at given task, but need General-Purpose core



The Bigger Picture

Process Selection

Resonance Decays

Parton Showers

Multiple Interactions

Beam Remnants

Hadronization

Ordinary Decays

Detector Simulation

ME Generator

ME Expression

SUSY/. . .
spectrum

calculation

Phase Space

Generation

PDF Library

τ Decays

B Decays

need standardized interfaces (LHA/LHEF, LHAPDF, SUSY LHA, HepMC, . . . )



PDG Particle Codes

A. Fundamental objects

1 d 11 e− 21 g
2 u 12 νe 22 γ 32 Z′0

3 s 13 µ− 23 Z0 33 Z′′0

4 c 14 νµ 24 W+ 34 W′+

5 b 15 τ− 25 h0 35 H0 37 H+

6 t 16 ντ 36 A0 39 Graviton

add − sign for
antiparticle,
where appropriate

+ diquarks, SUSY,
technicolor, . . .

B. Mesons
100 |q1| + 10 |q2| + (2s+ 1) with |q1| ≥ |q2|
particle if heaviest quark u, s, c, b; else antiparticle

111 π0 311 K0 130 K0
L 221 η0 411 D+ 431 D+

s

211 π+ 321 K+ 310 K0
S 331 η′0 421 D0 443 J/ψ

C. Baryons
1000 q1 + 100 q2 + 10 q3 + (2s+ 1)

with q1 ≥ q2 ≥ q3, or Λ-like q1 ≥ q3 ≥ q2

2112 n 3122 Λ0 2224 ∆++ 3214 Σ∗0

2212 p 3212 Σ0 1114 ∆− 3334 Ω−



Monte Carlo Techniques

• Random Numbers
• Spatial Problems & Methods
• Temporal Problems & Methods

Buffon’s needles

empty



Random Numbers

Monte Carlos assume access to a good random number generator R:
(i) inclusively R is uniformly distributed in 0 < R < 1

(ii) there are no correlations between R values along sequence

Radioactive decay ⇒ true random numbers
Computer algorithms ⇒ pseudorandom numbers

Many (in)famous pitfalls:
• short periods
• Marsaglia effect: multiplets along hyperplanes
⇒ do not trust “standard libraries” with compiler

Recommended:

• Marsaglia–Zaman–Tsang (RANMAR), improved by Lüscher (RANLUX):
can pick ∼ 900,000,000 different sequences, each with period > 1043

but state is specified by 100 words (97 double precision reals, 3 integers)

• l’Ecuyer (RANECU):
can pick 100 different sequences, each with period > 1018, by two seeds



Spatial vs. Temporal Problems

“Spatial” problems: no memory
1) What is the land area of your home country?
+ Pick a point at random, with equal probability on this area.
2) What is the integrated cross section of a process?
+ Pick an event at random, according to the differential cross section.

“Temporal” problems: has memory
1) Traffic flow: What is probability for a car to pass a given point
at time t, given traffic flow at earlier times?
Lumping from red lights, antilumping from finite size of cars!
2) Radioactive decay: what is the probability for a radioactive nucleus
to decay at time t, gven that it was created at time 0?
3) What is the probability for a parton to branch at
a “virtuality” scale Q, given that it was created at a scale Q0?

In particle physics normally combined;
temporal evolution, but with spatial integral at each time:
What is the probability for a parton to branch at Q,
with daughters sharing the mother momentum some specific way?



Spatial Methods

Assume function f(x),
studied range xmin < x < xmax,
where f(x) ≥ 0 everywhere
(in practice x is multidimensional)

x

y

xmin xmax
0

f(x)

Two standard tasks:

1) Calculate (approximatively)
∫ xmax

xmin

f(x′) dx′

usually: integrated cross section from differential one

2) Select x at random according to f(x)
usually: probability distribution from quantum mechanics,
normalization to unit area implicit

Note n-dimensional integration ≡ n+ 1-dimensional volume:
∫

f(x1, . . . , xn) dx1 . . .dxn ≡
∫ ∫ f(x1,...,xn)

0
1dx1 . . .dxn dxn+1



Selection of x according to f(x)
is equivalent to uniform selection of (x, y) in the area
xmin < x < xmax, 0 < y < f(x)

since P(x) ∝ ∫ f(x)
0 1dy = f(x)

Therefore
∫ x

xmin

f(x′) dx′ = R
∫ xmax

xmin

f(x′) dx′

x

y

xmin xmax
0

x

f(x)

Method 1: Analytical solution
If know primitive function F(x) and know inverse F−1(y) then

F(x) − F(xmin) = R (F(xmax) − F(xmin)) = RAtot

=⇒ x = F−1(F(xmin) +RAtot)

Proof:
introduce z = F(xmin) +RAtot. Then

dP
dx

=
dP
dR

dR

dx
= 1

1
dx
dR

=
1

dx
dz

dz
dR

=
1

dF−1(z)
dz

dz
dR

=

dF (x)
dx
dz
dR

=
f(x)

Atot



Example 1:
f(x) = 2x, 0 < x < 1, =⇒ F(x) = x2

F(x) − F(0) = R (F(1) − F(0)) =⇒ x2 = R =⇒ x =
√
R

Example 2:
f(x) = e−x, x > 0, F(x) = 1 − e−x
1 − e−x = R =⇒ e−x = 1 −R = R =⇒ x = − lnR

Method 2: Hit-and-miss
If f(x) ≤ fmax in xmin < x < xmax

use interpretation as an area
1) select x = xmin +R (xmax − xmin)

2) select y = Rfmax (new R!)
3) while y > f(x) cycle to 1) x

y

xmin xmaxx
0

fmax

y1

y2

f(x)

accepted

rejected

Integral as by-product:

I =

∫ xmax

xmin

f(x) dx = fmax (xmax − xmin)
Nacc

Ntry
= Atot

Nacc

Ntry

Binomial distribution with p = Nacc/Ntry and q = Nfail/Ntry, so error

δI

I
=
Atot

√

p q/Ntry

Atot p
=

√

q

pNtry
=

√

q

Nacc
−→ 1√

Nacc
for p≪ 1



Method 3: Improved hit-and-miss (importance sampling)
If f(x) ≤ g(x) in xmin < x < xmax

and G(x) =
∫

g(x′) dx′ is simple
and G−1(y) is simple
1) select x according to g(x) distribution
2) select y = Rg(x) (new R!)
3) while y > f(x) cycle to 1)

x

y

xmin xmaxx
0

y1

y2

f(x)

accepted

rejected

g(x)

Example 3:
f(x) = x e−x, x > 0

Attempt 1: F(x) = 1 − (1 + x) e−x not invertible
Attempt 2: f(x) ≤ f(1) = e−1 but 0 < x < ∞
Attempt 3: g(x) = N e−x/2

f(x)

g(x)
=

x e−x

N e−x/2
=
x e−x/2

N
≤ 1

for rejection to work, so find maximum:

d

dx

(

f(x)

g(x)

)

=
1

N

(

1 − x

2

)

e−x/2 = 0 =⇒ x = 2

Normalize so g(2) = f(2) =⇒ N = 2/e



G(x) ∝ 1 − e−x/2 = R

=⇒ x = −2 lnR so
1) select x = −2 lnR

2) select y = Rg(x) = R2e−(1+x/2)

3) while y > f(x) = x e−x cycle to 1)

efficiency =

∫∞
0 f(x) dx
∫∞
0 g(x) dx

=
e

4
x

y

0 1 2 3 4
0

0.25

0.5

0.75

f(x)

g(x)

Attempt 4: pull the rabbit . . .
x = − ln(R1R2)

since with z = z1 z2 = R1R2

F(z) =
∫ z

0
f(z′) dz′

=
∫ z

0
1dz1 +

∫ 1

z

z

z1
dz1

= z − z ln z z1

z2

0 1z
0

1

and using that x = − ln z ⇐⇒ z = e−x

F(x) = 1 − F(z = e−x) = 1 − e−x + e−x (−x) =⇒ f(x) = x e−x



Method 4: Multichannel
If f(x) ≤ g(x) =

∑

i gi(x),
where all gi “nice” (but g(x) not)
1) select i with relative probability

Ai =
∫ xmax

xmin

gi(x
′) dx′

2) select x according to gi(x)
3) select y = Rg(x) = R

∑

i gi(x)

4) while y > f(x) cycle to 1)
x

y

xmin xmax
0

g1(x)

g2(x)g(x)

Example 4:

f(x) =
1

√

x(1 − x)
, 0 < x < 1

g(x) =
1√
x

+
1√

1 − x
=

√
x+

√
1 − x

√

x(1 − x)
,

1√
2
≤ f(x)

g(x)
≤ 1

1) if R < 1/2 then g1(x) else g2(x)

2) g1: G1(x) = 2
√
x = 2R =⇒ x = R2

g2: G2(x) = 2(1 −
√

1 − x) = 2R =⇒ x = 1 −R2



Method 5: Variable transformations
• map to finite x range
• map away singular/peaked regions

Method 6: Special tricks

e.g. f(x) ∝ e−x
2

is not integrable, but

f(x) dx f(y) dy ∝ e−(x2+y2) dxdy

= e−r
2
rdr dφ ∝ e−r

2
dr2 dφ

F(r2) = 1 − e−r
2

=⇒ r2 = − lnR1

x =
√

− lnR1 cos(2π R2)

y =
√

− lnR1 sin(2π R2)

Comment:
In practice almost always multidimensional integrals

∫

V
f(x) dx = V

1

Ntry

∑

i

f(xi) or =

∫

V
g(x) dx

Nacc

Ntry

gives error ∝ 1/
√
N irrespective of dimension

whereas trapezium rule error ∝ 1/N2 → 1/N2/d in d dimensions,
and Simpson’s rule error ∝ 1/N4 → 1/N4/d in d dimensions



Temporal methods: The Veto Algorithm

Consider “radioactive decay”:
N(t) = number of remaining nuclei at time t
but normalized to N(0) = 1 instead, so equivalently
N(t) = probability that (single) nucleus has not decayed by time t
P(t) = −dN(t)/dt = probability for decay at time t

Normally P(t) = cN(t), with c constant, but assume time-dependence:

P(t) = −dN(t)

dt
= f(t)N(t) ; f(t) ≥ 0

Standard solution:

dN(t)

dt
= −f(t)N(t) ⇐⇒ dN

N
= d(lnN) = −f(t) dt

lnN(t)−lnN(0) = −
∫ t

0
f(t′) dt′ =⇒ N(t) = exp

(

−
∫ t

0
f(t′) dt′

)

F(t) =

∫ t
f(t′) dt′ =⇒ N(t) = exp (−(F(t) − F(0)))

N(t) = R =⇒ t = F−1(F(0) − lnR)



What now if f(t) has no simple F(t) or F−1?
Hit-and-miss not good enough, since for f(t) ≤ g(t), g “nice”,

t = G−1(G(0) − lnR) =⇒ N(t) = exp

(

−
∫ t

0
g(t′) dt′

)

P(t) = −dN(t)

dt
= g(t) exp

(

−
∫ t

0
g(t′) dt′

)

and hit-or-miss provides rejection factor f(t)/g(t), so that

P(t) = f(t) exp

(

−
∫ t

0
g(t′) dt′

)

where it ought to have been

P(t) = f(t) exp

(

−
∫ t

0
f(t′) dt′

)

Correct answer is:
0) start with i = 0 and t0 = 0

1) ++i (i.e. increase i by one)
2) ti = G−1(G(ti−1) − lnR), i.e ti > ti−1

3) y = Rg(t)

4) while y > f(t) cycle to 1)

t0

t0 t1 t2t3 t = t4



Proof:
define Sg(ta, tb) = exp

(

− ∫ tb
ta g(t

′) dt′
)

P0(t) = P(t = t1) = g(t)Sg(0, t)
f(t)

g(t)
= f(t)Sg(0, t)

P1(t) = P(t = t2) =

∫ t

0
dt1 g(t1)Sg(0, t1)

(

1 − f(t1)

g(t1)

)

g(t)Sg(t1, t)
f(t)

g(t)

= f(t)Sg(0, t)
∫ t

0
dt1 (g(t1) − f(t1)) = P0(t) Ig−f

P2(t) = · · · = P0(t)
∫ t

0
dt1 (g(t1) − f(t1))

∫ t

t1
dt2 (g(t2) − f(t2))

= P0(t)
∫ t

0
dt1 (g(t1) − f(t1))

∫ t

0
dt2 (g(t2) − f(t2)) θ(t2 − t1)

= P0(t)
1

2

(
∫ t

0
dt1 (g(t1) − f(t1))

)2

= P0(t)
1

2
I2g−f

P(t) =
∞
∑

i=0

Pi(t) = P0(t)
∞
∑

i=0

Iig−f
i!

= P0(t) exp(Ig−f)

= f(t) exp

(

−
∫ t

0
g(t′) dt′

)

exp

(
∫ t

0
dt1 (g(t1) − f(t1))

)

= f(t) exp

(

−
∫ t

0
f(t′) dt′

)



Temporal methods: The Winner Takes It All

Assume “radioactive decay” with two possible decay channels 1 & 2

P(t) = −dN(t)

dt
= f1(t)N(t) + f2(t)N(t)

Alternative 1: use normal veto algorithm with f(t) = f1(t) + f2(t).
Once t selected, pick decays 1 or 2 in proportions f1(t) : f2(t).

Alternative 2: pick t1 according to P1(t1) = f1(t1)N1(t1)

and t2 according to P2(t2) = f2(t2)N2(t2).
If t1 < t2 then pick decay 1, while if t2 < t1 decay 2.

Proof:

P1(t) = (f1(t) + f2(t)) exp

(

−
∫ t

0
(f1(t

′) + f2(t
′)) dt′

)

f1(t)

f1(t) + f2(t)

= f1(t) exp

(

−
∫ t

0
(f1(t

′) + f2(t
′)) dt′

)

= f1(t) exp

(

−
∫ t

0
f1(t

′) dt′
)

exp

(

−
∫ t

0
f2(t

′) dt′
)

Especially convenient when temporal and/or spatial dependence of f1
and f2 are rather different.



Summary Lecture 1

• Event generators indispensable •

• Quantum Mechanics =⇒ probabilities •
⋆ Divide and conquer ⋆

• Main physics components: •
⋆ Hard processes and resonance decays ⋆

⋆ Initial- and final-state radiation ⋆
⋆ Multiple parton–parton interactions and beam remnants ⋆

⋆ Hadronization and decays ⋆

• Monte Carlo Techniques: •
⋆ Use good random number generator ⋆
⋆ Monte Carlo = selection and integration ⋆

⋆ Adapt Monte Carlo approach to problem at hand ⋆
⋆ Multichannel and Veto algorithms common ⋆


