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Lepton Pair Production

S.D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316 (1970)

• Electromagnetic probe of a hadron-hadron process

• compare to

– DIS: E-M probe of a single hadron process

– e+e−: E-M probe of hadron production

• Simple description in terms of the (then new) parton model

• Mass of the pair could be varied to insure that the parton momen-
tum fractions were neither too small nor too large (avoid problems
with x near 0 or 1)
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• Structure of the parton model calculation preserved in the presence
of QCD corrections

• First example of a calculable hadron-hadron process in the context
of the parton model

• Process is of historical interest (2 Nobel prizes)

• Pedagogical importance - one of the early calculations of higher
order QCD corrections

• Important for precision Standard Model measurements

• Important roles in searches for new physics



Basic Idea
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• Producing a virtual photon with mass Q and Q2 > 0

• Our task is to figure out what is in the shaded circle in the figure

• Simplest possibility: qq → l+l−

• Represents purely E-M process in the context of the parton model
(treating the quarks as free)

• Simple, testable prediction for the angular distribution of the lep-
ton pair



Born Term

q(p1)

q(p2)

l-(k1)

l+(k2)

Lorentz invariant variables

ŝ = (p1 + p2)
2 = (k1 + k2)

2

t̂ = (p1 − k1)
2 = (p2 − k2)

2

û = (p1 − k2)
2 = (p2 − k1)

2

Matrix element

M = eq

e2

ŝ
u(k1)γµv(k2)v(p2)γ

µu(p1)



Spin/color averaged matrix element squared

X

|M |2 =
e2

qe
4

ŝ2

„

1

2

«„

1

2

«

3

„

1

3

«„

1

3

«

Tr [/p1γ
ν/p2γ

µ] Tr [/k2γν/k1γµ]

=
4

3

e2
qe

4

ŝ2
[pν

1pµ
2 + pµ

1pν
2 − gµνp1 · p2] [k2νk1µ + k2µk1ν − gµνk1 · k2]

Red factors are for the spin average, blue factors are for the color average.
Forming the indicated dot products yields

X

|M |2 =
4

3

e2
qe

4

ŝ2
[2p1 · k2p2 · k1 + 2p1 · k1p2 · k2]

=
2

3

e2
qe

4

ŝ2

ˆ

t̂2 + û2˜



Center of mass frame: the 4-vectors are

p1 =

√
ŝ

2
(1, 0, 0, 1) p2 =

√
ŝ

2
(1, 0, 0,−1)

k1 =

√
ŝ

2
(1, sin θ, 0, cos θ) k2 =

√
ŝ

2
(1,− sin θ, 0,− cos θ)

yielding the Lorentz scalars

t̂ = − ŝ

2
(1 − cos θ) and û = − ŝ

2
(1 + cos θ)

with t̂2 + û2 = ŝ2

2
(1 + cos2 θ)

Inserting these relations into our result yields:

X

|M |2 =
e2

qe
4

3
(1 + cos2 θ)



To make use of this result we need to convert it to a cross section. For this we
need the two-body Lorentz invariant phase space factor:

PS(2) =
d3k1

(2π)32E1

d3k2

(2π)32E2
(2π)4δ4(p1 + p2 − k1 − k2)

=
d3k

16π2E1E2
δ(
√

ŝ − E1 − E2).

In the center-of-momentum frame we have k = |~k1| = |~k2| so that in this frame
we can write

d(E1 + E2) = d
√

ŝkdk

„

1

E1
+

1

E2

«

= kdk
E1 + E2

E1E2
.

with k =
√

ŝ/2.



This allows the phase space factor to be written as

PS(2) =
k2dkdΩ

16π2E1E2
δ(
√

ŝ − E1 − E2)

=
kd

√
ŝdΩ

16π2
√

ŝ
δ(
√

ŝ − E1 − E2)

=
dΩ

32π2

=
d cos(θ)

16π



To get a cross section we multiply the phase space factor times the spin and
color averaged squared matrix element and multiply that by a flux factor of
1/2ŝ yielding

σ(qq → l+l−) =
1

2ŝ

Z 1

−1

d cos(θ)

16π

e2
qe

4

3
(1 + cos2(θ))

=
e2

q

3

(4πα)2

16π

1

2ŝ

8

3

where the fine structure constant α = e2

4π
≈ 1

137
.

The final result for the parton-level cross section is

σ(qq → l+l−) =
4πα2

9ŝ
e2

q ≡ σ0.



Hadronic Cross Section

Introduce the parton distribution functions: let qA(x)dx denote the probability
of finding a parton of flavor q in hadron A with a momentum fraction lying
between x and x + dx. Convolute the parton-level cross section σ0 with the
appropriate quark and antiquark parton distribution functions:

σ(AB → l+l− + X) =
X

q

Z

dxadxb σ0 [q(xa)q(xb) + a ↔ b]

Note: remember to symmetrize with respect to the beam and target particles.
This corresponds to t̂ ↔ û here, so σ0 is unchanged.



Differential Distributions

The total cross section involves a convolution with products of parton dis-
tributions. In order to test the theory or to learn more about the parton
distributions it has proven to be convenient to undo one or both of the inte-
grations by looking a differential distributions. If we ignore external hadronic
masses, we can relate the hadronic and partonic center of mass energies as
follows:

s = (pA + pB)2 = 2pA · pB =
2p1 · p2

xaxb
=

ŝ

xaxb

where it has been assumed that p1 = xapA and p2 = xbpB.

Lepton pair mass distribution

For qq → l+l− the invariant mass of the lepton pair is just Q2 = ŝ. Thus,

dσ

dQ2
=

X

q

Z

dxadxb Hq(xa, xb) σ0 δ(Q2 − ŝ)



Here the sum over the products of parton distributions is denoted by the
function Hq(xa, xb). Next, evaluate the δ function as follows:

Z

dxadxbδ(Q
2 − xaxbs) =

Z

dxa

xas
δ(xb − Q2/xas).

Thus,

dσ

dQ2
=
X

q

Z 1

xamin

dxa

xas
Hq(xa,

Q2

xas
)
4πα2

9Q2
e2

q

with xamin = Q2/s.



Longitudinal Momentum Distributions

Define a longitudinal scaling variable

xF = pl/plmax ≈ 2pl/
√

s

where pl is the longitudinal momentum in the hadron-hadron cms. For the
qq → l+l− subprocess, we are interested in the longitudinal momentum of the
lepton pair. We have

p1 = xa

√
s

2
(1, 0, 0, 1) p2 = xb

√
s

2
(1, 0, 0,−1)

E =
√

s
2

(xa + xb) pl =
√

s
2

(xa − xb)
which yields xF = xa − xb.
One can use this to define a double differential cross section

dσ

dQ2dxF
=

4πα2

9Q4

X

q

e2
q

Z 1

τ

dxa

xa
τHq(xa,

τ

xa
)δ(xF − xa +

τ

xa
)



The δ function constraint can be solved for xa yielding

xa =
1

2

„

xF +
q

x2
F + 4τ

«

.

Using xb = τ/xa one derives

xb =
1

2

„

−xF +
q

x2
F + 4τ

«

.

The Jacobian factor from the δ function introduces a factor of xa/(xa + xb),
so the final result can be written as

dσ

dQ2dxF
=

4πα2

9Q4

1
p

x2
F + 4τ

τ
X

q

e2
qHq(xa,

τ

xa
).



Rapidity

The rapidity variable is defined as

y =
1

2
ln

E + pl

E − pl
=

1

2
ln

xa

xb

which yields
xa =

√
τey and xb =

√
τe−y .

Changing variables from (Q2, xF ) to (y, τ) is done using

dQ2dxF = dydτ s
q

x2
F + 4τ

which gives
dσ

dydτ
=

4πα2

9s

X

q

e2
q

τ
Hq(xa, xb)

with xa,b given above.



QCD

To this point we have been reviewing simple parton model results for lepton
pair production. Where does QCD enter and how does it modify what we’ve
done so far?
Easy to answer – harder to prove:

• To leading-logarithm accuracy all of the foregoing expressions are correct
provided that we use scale dependent parton distributions qa(xa, Q2),
etc. when evaluating the function Hq(xa, xb)! These are obtained as
solutions of the DGLAP equations.

• These scale dependent PDFs contain the effects of initial state gluon
radiation intergated up to the factorization scale Mf which is typically
chosen to be O(αs).

• The significance of the mass and longitudinal distributions discussed so
far is their easy interpretation in terms of products of PDFs - not quite
as direct as for structure fuinctions, but close.



pT Distribution

• To the order we are working for the hard scattering subprocess , i.e., O(α0
s),

no transverse momentum is generated via the subprocess itself (qq → l+l−).

• Transverse momenta associated with initial state gluon emission have been
integrated out in the process of solving the DGLAP evolution equations for
the scale dependent PDFs.

• The PDFs retain their dependence on the longitudinal momentum fractions –
in the preceeding discussion these have been fixed by specifying Q2 and either
xF or the rapidity.

• Early parton model predictions treated the lepton pair transverse momentum
distributions by attributing a gaussian transverse momentum distribution to
the incoming partons (“intrinsic kT ”)

– Data showed < kT >≃ 760 MeV per parton at plab =400 GeV (
√

s =
27.4 GeV)

– < kT > larger than expectations based on hadron size.

– Data showed a non-gaussian tail.

• Above observations suggested that there was more than just the simple parton
model at work here. Turn next to examining higher order QCD corrections to
the description obtained thus far.



Figure from “QCD and Collider Physics” by Ellis, Stirling, and Webber. Note
the gaussian-like behavior in the low-pT region with a non-gaussian tail ap-
pearing at higher values of pT .



O(αs) QCD Contributions

q q → l+ l- g

+ crossed

q g → l+ l- q

+ crossed

• Lepton pair recoils against a quark or gluon

• Can simplify the calculation by considering the production of a virtual
photon of mass Q. Label the momenta by q(p1)+q(p2) → γ∗(q)+g(k3).

dσ =
1

2ŝ

X

|M(qq → γ∗g)|2 d3q

(2π)32Eq

d3k3

(2π)32E3

×(2π)4δ(p1 + p2 − q − k3)

=
1

2ŝ

X

|M(qq → γ∗g)|2 ŝ − Q2

2ŝ

dΩ

16π2



The four-vectors for q and p1 are given by

q =

»

ŝ + Q2

2
√

ŝ
,
ŝ − Q2

2
√

ŝ
sin(θ), 0,

ŝ − Q2

2
√

ŝ
cos(θ)

–

p1 =

√
ŝ

2
(1, 0, 0, 1)

so that

t̂, û = − ŝ − Q2

2
(1 ∓ cos(θ)) and d cos(θ) =

2

ŝ − Q2
dt̂

Therefore, we have

dσ

dt̂
=

1

16πŝ2

X

|M(qq → γ∗g)|2



Next, consider the decay process γ∗(q) → l−(k1) + l+(k2). We have

Mµ = eu(k1)γµv(k2)

which yields

X

|M |2 = −1

3
e2Tr [/k2γµ/k1γ

µ]

=
2

3
e2Tr [/k1/k2] =

16παQ2

3

Next, consider the full 2 → 3 subprocess

dσ =
1

2ŝ

X

|M(qq → l+l−g)|2 d3k1

(2π)32E1

d3k2

(2π)32E2

d3k3

(2π)32E3

×(2π)4δ4(p1 + p2 − k1 − k2 − k3).



Now, insert d4qδ4(q − k1 − k2) and split the matrix element into production
and decay processes.

dσ =
1

2ŝ

X

|M(qq → γ∗g)|2 d3k3

(2π)32E3
d4q

×δ4(p1 + p2 − q − k3)
1

Q4

X

|M(γ∗ → l+l−)|2

× d3k1

(2π)32E1

d3k2

(2π)32E2
(2π)4δ4(q − k1 − k2)

The factors on the last line are just those for two-body phase space, so they
can be rewritten as dΩ

32π2 , thereby simplifying the result to

dσ =
1

16πŝQ4

X

|M(qq → γ∗g)|2 d3k3

(2π)32E3

16παQ2

3



Next rewrite the k3 differential as

d3k3

(2π)32E3
=

k3dk3d cos(θ)

8π2
=

dt̂dQ2

16π2ŝ
with k3 =

ŝ − Q2

2
√

ŝ
.

Therefore, one obtains

dσ

dQ2dt̂
=

1

16π2ŝ2

α

3Q2

X

|M(qq → γ∗g)|2.

The end result is that the 2 → 3 cross section is proportional to a simpler
2 → 2 cross section:

dσ

dQ2dt̂
(qq → l+l−g) =

α

3πQ2

dσ

dt̂
(qq → γ∗g).



The two-body cross sections are easily calculated in the conventional fashion
which, together with the relation just derived, yield the following results:

dσ

dQ2dt̂
(qq → l+l−g) =

α2αse
2
q

Q2ŝ2

8

27

»

t̂

û
+

û

t̂
+

2Q2ŝ

t̂û

–

dσ

dQ2dt̂
(qg → l+l−q) = −α2αse

2
q

Q2ŝ2

1

9

»

t̂

ŝ
+

ŝ

t̂
+

2Q2û

ŝt̂

–

The next step is to convert these expressions to those for hadronic cross sec-
tions.



Relation to direct photon production

• The production of high-pT photons discussed in the previous lecture is
calculable in perturbative QCD since the photon’s transverse momentum
provides the required large scale

• For lepton pair production the large scale is provided by the lepton pair
mass

• But what if we studied the production of lepton pairs with low mass but
large pT ?

• The preceeding derivation shows that the subprocesses would be nearly
the same as those for direct photon production as long as Q2 << ŝ, t̂, û

• One could integrate over some region of low Q2 and have a result that
would address the same physics as direct photon production - especially
the gluon PDF

• See Beger, Gordon, and Klasen, hep-ph/9803387, Phys. Rev. D58(1998)074012

• See also Berger, Qiu, and Zhang, hep-ph/0107309, Phys. Rev. D65(2002)034006



pp
_
 → γ*X at √S = 630 GeV
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Comparison to UA-1 data. The idea works and has the potential to address
the same issues as direct photon production.



Now, back to our calculation. The next step is to convolute the subprocesses
with the appropriate parton distributions:

dσ

dQ2
=
X

ab

Z

dxadxb Ga/A(xa, Q2)Gb/B(xb, Q
2)

dσab

dQ2dt̂
dt̂

Next, use the relations p2
T = t̂û

ŝ
and dp2

T = dt̂
ŝ
|û − t̂|

to get

dσ

dQ2dp2
T

=
X

ab

Z

dxadxb Ga/A(xa, Q2)Gb/B(xb, Q
2)

dσab

dQ2dt̂

ŝ

|û − t̂|

This expression is not really that useful since normally one observes the lepton
pair only in a restricted range of rapidity. What is really needed is a triple
differential cross section

dσ

dQ2dydp2
T



Hadron-hadron rest frame

q =

»

q

Q2 + p2
T cosh y, pT , 0,

q

Q2 + p2
T sinh y

–

t = (pA − q)2 = Q2 −
√

s
q

Q2 + p2
T e−y

u = (pB − q)2 = Q2 −
√

s
q

Q2 + p2
T ey

Now,

t̂ = (p1 − q)2 ⇒ t̂ − Q2 = xa(t − Q2)

û = (p2 − q)2 ⇒ û − Q2 = xb(u − Q2)

and ŝ + t̂ + û = Q2, so xaxbs + xa(t − Q2) + xb(u − Q2) + Q2 = 0



This last relation can be rewritten as

xb = −Q2 + xa(t − Q2)

xas + (u − Q2)
.

Next, let

x1 = −(u − Q2)/s =
q

Q2 + p2
T ey/

√
s

x2 = −(t − Q2)/s =
q

Q2 + p2
T e−y/

√
s.

Then, xb = xax2−τ
xa−x1

with Q2, y, p2
T fixed.



Using the previously defined variables, one can get

t̂ = Q2 − xa

√
s
q

Q2 + p2
T e−y

xb =
xa

p

Q2 + p2
T e−y/

√
s − τ

xa −
p

Q2 + p2
T ey/

√
s

.

One can use these equations to show that

dxb dt̂ = dy dp2
T

xaxb

xa − x1
.

Therefore,

dσ

dQ2dydp2
T

=
X

ab

Z 1

xamin

dxa
xaxb

xa − x1
Ga/A(xa, Q2)Gb/B(xb, Q

2)
dσab

dQ2dt̂

where xamin is determined by xb = 1, yielding xamin = x1−τ
1−x2



Consider the qq → l+l−g subprocess.

dσ

dQ2dydp2
T

=
α2αs

Q2

8

27

Z 1

xamin

dxa
xaxb

xa − x1

X

q

Hq(xa, xb, Q
2)

× 1

ŝ2

t̂2 + û2 + 2Q2ŝ

t̂û

Using variables defined previously, as well as xT = 2pT /
√

s, this expression
can be rewritten as

dσ

dQ2dydp2
T

=
α2αs

sQ2

8

27

1

p2
T

Z 1

xamin

dxa
xaxb

xa − x1

X

q

Hq(xa, xb, Q
2)

×
"

1 − x2
T

2xaxb
+

„

τ

xaxb

«2
#



Comments

1. The annihilation term gives a p−2
T tail to the pT distribution (this falls off

more slowly than a gaussian)

2. The Compton contribution (qg → l+l−q) is slightly more complicated (must
include qg and gq) but similar. This actually dominates at high-pT for pp or
pN collisions.

Lesson: the tail of the pT distribution can be calculated in QCD.

From “Applications of Perturbative QCD” by R.D. Field



If we can calculate at least the tail of the pT distribution, then one would think
that we could integrate over pT and get an O(αs) contribution to the total
cross section. What happens if we integrate the preceeding expression over all
pT ?

1. There is a divergence as pT → 0

2. As pT → 0, x1 → x0
1 =

√
τey. At the same time xamin → x0

1. Therefore,
the 1/(xa −x1) term contributes to the divergence at the low end of the
integration range.

− ln(xamin − x1) = − ln(
x1 − τ

1 − x2
− x1) = − ln

x1x2 − τ

1 − x2

x1x2 =
Q2 + p2

T

s
= τ + p2

T /s

Therefore, the cross section diverges as
ln(s/p2

T
)

p2

T

as p2
T → 0.



Okay, so how do you calculate the O(αs) contribution to the cross

q(p1)

q(p2)

l-(k1)

l+(k2)

M0

q(p1)

q(p2)

M1

Both M0 and M1 have the same final state, so one calculates

|M0 + M1|2 = |M0|2 + 2Re M∗
0 M1 + ...

Add these to the qq → γ∗g and qg → γ∗q contributions.

• 1-loop graphs are divergent

• αs tree graphs are divergent as pT → 0

Need a regularization scheme: choose dimensional regularization wherein di-
vergences are converted to poles in ǫ = 4−n

2
dimensions.



Consider dσ
dQ2 . This is technically somewhat simpler than dσ

dQ2dy
. Schemati-

cally, the O(αs) contributions take the following form:

dσ
dQ2 = dσ0

dQ2 + αs

2π

`

A
ǫ2

+ B
ǫ

+ C
´

qq → l+l−

dσ
dQ2 = αs

2π

“

− A
ǫ2

+ B′

ǫ
+ C′

”

qq → l+l−g

dσ
dQ2 = αs

2π

“

B′′

ǫ
+ C′′

”

qg → l+l−q

• 1
ǫ2

terms come from regions in phase space with both soft and collinear
divergences.

• 1
ǫ

terms come from soft or collinear divergences.

• Soft divergences from the tree graphs cancel infrared divergences from
the loop graphs.

• Remaining collinear divergences are related to the PDFs

dσ

dQ2
=

dσ0

dQ2
+

αs

2π

„

B + B′ + B′′

ǫ
+ C + C′ + C′′

«



Detailed result

dσ

dQ2
=

4πα2

9Q2

Z

dxa

xa

Z

dxb

xb

˘

Hq(xa, xb, Q
2)

×
»

δ(1 − z) +
αs(µ

2)

2π

„

2Pqq(z)

„

−1

ǫ
+ ln(

Q2

µ2
)

«

+ Dq(z)

«–

+
αs(µ

2)

2π

ˆ

Gq/A(xa, Q2)Gg/B(xb, Q
2) + q ↔ g

˜

×
»

Pqg(z)

„

−1

ǫ
+ ln(

Q2

µ2
)

«

+ Dg(z)

–ff

where

1

ǫ
=

1

ǫ
+ ln 4π − γE and z = τ/xaxb.

• The ǫ−2 soft-collinear poles have cancelled, but some ǫ−1 terms remain.

• These are the collinear poles associated with initial state radiation



In the MS scheme we know how to define universal scale dependent parton
distributions Gi(x, µ2) in terms of the bare distributions Gi(x):

Gq(x, µ2) = Gq(x) +

αs(µ
2)

2π

„

−1

ǫ

«Z 1

x

dξ

ξ

»

Pqq

„

x

ξ

«

Gq(ξ) + Pqg

„

x

ξ

«

Gg(ξ)

–

To see how this helps simplify the previous equation for dσ/dQ2, we have to
do a bit more work. Consider

Z

dxa

xa

Z

dxb

xb
Gq(xa, µ2)Gq(xb, µ

2)δ(1 − z) =

Z

dxa

xa

Z

dxb

xb
Gq(xa)Gq(xb)δ(1 − z

− 1

ǫ

αs(µ
2)

2π

Z

dxa

xa

Z

dxb

xb
Gq(xa)

Z

dξ

ξ

»

Pqq

„

xb

ξ

«

Gq(ξ) + Pqg

„

xb

ξ

«

Gg(ξ)

–

δ(1 −

+ (a ↔ b) + O(α2
s)

where z = τ/xaxb. Use the δ(1 − τ/xaxb) in the above equation to do the xb

integral.



Since xb = τ/xa, the 1
ǫ

line can be rewritten as

−1

ǫ

αs(µ
2)

2π

Z

dxa

xa
Gq(xa)

Z 1

τ/xa

dξ

ξ

»

Pqq

„

τ

xaξ

«

Gq(ξ) + Pqg

„

τ

xaξ

«

Gg(ξ)

–

Relabel ξ → xb to get

−1

ǫ

αs(µ
2)

2π

Z

dxa

xa

Z

dxb

xb
Gq(xa) [Gq(xb)Pqq(z) + Gg(xb)Pqg(z)]

These are of the same form as the 1/ǫ terms in dσ/dQ2. Replace

Gq(x) → Gq(x, µ2) +
1

ǫ
· · ·

Then, the 1/ǫ terms cancel, leaving a finite expression for dσ/dQ2. This is a
demonstration of the factorization theorem at work. The collinear singularities
associated with the PDFs are universal. Once the PDFs are defined using a
factorization scheme, the cross sections are finite.



Using these results, the expression for dσ/dQ2 can be simplified. In the MS
scheme choosing µ2 = Q2 we get:

dσ

dQ2
=

4πα2

9Q2s

X

q

Z

dxa

xa

Z

dxb

xb

×


Hq(xa, xb, Q
2)

»

δ(1 − z) +
αs(Q

2)

2π
Dq(z)

–

+
ˆ

(Gq(xa, Q2) + Gq(xa, Q2))Gg(xb, Q
2) + (a ↔ b)

˜

× αs(Q
2)

2π
Dg(z)

ff

with z = τ/xaxb.

• The δ(1−z) term reproduces the lowest order contribution. Dq(z) and Dg(z)
give the finite O(αs) corrections. Note the presence of the scale dependent
PDFs and the running coupling αS(Q2).

• The earlier results on scaling will be modified due to the Q2 dependence
present in these results.



Factorization Schemes

The definition of the the scale dependent PDFs will affect the form of the
Dq and Dg functions.

• MS: the 1/ǫ terms given previously which come from the collinear singu-
larities associated with the initial state radiation are combined with the
bare PDFs to give the Q2 dependent PDFs as has been shown above.

• DIS: additional finite terms are included along with the 1/ǫ parts so
that the expression for F2(x, Q2) in deep inelastic scattering retains its
lowest order form when higher order terms are included.

In the MS scheme we have

Dq(z) = CF

"

4(1 + z2)

„

ln(1 − z)

1 − z

«

+

− 2
1 + z2

1 − z
ln z

+δ(1 − z)

„

2π2

3
− 8

«–

Dg(z) = TR

»

(z2 + (1 − z)2) ln

„

(1 − z)2

z

«

+
1

2
+ 3z − 7

2
z2

–



Note: the gluon spin average is 1
2(1−ǫ)

in n−dimensions.
In the DIS scheme we get

Dq(z) = CF

"

2(1 + z2)

„

ln(1 − z)

1 − z

«

+

+
3

(1 − z)+
− 6 − 4z

+δ(1 − z)

„

1 +
4π2

3

«–

Dg(z) = TR

»

(z2 + (1 − z)2) ln(1 − z) +
3

2
− 5z +

9

2
z2

–



Comments on the O(αs) corrections

1. δ(1 − z)αs

2π
CF

“

1 + 4π2

3

”

in DIS

• Part of the “π2” term comes from the change from Q2 < 0 for DIS
to Q2 > 0 for l+l− (spacelike virtual photon → timelike virtual
photon)

• Phase space contains (Q2/µ2)ǫ → (−Q2/µ2)ǫ

• (−1)ǫ = eǫ ln(−1) = 1 − ǫ2π2/2 + . . .

• Multiplied by (−2/ǫ2 + . . .) which gives a finite contribution pro-
portional to π2.

2. Phase space for DIS and l+l− production differ. z → 1 corresponds to
ŝ = Q2 so the soft gluon singularities are at z = 1. There is a mismatch
between the two phase spaces away from z = 1 so that the “+” regulator
terms are different for the two cases.

These two items help to explain the size of the αs corrections in l+l− relative
to DIS.



From “Applications of Perturbative QCD” by R.D. Field



Comparison to data

• Lepton pair production data used extensively in global fits for parton
distribution functions

• Sensitive to antiquark distributions in pp, pN collisions

σ ∼
X

q

e2
q[qa(xa)qb(xb) + a ↔ b]

• Corrections through O(α2
s) available (although most fits use only through

O(αs))

• Excellent fits to dσ/dQ2dy and related distributions

• E-866 data using pp and pd instrumental in constraining the d/u ratio
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Further results from E-866. These show the impact of having both pp and pd
data for constraining the high-x PDFs



W and Z Production

• Thus far we have seen that fixed target pp and pN lepton pair pro-
duction experiments provide important information concerning u and d
distributions in the nucleon.

• W and Z production involve subprocesses which are very similar to lep-
ton pair production, e.g., qq′ → W and qq → Z.

• To date, W/Z production by hadron beams has been studied at high
energy pp colliders. Since the valence partons in an antiproton are anti-
quarks, the dominant subprocesses probe the u and d distributions. As
we shall see, this places strong constraints on the d/u ratio.

• We shall be working in the narrow width approximation, i.e., the vector
bosons will be treated as stable particles of fixed mass. All of the previ-
ous lepton pair production results can be easily utilized, providing that
we make some changes in the couplings.



Consider q(p1)q
′(p2) → W (p), for which the matrix element is

M = −iVqq′

g√
2
ǫαv(p2)γ

α 1

2
(1 − γ5)u(p1)

where Vqq′ is the appropriate element of the CKM matrix. The spin/color
averaged squared matrix element is given by

X

|M |2 = |Vqq′ |2 g2

96
2Tr [/p1(1 − γ5)/p2(1 − γ5)]

= |Vqq′ |2 g2

24
Tr[/p1/p2] = |Vqq′ |2 g2

6
p1 · p2

= |Vqq′ |2 GF M4
W√

2

2

3

where g2 =
8GF M2

W√
2

.



The hadronic cross section σ is given by convoluting the parton level cross
section σ̂ with the appropriate parton distributions:

σ =

Z

dxadxb

X

qq′

q(xa)q′(xb)σ̂

σ̂ =
1

2ŝ

2

3

GF M4
W√

2
|Vqq′ |2

Z

d3p

(2π)32E
(2π)4δ4(p − p1 − p2).

The integrand of the phase space integral can be rewritten as

2π d4p δ4(p − p1 − p2)δ(ŝ − M2
W )

which yields

σ̂ =
2π

3
|Vqq′ |2 GF M2

W√
2

δ(ŝ − M2
W ).

Compare this to our lepton pair production result σ̂γ∗ = 4π2α
3

e2
qδ(ŝ − Q2)

which shows that

4παe2
q ↔ 2|Vqq′ |2 GF M2

W√
2

.



Z Production

Here the subprocess is q(p1)q(p2) → Z(p), with the matrix element given by

M = −igǫαv(p2)γ
α(gV + gAγ5)u(p1).

The partonic cross section is given by

σ̂Z =
8π

3

GF M2
W√

2
(g2

V + g2
A)δ(ŝ − M2

Z)

where

g2
V + g2

A =
1

8
(1 − 4|eq| sin2 θW + 8e2

q sin4 θW ).

Apart from changing the coupling, we can treat W and Z production just like
lepton pair production at a fixed value of Q2.



Rapidity dependence in W production

According to our earlier calculations, the rapidity dependence of W production
is given by the x dependence of the PDFs, since the W longitudinal momentum
is, in lowest order, given by

√
s

2
(xa−xb). Of course, the leptonic decay W → lν,

by which the W is detected, poses a problem because of the unobserved ν.
Nevertheless, the rapidity dependence of the charged lepton gives some useful
information. To begin with, consider the rapidity dependence of the W and
define an asymmetry A(y) by:

A(y) =

dσ
dy

(W+) − dσ
dy

(W−)
dσ
dy

(W+) + dσ
dy

(W−)
.

In lowest order

dσ

dy
(W+) =

2π

3

GF√
2

X

qq′

|Vqq′ |2[q(xa)q′(xb) + a ↔ b]

≈ 2π

3

GF√
2

u(xa)d(xb)

for pp collisions



Similarly
dσ

dy
(W−) ≈ 2π

3

GF√
2

d(xa)u(xb)

To this level of approximation we can write the asymmetry A in terms only of
the parton distributions.

A ≈ u(xa)d(xb) − d(xa)u(xb)

u(xa)d(xb) + d(xa)u(xb)

=
Rdu(xb) − Rdu(xa)

Rdu(xb) + Rdu(xa)

where

Rdu(x) =
d(x)

u(x)
.



Now,

xa
b

=
MW√

s
e±y ≈ x0(1 ± y)

for small y. Here x0 = MW /
√

s. Then,

Rdu(xa
b
) ≈ Rdu(x0) ± yx0Rdu

′ (x0).

Therefore, in this approximation we obtain

A(y) ≈ −x0y
Rdu

′ (x0)

Rdu(x0)
.

So, A gives us information about the slope of the d/u ratio. We’ll see shortly
that we can do the same for the charged lepton asymmetry. This yields valuable
constraints in the low- to moderate-x range as shown below (from S. Kuhlmann
et al., hep-ph/9912283, Phys. Let. B76 (2000) 291:
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As mentioned above, the presence of the ν in the leptonic decay of the W
complicates matters somewhat. Let’s look at the distribution of the charged
lepton in W production. We’ll work in lowest order, but the same ideas apply
in higher order. The subprocess is q(p1)q

′(p2) → l(p3)ν(p4).

q(p1)

q’(p2)

l(p3)

ν(p4)

The matrix element is

M = Vqq′

g2

2
v(p2)γµ

1

2
(1 − γ5)u(p1)

1

ŝ − M2
W + iMW ΓW

u(p3)γ
µ 1

2
(1 − γ5)v(p4).

The squared matrix element is given by

X

|M |2 =
1

4

1

3
|Vqq′ |2 g4

4

1

(ŝ − M2
W )2 + M2

W Γ2
W

× 1

4
Tr[/p1γν(1 − γ5)/p2γµ(1 − γ5)]

1

4
Tr[/p4γ

ν(1 − γ5)/p3γ
µ(1 − γ5)]



To simplify the traces, use the following relations:

Tr[/p1γν/p2γµ] = 4[p1νp2µ + p1µp2ν − gµνp1 · p2]

Tr[/p1γν/p2γµγ5] = −4iǫανβµpα
1 pβ

2

ǫαβµνǫαβστ = −2(gµ
σgν

τ − gµ
τ gν

σ)

and note that ǫ contracted with a symmetric function gives zero. The result
is

X

|M |2 =
1

3
|Vqq′ |2

„

GF M2
W√

2

«2
4ŝ2(1 + cos θ)2

(ŝ − M2
W )2 + M2

W Γ2
W

.

Next, note that phase space gives d cos θ/16π and there is a flux factor of
1/2ŝ. Thus,

dσ̂

d cos θ
=

1

24π
|Vqq′ |2

„

GF M2
W√

2

«2
4ŝ2(1 + cos θ)2

(ŝ − M2
W )2 + M2

W Γ2
W

.



Comment: If the width Γ ≪ M one can use the narrow width approximation
wherein

Z ∞

−∞

ds

(s − M2)2 + M2Γ2
=

π

MΓ

(let s−M2

MΓ
= tan θ. Then the integral is elementary.) Thus,

1

(s − M2)2 + M2Γ2
≈ π

MΓ
δ(s − M2) for Γ ≪ M.



We are interested in the hadron-hadron cm rapidity y. This is related to the
parton-parton cm rapidity ŷ by

y = ŷ +
1

2
ln

xa

xb
.

Furthermore, ŷ = ln cot θ/2 = 1
2

ln 1+cos θ
1−cos θ

. Then,

dŷ

d cos θ
=

1

sin2 θ
and

dσ̂

dŷ
=

dσ̂

d cos θ
sin2 θ.

We therefore obtain

dσ

dy
=
X

q

Z

dxadxb
dσ̂

d cos θ
sin2 θ[q(xa)q′(xb) + a ↔ b].

Note: given xa, xb, y, and s one gets ŝ and ŷ and then uses sin θ = 1
cosh ŷ

.
From here one can get the lepton pT if a cut on pT is desired.
This type of calculation can be extended to higher orders. Thus, one can
calculate the rapidity dependence of the charged lepton and, therefore, the
lepton rapidity asymmetry. This, in turn can be used to constrain PDFs in
global fits.



Comment: In the calculation if the cos θ dependence we encountered a factor
of (1 + cos θ)2. The source of this is easy to understand. The W couples to
left-handed particles and right-handed antiparticles.

q q’

l

ν

⇐ ⇐

⇐

⇐

θ

When θ → π the cross section must vanish since angular momentum would
not be conserved. However, θ = 0 is allowed. The (1 + cos θ) factor ensures
this.



Examples of W -lepton charge asymmetries
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• DØ muon and electron charge asymmetries from W production

• The highest rapidity electron data suggest that the theory is too high

• This suggests that the high-x d/u ratio should be increased



|eη|
0 0.5 1 1.5 2 2.5 3

A
sy

m
m

et
ry

-0.8

-0.6

-0.4

-0.2

-0

0.2

-1(a) DØ, L=0.75 fb

<35 GeVT
e25<E

>25 GeVT
νE

CTEQ6.6 central value

MRST04NLO central value

CTEQ6.6 uncertainty band

|eη|
0 0.5 1 1.5 2 2.5 3

A
sy

m
m

et
ry

-0.2

-0.1

0

0.1

0.2

-1(b) DØ, L=0.75 fb
>35 GeVT

eE

>25 GeVT
νE

CTEQ6.6 central value

MRST04NLO central value

CTEQ6.6 uncertainty band

• When the data are binned in WpT the high rapidity discrepancy is worse

• Suggests that there may be a problem accounting for the pT cuts cor-
rectly in the theory calculation



W Asymmetry

• The transverse momentum of the W decay neutrino can be determined
via transverse momentum conservation

• This can not be done for the longitudinal momentum, since an unknown
amount of momentum will be associated with particles going down (or
near) the beam pipe

• This prevents a unique determination of the W rapidity

• CDF has utilized a method that allows the W charge asymmetry to be
determined, however.

– The kinematics of the decay allows two solutions for the neutrino
longitudinal momentum

– Both solutions are retained, each with a model dependent weight
associated with it

• Although model dependent, the result allows much closer contact with
the W production mechanism and the underlying PDFs
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Results in good agreement within errors for both PDF sets shown



Comments on the W and W -lepton asymmetries

• Recent comparisons by the CDF and DØ groups show that their W -
lepton asymmetry data agree.

• There is some indication from the W -lepton data that the d/u ratio at
high values of x should be increased

• When the data are binned in W −pT slices the disagreement is enhanced

• The W asymmetry data appear to be in better agreement with current
PDFs

• The best other source of information on the large-x d PDF is deep in-
elastic scattering from a deuterium target.

• Nuclear corrections are needed to in order to use these data properly,
although the tendency in the past has been to ignore nuclear corrections
in deuterium

• See the discussion by the MSTW group in arXiv:1006.2753[hep-ph] for
a phenomenological discussion of the situation



pT distributions revisited

The pT distribution for W production is of vital importance for the precision
measurement of the W mass. Previously, we saw how to calculate the high-
pT tail of the distribution. Now, we need to reexamine this issue with an
eye towards calculating the full distribution. First, consider the qq → l+l−g
annihilation subprocess.

dσ

dQ2dydp2
T

=
α2αs

sQ2

8

27

1

p2
T

Z 1

xamin

dxa

xa − x1

X

q

Hq(xa, xb, µ
2)e2

q

×
»

1 +
τ2

(xaxb)2
− x2

T

2xaxb

–



where

xb =
xax2 − τ

xa − x1

xamin =
x1 − τ

1 − x2

x1 = −(u − Q2)/s =
q

Q2 + p2
T ey/

√
s

x2 = −(t − Q2)/s =
q

Q2 + p2
T e−y/

√
s

Now, consider the limit as pT → 0:

xb →
√

τe−y = x0
b and xamin →

√
τey = x0

a

so
(xaminxb)

2 ∼ τ2.

As pT → 0 the [ ] term above goes to 2. Near pT = 0 we can integrate the
1

xa−x1
term, approximating the rest of the integrand as ∼ constant.



Keeping the most singular terms, we get

dσ

dτdydp2
T

≈ α2αs

Q2

8

27

ln s/p2
T

p2
T

2
X

q

Hq(x
0
a, x0

b)

≈ 4αs

3π

„

dσ

dτdy

«

Born

ln s/p2
T

p2
T

Next, following the arguments of Parisi and Petronzio, Nucl. Phys. B154,
427 (1979), as discussed in my earlier resummation lecture, we know that the
integral over all p2

T is finite, so
Z s

0

dσ

dτdydp2
T

dp2
T =

„

dσ

dτdy

«

Born

+ O(αs)

and, using the above results,
Z p2

T

0

dσ

dτdydp2
T

dp2
T =

„

dσ

dτdy

«

Born

 

1 −
Z s

p2

T

4αs

3π

ln s/p2
T

p2
T

dp2
T

!

=

„

dσ

dτdy

«

Born

»

1 − 2αs

3π
ln2 s/p2

T

–



Extended to higher orders, it can be shown that the square bracketed term
exponentiates. Hence,

Z p2

T

0

dσ

dτdydp2
T

dp2
T =

„

dσ

dτdy

«

Born

exp(−2αs

3π
ln2 s/p2

T ).

For more details, see Dokshitzer, D’yakanov, and Troyan, Phys. Rep. 58, 271

(1980) and Curci, Greco, and Srivastava, Phys. rev. Lett 43, 834 (1979) and

Nucl. Phys. B159, 451 (1979).



Differentiating the above results yields

dσ

dτdydp2
T

=

„

dσ

dτdy

«

Born

4αs

3π

ln s/p2
T

p2
T

exp(−2αs

3π
ln2 s/p2

T ).

The exponential is referred to as a Sudakov form factor. It represents the sum-
mation of the leading double-log terms. Notice that the exponential kills the
divergence at pT = 0. Physically, this represents the fact that the probability
to produce a massive lepton pair with no additional radiation is zero.

• In this approximation the gluon emissions are treated as uncorrelated.
If the lepton pair is to have zero pT , then all the gluons must have zero
pT .

• This suppression ia actually too strong. One can have two or more glu-
ons whose ~pT adds to zero. Thus, configurations with balancing gluons
should be included. However, these are subleading terms, even though
they may be dominant at sufficiently small values of pT (see Parisi and
Petronzio, Nucl. Phys. B154, 427 (1979)).

• Resummation techniques exist which include these subleading terms and
which give non-zero cross sections at pT = 0 (see Collins, Soper, and
Sterman, Nucl. Phys. B250, 199 (1985)).



Exponentiating in impact parameter space is a way of ensuring conservation
of transverse momentum which includes the previously mentioned subleading
terms.

dσ

dτdydp2
T

∼
X

q

σqq
0

2

Z ∞

0

bdbJ0(bpT )exp(−S(b, Q))

× [q(xa, b0/b)q(xb, b0/b) + a ↔ b]

S(b, Q) =

Z Q2

(b0/b)2

dq2

q2

ˆ

A ln Q2/q2 + B
˜

with xa
b

=
√

τe±y

A and B have perturbative expansions. Additional non-leading contributions
can be systematically included.

Note: the above expressions must be supplemented with a prescription for

treating the large b region where non-perturbative effects will come into play.



Technical aside

To avoid the large b region one technique is to replace b → b∗ = b√
1+(b/bmax)2

in S(b, Q) and in the PDFs. In addition, one adds a term Snp to S:

S(b, Q) → S(b∗, Q) + Snp(b, Q)

where Snp is often parametrized as

Snp = b2

»

g1 + g2 ln
Qbmax

2

–

.

Note: Snp parametrizes the large b non-perturbative region. Its form is sug-
gested by requiring it to smoothly tie on to S(b, Q).
Note: The gaussian term in b (g1) corresponds to a gaussian in pT since

Z ∞

0

bdbJ0(bpT )e−αb2 =
1

2α
e−p2

T
/4α.

Thus, this form for the resummation contains the gaussian smearing ansatz

originally used to describe the lepton pair pT distribution at low values of pT .



An alternative formalism exists which avoids the use of impact parameter
space - see Ellis and Veseli, Nucl. Phys. B511, 649 (1998). The approach
follows the original work of Dokshitzer, D’yakanov and Troyan (DDT
formula).

dσ

dτdydp2
T

=
∑

q

σqq
0

d

dp2
T

{[q(xa, pT )q(xb, pT ) + a ↔ b]

× exp

(

−

∫ Q2

p2

T

dµ2

µ2

[

A lnQ2/µ2 + B
]

)}

.

Here, too, A and B have perturbative expansions.

• The physics behind this expression is the same as in the b−space
form. Adjustments are made so that the leading, next-to-leading,
and next-to-next-to-leading logs are the same.

• In this case some adjustment must be made in the small-pT region,
since the PDFs can not be evolved to arbitrarily small pT .



Comparison to data

The resummation formalisms discussed for lepton pair production can
equally well be applied to W and Z production.
Some references

1. Altarelli, Ellis, Greco, and Martinelli, Nucl. Phys. B246, 12 (1984)
(first detailed comparison of resummed perturbation theory with
vector boson production data.)

2. Ellis and Veseli, hep-ph/9706526, Nucl. Phys. B511, 649 (1998)

3. Ellis, Ross, and Veseli, hep-ph/9704239, Nucl. Phys. B503, 309
(1997)

4. J. Qiu and X. Zhang, Phys. Rev. D63:114011,2001
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Conclusions

• Lepton pair production has a long history of serving as a physics
probe of hadronic interactions and new physics

• QCD corrections to the basic parton model picture have been cal-
culated though O(α2

s)

• Resummation techniques to handle the two-scale problem (pT , Q)
have been developed

• W and Z production serve as sources of information on Standard
Model physics and beyond

• Production properties serve to constrain PDFs needed to refine
measurements of the W mass

• Technology developed for lepton pair production is directly appli-
cable to W and Z production
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