

DIS NLO Kinematics

$$
\begin{array}{rlrl}
k_{1} \equiv q^{\mu} & =\left(\frac{s-Q^{2}}{2 \sqrt{s}}, 0,0, \frac{\left(s+Q^{2}\right)}{2 \sqrt{s}}\right) & -q^{2}=Q^{2}>0 \\
k_{2} \equiv p^{\mu} & =\left(\frac{s+Q^{2}}{2 \sqrt{s}}, 0,0, \frac{-\left(s+Q^{2}\right)}{2 \sqrt{s}}\right) & & p^{2}=0 \\
k_{3}^{\mu} & =\frac{\sqrt{s}}{2}(1,+\sin \theta, 0,+\cos \theta) & k_{3}^{2}=0 \\
k_{4}^{\mu} & =\frac{\sqrt{s}}{2}(1,-\sin \theta, 0,-\cos \theta) & k_{4}^{2}=0
\end{array}
$$

$q^{2} k_{1}$
k_{4}
$k_{1} \equiv q^{\mu}=\left(\frac{s-Q^{2}}{2 \sqrt{s}}, 0,0, \frac{\left(s+Q^{2}\right)}{2 \sqrt{s}}\right) \quad-q^{2}=Q^{2}>0$
$k_{2} \equiv p^{\mu}=\left(\frac{s+Q^{2}}{2 \sqrt{s}}, 0,0, \frac{-\left(s+Q^{2}\right)}{2 \sqrt{s}}\right)$
$k_{3}^{\mu}=\frac{\sqrt{s}}{2}(1,+\sin \theta, 0,+\cos \theta)$
$k_{4}^{\mu}=\frac{\sqrt{s}}{2}(1,-\sin \theta, 0,-\cos \theta)$

Mandelstam Variables $\{\mathbf{s}, \mathbf{t}, \mathbf{u}\}$

$$
\begin{aligned}
s & =\left(k_{1}+k_{2}\right)^{2} \equiv\left(k_{3}+k_{4}\right)^{2} \\
t & =\left(k_{1}-k_{3}\right)^{2} \equiv\left(k_{2}-k_{4}\right)^{2} \\
u & =\left(k_{1}-k_{4}\right)^{2} \equiv\left(k_{2}-k_{3}\right)^{2} \\
s+t & +u=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}
\end{aligned}
$$

Exercise

$\{\mathrm{s}, \mathrm{t}, \mathrm{u}\}$ are partonic

$$
\begin{gathered}
s=+Q^{2} \frac{(1-x)}{x} \quad t=-Q^{2} \frac{(1-z)}{2 x} \quad u=-Q^{2} \frac{(1+z)}{2 x} \\
x=\frac{Q^{2}}{2 p \cdot q} \quad x \subset[0,1] \quad z \equiv \cos \theta \quad z \subset[-1,1]
\end{gathered}
$$

Homework

Homework Part 2

1) Let's work out the general $2 \rightarrow 2$ kinematics for general masses.

a) Start with the incoming particles.

Show that these can be written in the general form:

$$
\begin{array}{ll}
p_{1}=\left(E_{1}, 0,0,+p\right) & p_{1}^{2}=m_{1}^{2} \\
p_{2}=\left(E_{2}, 0,0,-p\right) & p_{2}^{2}=m_{2}^{2}
\end{array}
$$

.. with the following definitions:
PROBLEM \#2: Consider the reaction:
$p p \rightarrow p p(12 \rightarrow 34)$ with CMS scattering
angle θ. The CMS energy is $\sqrt{s}=2 \mathrm{TeV}$.
a) Compute the boost from the CMS frame to the rest frame of \#2 (lab frame)
b) Compute the energy of \#1 in the lab frame.
c) Compute the scattering angle $\theta_{\text {lab }}$ as a function of the CMS θ and invariants.

Hint: by using invariants you can keep it simple. I.e., don't do it the way Goldstein does.

The power of invariants
b) Next, compute the general form for the final state particles, p_{3} and p_{4}. Do this by first aligning p_{3} and p_{4} along the z -axis (as p_{1} and p_{2} are), and then rotate about the y -axis by angle θ.

$$
\begin{aligned}
& |\mathcal{M}|^{2}=\frac{s}{-t}+\frac{-t}{s}+\frac{2 u Q^{2}}{s t} \\
& \qquad \frac{2(1-x)}{(1-z)}+\frac{2(1-z)}{(1-x)}+\frac{2 x(1+z)}{(1-x)(1-z)} \\
& \text { Singular at } \mathrm{z}=1 \\
& z \rightarrow 1, \quad \cos \theta \rightarrow 1 \\
& \begin{array}{l}
\substack{\text { For the real } \\
2 \rightarrow 2 \text { graphs }} \\
\text { Collinear Singularity } \\
\text { Separate infinity, absorb in } P D F
\end{array} \quad t \rightarrow 0
\end{aligned}
$$

The Plan

Dimensional Regularization meets Freshman E\&M

Regularization, Renormalization, and Dimensional Analysis:
Dimen \& Scalise, arXiv:0812.3578 [hep-ph]

Scale Invariance

$V(k x)=$
$=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d y \frac{1}{\sqrt{(k x)^{2}+y^{2}}}$
$=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d\left(\frac{y}{k}\right) \frac{1}{\sqrt{x^{2}+(y / k)^{2}}}$
$=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-\infty}^{+\infty} d z \frac{1}{\sqrt{x^{2}+z^{2}}}$
$=V(x)$
$V(k x)=V(x)$
Naively Implies:
$V(k x)-V(x)=0$

Note: $\infty+c=\infty$
$\therefore \quad \infty=\infty=C$

How do we distinguish this from
$\infty-\infty=c+17$

Cutoff Method

$$
\begin{aligned}
& V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-L}^{+L} d y \frac{1}{\sqrt{x^{2}+y^{2}}} \\
& V=\frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{+L+\sqrt{L^{2}+x^{2}}}{-L+\sqrt{L^{2}+x^{2}}}\right]
\end{aligned}
$$

$\mathrm{V}(\mathrm{x})$ depends on artificial regulator L
We cannot remove the regulator L

All physical quantities are independent of the regulator:

Electric Field

$$
E(x)=\frac{-d V}{d x}=\frac{\lambda}{2 \pi \epsilon_{0} x} \frac{L}{\sqrt{L^{2}+x^{2}}} \rightarrow \frac{\lambda}{2 \pi \epsilon_{0} x}
$$

Energy

$$
\delta V=V\left(x_{1}\right)-V\left(x_{2}\right) \underset{L \rightarrow \infty}{\rightarrow} \frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{x_{2}^{2}}{x_{1}^{2}}\right]
$$

$$
\begin{aligned}
& V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{-L+c}^{+L+c} d y \frac{1}{\sqrt{x^{2}+y^{2}}} \\
& V=\frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{+(L+c)+\sqrt{(L+c)^{2}+x^{2}}}{-(L-c)+\sqrt{(L-c)^{2}+x^{2}}}\right]
\end{aligned}
$$

V(r) depends on " y " coordinate!!!
$y=[+L+c,-L+c]$

$$
d y \rightarrow d^{n} y=\frac{d \Omega_{n}}{2} \quad y^{n-1} d y
$$

Why do we need an extra scale μ ???

$$
\begin{aligned}
d V & =\frac{1}{4 \pi \epsilon_{0}} \frac{d Q}{r} \\
V & =\frac{\lambda}{4 \pi \epsilon_{0}} \quad f(x)
\end{aligned}
$$

Compute in n -dimensions

$$
\Omega_{n}=\int d \Omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \quad \Omega_{1,2,3,4}=\left\{2,2 \pi, 4 \pi, 2 \pi^{2}\right\}
$$

New scale μ
$n=1-2 \epsilon$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}}\left(\frac{\mu^{2 \epsilon}}{x^{2 \epsilon}} \frac{\Gamma[\epsilon]}{\pi^{\epsilon}}\right)
$$

Shift: $y \rightarrow y^{\prime}=y-c$

$$
V=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{0}^{+\infty} d \Omega_{n} \frac{y^{n-1}}{\mu^{n-1}} \frac{d y}{\sqrt{x^{2}+y^{2}}} \quad \begin{gathered}
\text { Each term is } \\
\text { individually } \\
\text { dimensionaless }
\end{gathered}
$$

Dimensional Regularization

All physical quantities are independent of the regulators:

Electric Field

$$
E(x)=\frac{-d V}{d x}=\frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{2 \epsilon \mu^{2 \epsilon} \Gamma[\epsilon]}{\pi^{\epsilon} x^{1+2 \epsilon}}\right] \underset{\epsilon}{\rightarrow} \frac{\lambda}{2 \pi \epsilon_{0}} \frac{1}{x}
$$

Energy

$$
\delta V=V\left(x_{1}\right)-V\left(x_{2}\right) \underset{\epsilon \rightarrow 0}{\rightarrow} \frac{\lambda}{4 \pi \epsilon_{0}} \log \left[\frac{x_{2}^{2}}{x_{1}^{2}}\right]
$$

Problem solved at the expense of an extra scale $\mu \underline{\mathbf{A N D}}$ regulator ε
Translation invariance is preserved!!!

$$
\begin{array}{ll}
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{\pi}\right]+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right] & \text { Original } \\
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[-\ln \left[\frac{e^{-\gamma_{E}}}{\pi}\right]+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right] & \text { MS } \tag{MS}\\
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}[& \left.+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right]
\end{array}
$$

Physical quantities are independent of renormalization scheme!

$$
V_{\overline{M S}}\left(x_{1}\right)-V_{\overline{M S}}\left(x_{2}\right)=\delta V=V_{M S}\left(x_{1}\right)-V_{M S}\left(x_{2}\right)
$$

But only if performed consistently:

$$
V_{\overline{M S}}\left(x_{1}\right)-V_{M S}\left(x_{2}\right) \neq \delta V \neq V_{M S}\left(x_{1}\right)-V_{\overline{M S}}\left(x_{2}\right)
$$

Recap

Regulator provides unique definition of V, f, ω

Cutoff regulator L:
simple, but does NOT respect symmetries
Dimensional regulator ε :
respects symmetries: translation, Lorentz, Gauge invariance introduces new scale μ

All physical quantities $(\mathrm{E}, \mathrm{dV}, \sigma)$ are independent of the regulator
AND the new scale μ
Renormalization group equation: $\mathrm{d} \sigma / \mathrm{d} \mu=0$
We can define renormalized quantities (V,f, ω)
Renormalized (V,f, ω) are scheme dependent and arbitrary
Physical quantities ($\mathrm{E}, \mathrm{dV}, \sigma$) are unique and scheme independent if we apply the scheme consistently

The was the potential from our "Toy" calculation:

$$
V \rightarrow \frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{1 \pi}\right]+\ln \left[\frac{\mu^{2}}{x^{2}}\right]\right]
$$

This is a partial result from
a real NLO Drell-Yan Calculation:
Cf., B. Potter

$$
\frac{D(\epsilon)}{\epsilon}=\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right) \frac{\Gamma(1-\epsilon)}{\Gamma(1-2 \epsilon)} \rightarrow\left[\frac{1}{\epsilon}+\ln \left[\frac{e^{-\gamma_{E}}}{4 \pi}\right]+\ln \left[\frac{\mu^{2}}{Q^{2}}\right]\right]
$$

Apply

Dimensional

Regularization

$$
d \sigma=\frac{1}{2 s}|\mathcal{M}|^{2} d \Gamma
$$

\#1) Show:
$d \Gamma=d \Gamma_{3} d \Gamma_{4}(2 \pi)^{D} \delta^{D}\left(k_{1}+k_{2}-k_{3}-k_{4}\right) \quad$ Final state
$d \Gamma=\frac{1}{16 \pi}\left(\frac{s}{16 \pi}\right)^{-\epsilon} \frac{\left(1-z^{2}\right)^{-\epsilon}}{\Gamma[1-\epsilon]} d z$
$g \rightarrow g \mu^{\epsilon}$
$d \Gamma=\frac{1}{16 \pi}\left(\frac{16 \pi \mu^{2}}{Q^{2}}\right)^{+\epsilon} \frac{1}{\Gamma[1-\epsilon]} \frac{x^{\epsilon}}{(1-x)^{\epsilon}}\left(1-z^{2}\right)^{-\epsilon} d z$

Final state

Enter, μ scale

$$
\frac{d^{3} p}{(2 \pi)^{3} 2 E}=\frac{d^{4} p}{(2 \pi)^{4}}(2 \pi) \delta^{+}\left(p^{2}-m^{2}\right)
$$

This relation is often useful as the RHS is manifestly Lorentz invariant
\#2) Show that the 2-body phase space can be expressed as:

$$
d \Gamma=\frac{d^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)=\frac{d \cos (\theta)}{16 \pi}
$$

Note, we are working with massless partons, and θ is in the partonic CMS frame

Soft Singularities

Soft Singularities

$$
\begin{aligned}
& \underbrace{\frac{x^{\epsilon}}{(1-x)^{\epsilon}}}_{\begin{array}{c}
\text { From } \\
\text { phase } \\
\text { space }
\end{array}} \underbrace{\frac{1}{(1-x)}}_{\begin{array}{c}
\text { Soft } \\
\text { Singularity }
\end{array}}=\underbrace{\frac{1}{(1-x)_{+}}}_{\begin{array}{c}
\text { Finite } \\
\text { remainder }
\end{array}}-\underbrace{\frac{1}{\epsilon}}_{\begin{array}{c}
\text { To be canceled } \\
\text { by virtual } \\
\text { diagram }
\end{array}} \delta(1-x) \\
& \begin{array}{c}
\text { This only makes sense } \\
\text { under the integral }
\end{array} \\
& \frac{f(x)}{(1-x)_{+}}=\frac{f(x)-f(1)}{(1-x)} \\
& \int_{0}^{1} d x f(x) \frac{x^{\epsilon}}{(1-x)^{1+\epsilon}}=\int_{0}^{1} d x \frac{f(x)-f(1)}{(1-x)}-\frac{1}{\epsilon} \int_{0}^{1} d x \delta(1-x) f(x)
\end{aligned}
$$

	Collinear Singularities
Collinear Singularity	
$\int_{-1}^{1}\left(1-z^{2}\right)^{-\epsilon}\|\mathcal{M}\|^{2} \simeq-\frac{1}{\epsilon} \underbrace{\frac{\left(1+x^{2}\right)}{(1-x)}}_{\begin{array}{c} \text { This should be } \\ \text { "absorbed" } \\ \text { in the PDF } \end{array}}+\frac{1-4 x+4\left(1+x^{2}\right) \ln 2}{\underbrace{2(1-x)}_{\begin{array}{c} \text { This is finite } \\ \text { for } z=[-1,1] \end{array}}}$	How do we know what to "absorb" into PDFs ???
Key Points 1) "Absorb $1 / \varepsilon$ into PDF 2) This defines how to regularize PDF 3) Need to match schemes of ω and PDF ... MS, MS-Bar, DIS, ... 4) Note we have regulator ε and extra scale μ	Compute NLO Subtractions for a partonic target

Do we get different answers if we
"absorb" different terms
into PDFs ???

Pictorial Demonstration of Scheme Consistency

Do we get different answers if we
"absorb" different terms into PDFs ???

- NLO Theoretical Calculations:
- Essential for accurate comparison with experiments
- We encounter singularities:

END OF LECTURE 3

- Soft singularities: cancel between real and virtual diagrams
- Collinear singularities: "absorb" into PDF
- Regularization and Renormalization:
- Regularize \& Renormalize intermediate quantities
- Physical results independent of regulators (e.g., L, or μ and ε)
- Renormalization introduces scheme dependence (MS-bar, DIS)
- Factorization works:
- Hard cross section $\widehat{\sigma}$ or ω is not the same as σ
- Scheme dependence cancels out (if performed consistently)

