Recap: Parton Model, Factorization, Evolution
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Homework

Homework Part 2

1) Let's work out the general 2 - 2 kinematics for general masses.

a) Start with the incoming particles.
Show that these can be written in the general form:

Vs

P, v » p, = (E,,0,0,+p) p=m’
2 p, = (E,,0,0,—p)  pi=m,

... with the following definitions:
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P, 0 Ala,b,c) = \/a2+b2+cz—2(ab+bc+ca)

b,
Note that A(a,b,c) is symmetric with respect to its arguments,
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and involves the only invariants of the initial state: s, m?, m 2.

P,

b) Next, compute the general form for the final state particles, p, and p,. Do this by first aligning p, and p,
along the z-axis (as p, and p, are), and then rotate about the y-axis by angle 6.

PROBLEM #2: Consider the reaction:
pp — pp (12 — 34) with CMS scattering
angle 6. The CMS energy is /s = 2T€eV.

a) Compute the boost from the CMS frame
to the rest frame of #2 (lab frame)

b) Compute the energy of #1 in the lab

frame.

¢) Compute the scattering angle 0, as a
function of the CMS # and invariants.

Hint: by using invariants you can keep it simple.
Le., don't do it the way Goldstein does.

The power of invariants




Matrix element: NLO DIS

—t  2u@?
‘M‘2 = i + - + UQ For the real

_t S St 2—2 graphs

2(1—2x)  2(1—2) 2x(1 + 2)
1—2 (=2 ' 0-o(-2
~

Singular at z=1 ,
Singular at x=1

z—1, cosf—1 51, 53—

f—0, t—0

Soft Singularit
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Separate infinity, absorb in PDF

Separate infinity, cancel with virtual graphs
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Collinear Divergences
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1) Separate « at z=I
Looks like a PDF

X splitting function
2) “Absorb” into PDF
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Choices 1) Dimensional Regularization
2) Quark Mass

3) 6 Cut

T

Plan

1) Separate « at x=1

2) Cancel between Real and Virtual graphs
Method

Need to regulate oo
Choices 1) Dimensional Regularization

2) Gluon Mass

3) ...




We'll use a simple example to illustrate the key points:

Infinite Line of Charge
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M. Hans, Am.J.Phys. 51 (8) August (1983). p.694
C. Kaufman, Am.J.Phys. 37 (5), May (1969) p.560
B. Delamotte, Am.J.Phys. 72 (2) February (2004) p.170
Note: oo can
Regularization, Renormalization, and Dimensional Analysis:
Dimensional Regularization meets Freshman E&M. be very us ef ul
Olness & Scalise, arXiv:0812.3578 [hep-ph]
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V(x) depends on artificial regulator L

We cannot remove the regulator L
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All physical quantities are independent of the regulator:
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Problem solved at the expense of an extra scale L
AND we have a broken symmetry: translation invariance




Broken Translational Symmetr

Shift: y—> y'=y-c¢

y=[+L+c, -L+c]
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V(r) depends on “‘y

coordinate!!! InQFT
gauge symmetries

are important.
E.g., Ward identies

Dimensional Regularization
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Why do we need an extra scale u ???
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Dimensional Regularization

All physical quantities are independent of the regulators:

Electric Field E _—dVr__ A 2EU26F[E] - A 1
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Problem solved at the expense of an extra scale L AND regulator €

Translation invariance is preserved!!!

Dimensional Regularization respects symmetries




Renormalization Connection to QFT

Y .
V — A l-f—ll’l & +1n I“l_z Original
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Physical quantities are independent of renormalization scheme!
V(%)= Vg (x)=0 V=V 5 (%)) =V 35 (x,)
But only if performed consistently:

Vﬁs(xl)_ VMS(xz);é(S V# VMS(xl)_ Vﬁs(xz)

The was the potential from our “Toy” calculation:
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This is a partial result from 1 1 1
a real NLO Drell-Yan Calculation:
Cf.,, B. Potter
D(e 2\ I'(1—e e ’
Dl _ (sm) 10 1, fer] [
€ 0 I'(1-2¢) € T

[ —)

Regulator provides unique definition of V, f, ®

Cutoff regulator L:
simple, but does NOT respect symmetries

Dimensional regulator €:
respects symmetries: translation, Lorentz, Gauge invariance
introduces new scale

All physical quantities (E, dV, ¢) are independent of the regulator
AND the new scale 1
Renormalization group equation: do/du=0

We can define renormalized quantities (V,f,)
Renormalized (V,f,m) are scheme dependent and arbitrary
Physical quantities (E,dV, ) are unique and scheme independent
if we apply the scheme consistently
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to QFT




Homework: Part 1

D-Dimensional Phase Space
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Soft Singularities
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This relation is often useful as the RHS is manifestly Lorentz invariant
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KLN (Kinoshita, Lee, Nauenberg) Theorem

= [ & Collinear Singularities
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in the PDF for z=[-1,1]

... looks like a splitting kernel

Key 1) “Absorb 1/¢ into PDF .
) “Absorb 1/e into Compute NLO Subtractions

Points
2) This defines how to regularize PDF
for a partonic target

3) Need to match schemes of ® and PDF
... MS, MS-Bar, DIS, ...

4) Note we have regulator € and extra scale 1




Application of Factorization Formula at Leading Order (LO)

Application of Factorization Formula at NLO

Basic Factorization Formula

c=fRw+0O(A*/Q?)

/”

At Zeroth Order: o Higher Twist
o'=f'ew’ +0(AYQ) 7 A~
Use: f=06 for a parton target. £0 3
for parton target

Therefore:

o’=f'ew’'=0w'=w’

o =w

Warning: This trivial result leads to many misconceptions at higher orders

Basic Factorization Formula

At First Order:
o'=flew'+ f'ew'

o= flec’+w' / /L

o=f®w+0(A/Q%

0
We used: f* =9 for a parton target. f f!
Therefore: w'=c'-f'®c’
1~ Qs p(1)
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0—1
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scheme choice

Application of Factorization Formula at NLO

HOMEWORK PROBLEM: NNLO WILSON COEFFICIENTS

Combined Result:
Complete NQ Term: @’
0 1 0 1 1 0
w +w =0 +t0 — [ ®0c
- LO  NLO e
TOT

TOT=LO + NLO -

o=fowed+O0(A*/Q?

Use the Basic Factorization Formula

At Second Order (NNLO):
= d +..
+fleow ed + ..

Therefore:

W =277

Include Fragmentation

Compute 6 at second order. Functions 4

Make a diagrammatic representation of each term.




Do we get different answers if we

“absorb’ different terms

into PDFs ??7?

Pictorial Demonstration of Scheme Consistency

Parton Model
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Bullet-proof
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End of lecture 3: Recap

* NLO Theoretical Calculations:
* Essential for accurate comparison with experiments
* We encounter singularities:
* Soft singularities: cancel between real and virtual diagrams
* Collinear singularities: “absorb” into PDF
* Regularization and Renormalization:
* Regularize & Renormalize intermediate quantities
* Physical results independent of regulators (e.g., L, or 1 and €)
* Renormalization introduces scheme dependence (MS-bar, DIS)
* Factorization works:
* Hard cross section O or @ is not the same as G

* Scheme dependence cancels out (if performed consistently)

END OF LECTURE 3




