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Recap: Parton Model, Factorization, Evolution

U dependence must balance

How does f change
with scale u???

J 1 df _

f dlnfu]

DGLAP Evolution Equation




DIS
AT
NLO



DIS at NLO

Electron

Proton

Sample NLO contributions to DIS

PEy VAL



DIS NLO Kinematics

k3 :
q:kz 6 P :kZ
k4 :

2 2
— AH  — S_Q (S—|_Q) — 2: 2 0
kl—q 2\/5 70707 2\/§ q Q >
2 _ 2
hy = — s+ @ 0.0, (s + Q%) P2 =0
2./ 2./
kY = (1,4sin6,0,+ cosh) ks =0

ki = ~(1,—sin6,0,—cosf) k=0
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Mandelstam Variables {s,t,u}

1 3

1

3

S
t u
2 4
2 4 2
S = (/ﬁ —+ k2)2 — (]Cg —+ k4)2
— (kl — kg)z — (kg — k4)2
U == (/Cl — k4)2 — (kz — k3)2
S+t+u:m%+m%+m§+mi Exercise
{s,t,u} are partonic
_ > (1 —x) B 5 (1 —2) . 5 (1+2)
s =+ T =@ 27X u=-( 27X
QQ
T = x C |0, 1] z=cosf zC|[—1,1]




Homework

1) Let's work out the general 2 — 2 kinematics for general masses.

a) Start with the incoming particles.
Show that these can be written in the general form:

p, Vs

2 2
—><—p2 p, = (£,,0,0,+p) pP,=m,

p, = (E,,0,0,—p)  pi=m

... with the following definitions:

A 2 2 A 2, 2

S+m,Fm, A(s, myms)
23 2s

Ala,b,c) = \/a2+b2+02—2(ab+bc+ca)

E1,2 —

Note that A(a,b,c) is symmetric with respect to its arguments,
p 4 and involves the only invariants of the initial state: s, m°, m.’.

b) Next, compute the general form for the final state particles, p, and p,. Do this by first aligning p, and p,
along the z-axis (as p, and p, are), and then rotate about the y-axis by angle 6.



Homework Part 2

PROBLEM #2: Consider the reaction:
pp — pp (12 — 34) with CMS scattering
angle 6. The CMS energy is /s =2TeV.

a) Compute the boost from the CMS frame
to the rest frame of #2 (lab frame) p 3

b) Compute the energy of #1 in the lab p ] [

frame.

c) Compute the scattering angle ;. as a
function of the CMS 6 and invariants. p 4

Hint: by using invariants you can keep it simple.
Le., don't do it the way Goldstein does.

The power of invariants



Matrix element: NLO DIS

S —t  2uQ@?

M 2 — I I or the rea
‘ ‘ - t S S t 5 —>2hgraphls
21 —z)  2(1—2) 2x(1+2)

~ |

(1—2) (1—-2) (Q1-—2z)(1-2)
Singular at z=1 / \

z—1, cosf —1
6—0, t—0

Singular at x=1
r— 1, s—0
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f S .
Collinear Singularity Soft Singularity

Separate infinity, absorb in PDF

Separate infinity, cancel with virtual graphs



The Plan



Collinear Divergences

. 2 (1+2%)
=l (1-2) (1-a)

M]?
¥Y¥

Plan
1) Separate o at z=1
Looks like a PDF

c 99 splitting function
2) “Absorb” into PDF

Method

Need to regulate oo

Choices 1) Dimensional Regularization

2) Quark Mass

3) 0 Cut



Soft Singularities

T

Plan

1) Separate oo at x=1

2) Cancel between Real and Virtual graphs
Method

Need to regulate oo
Choices 1) Dimensional Regularization

2) Gluon Mass

3)...



We'll use a simEIe examBIe to 1llustrate the kez Boints:

Dimensional Regularization
meets
Freshman E&M

M. Hans, Am.J.Phys. 51 (8) August (1983). p.694
C. Kaufman, Am.J.Phys. 37 (5), May (1969) p.560
B. Delamotte, Am.J.Phys. 72 (2) February (2004) p.170

Regularization, Renormalization, and Dimensional Analysis:
Dimensional Regularization meets Freshman E&M.
Olness & Scalise, arXiv:0812.3578 [hep-ph]



Infinite Line of Charge

X

r= x2+y2

y
gy ——1 4o A=Q0ly
4re, r
+ 00 1

=2 [ - =

47T€0 \/x2+y2

Note: oo can
be very useful



Scale Invariance

y

V (kx)=

A o 1

ime, - V(o) + 57
_ A J«—l—oo X 1

41TE€, k \/x +(ylk)

o Note: oo+ C =oo

_ A f+ dz _

ame, " \/x2—|—z2 = = E9= B
— (x ) How do we distinguish

this from

V(ke)=V (x) st wees et



Cutoff Method

+L
V= |, 1 o
4 TE, x4y V(x) depends on artificial regulator L
' (72, 2] We cannot remove the regulator L
V- A log + L+ L2+x2
amey | —L+VIL+x"

All physical quantities are independent of the regulator:

Electric Field E ( x) —dV _ A L N A

dx  2me, x J[24 2 21Ee, X

— A o X_§
L — o0 4Tl'€0 5 x?

Energy SV=V(x,)=V(x,)

Problem solved at the expense of an extra scale L
AND we have a broken symmetry: translation invariance



Broken Translational Symmetr

Shift: y— y'=y—c

y y=[+L+c, -L+c]
————————————
L +LL

- A +L+c 1
V J"—L—I-c dy 2 2

4T, X +y
A +(L+c)+V(L+c)+x°
V= log —
dmey 7| —(L—c)+V(L—c)+x"

In QFT,
gauge symmetries
are important.
E.g., Ward identies

V(r) depends on “y” coordinate!!!



Dimensional Regularization

iQ

Compute in n-dimensions dy—d"y= > V" dy
nl2 2
Qn:fdﬂnzrz(Tr/z) Q,,54=12,2m 41,277
n
Each term 1s
n—1 e ndividually
A +oo 40 y dy dimensionaless




Why do we need an extra scale y ??2?




Dimensional Regularization

All physical quantities are independent of the regulators:

Electric Field Fl)=—4 __A 2ep’Tle]| - A 1
)= dx  4me, ‘X7 | €-0 2me, x
E A -xz-
e SV=V(x,)—-V(x,) log| =2
( 1) ( 2>€—>O 41TEO g-x?

Problem solved at the expense of an extra scale L AND regulator €

Translation invariance 1s preserved!!!

Dimensional Regularization respects symmetries



41TE€,

A
41T€,

V —

Physical quantities are independent of renormalization scheme!

Renormalization

+1In

Y

+1In

+In

+1In

2
H
2
X

X

X

1
H
2

1
H
2

Original

MS

MS-Bar

Vm<x1)_ Vm(xz):5 V= VMS(xl)_ VMS<X2>

But only if performed consistently:

Vﬁs<x1>_ VMS(X2>7£5 V# VMS('xl)_ VVS(%)



Connection to stT

The was the potential from our “Toy” calculation:

€

V— A
41T €,
This is a partial result from
a real NLO Drell-Yan Calculation:
Cf., B. Potter
D(e) 4’| T'(1—e)
€ 0" | I'(1-2¢)

—+1In

—YE

TT

+1In

><N|'s:




RecaB

Regulator provides unique definition of V, f, ®

Cutoff regulator L:
simple, but does NOT respect symmetries

Dimensional regulator €:
respects symmetries: translation, Lorentz, Gauge invariance
introduces new scale L

All physical quantities (E, dV, 0) are independent of the regulator
AND the new scale U
Renormalization group equation: do/du=0

We can define renormalized quantities (V,f,®)
Renormalized (V,f,®) are scheme dependent and arbitrary

Physical quantities (E,dV, 6) are unique and scheme independent
if we apply the scheme consistently



Apply
Dimensional

Regularization

to QFT



D-Dimensional Phase Space

1
do = — |M|? dT 1 3
2s \
dFZ = (27T)D (271') (5(]{,&) 1-particle 2/ .

dl' =dI'sdl'y (27T)D 6P (kl + ko — kg — k4) Final state

1 s \ ¢ (1—2%)7¢
dl’ = —— (—) d Final state
167 \167 e -
g— g NJE Enter, i scale

All the pieces

1 [(16mp2\7° 1 z b
dl = — 1 — “d
167 ( Q? ) T—d @_z)f 7)) &




Homework: Part 1

#1) Show:
d3p
2m)2E  (2mw)

This relation is often useful as the RHS is manifestly Lorentz invariant

#2) Show that the 2-body phase space can be expressed as:

d’ p, d’ p, d cos (0)

dI' = (27T>4 54(p1+p2—p3—p4) —

(2m)’2E, (2m)2E, 167

Note, we are working with massless partons, and Ois in the partonic CMS frame



Soft Singularities



Soft Singularities

REAL VIRTUAL

€ 1 1 1
T-or 0o (-x, 07

From Soft Finite To be canceled

phase Singularity remainder by virtual

space diagram
f(z) flx) — f(1)

This only makes sense
under the integral (]_ _ ZU) n (]_ _ ZE)

/01 dx f(x) 1 _xgj)we B /01 da f(:vl) 1 /01 dz (1 —z) f(x)




KLN (Kinoshita, Lee, Nauenberg) Theorem

~FI D

- X D
N O



Collinear Singularities



Collinear Singularity

/1 (1_22)—6‘M‘2N_1(1+x2) | 1 —4z +4(1+22) In2
0 e (1—2x) | 2(1 — x)
e N
This should be o
“absorbed” This is finite
in the PDF for z=[-1,1]

... looks like a splitting kernel

Ke.y 1) “Absorb 1/€ into PDF
Points

2) This defines how to regularize PDF

3) Need to match schemes of @ and PDF
... MS, MS-Bar, DIS, ...

4) Note we have regulator € and extra scale



How do we know what to

“absorb” into PDFs 7?79

Compute NLO Subtractions

for a partonic target




Application of Factorization Formula at Leading Order (LO)

Basic Factorization Formula c=fRQuw-+ O(AZ/ Qz)

v

At Zeroth Order: -~ ™™
o'=f'80’ +0(A0) -

0
Use: =9 for a parton target. f fl

for parton target
Therefore:

='W =60w =w

o =w

Warning: This trivial result leads to many misconceptions at higher orders



Application of Factorization Formula at NLO

Basic Factorization Formula
At First Order:
o =few+ f'ew'
g = f1®00+w1

We used: £ =0 for a parton target.

0= fRw+O(A*/Q?)

Therefore: w=0c'-f'®d"
h 1, % p(1)
W= [ — d 2}4
O—l
P? defined by

scheme choice



Application of Factorization Formula at NLO

Combined Result:

Complete NLO Term: @’
“
0 1 0 1 1 0

w +w =0 +0c — f®0
e p— e p—

LO NLO
TOT SUB

‘: 2 Subtraction
/L
TOT=LO+NLO-SUB



HOMEWORK PROBLEM: NNLO WILSON COEFFICIENTS

2 2
Use the Basic Factorization Formula 0 = f RwRd+ O(A / @ )

At Second Order (NNLO):

cl=fuwed +..
Therefore: —|_f1 X Cdl X do -+ ...

=777

Include Fragmentation
Compute ¥ at second order. Functions d

Make a diagrammatic representation of each term.



Do we get different answers 1f we

“absorb’ different terms

into PDFs ?7?



Pictorial Demonstration of Scheme Consistency

Parton Model

o(Q%) = f(p,as) ®D(Q%, 12, as)

Electron

Evolution Equation

Proton df B
] Y
LO NLO
e
I 00
A J1 f1 & 00



Pictorial Demonstration of Scheme Consistency

SUB

Subtraction

]
-

LO NLO

o+ £ 70 o1 A @ oo
Complete NLO Term I
p—— 1 =8 p(1)
0+ f'] ® [oo+01— ' ®o0] / QWP\

1 1 5 P? defined by
0o + o1 + f X o0 — f R 0o + O(as ) scheme choice
\ \ \ From NLO Subtraction
Contains BOTH collinear e DLy on QCD is

and non-collinear region Bullet-proof



Do we get different answers 1f we

“absorb’ different terms

into PDFs ?7?

IN(@FHN



End of lecture 3: Recap

* NLO Theoretical Calculations:
* Essential for accurate comparison with experiments

* We encounter singularities:
* Soft singularities: cancel between real and virtual diagrams
* Collinear singularities: “absorb” into PDF

* Regularization and Renormalization:

* Regularize & Renormalize intermediate quantities

* Physical results independent of regulators (e.g., L, or L and €)

* Renormalization introduces scheme dependence (MS-bar, DIS)
* Factorization works:

e Hard cross section O or @ is not the same as &

* Scheme dependence cancels out (if performed consistently)



END OF LECTURE 3



