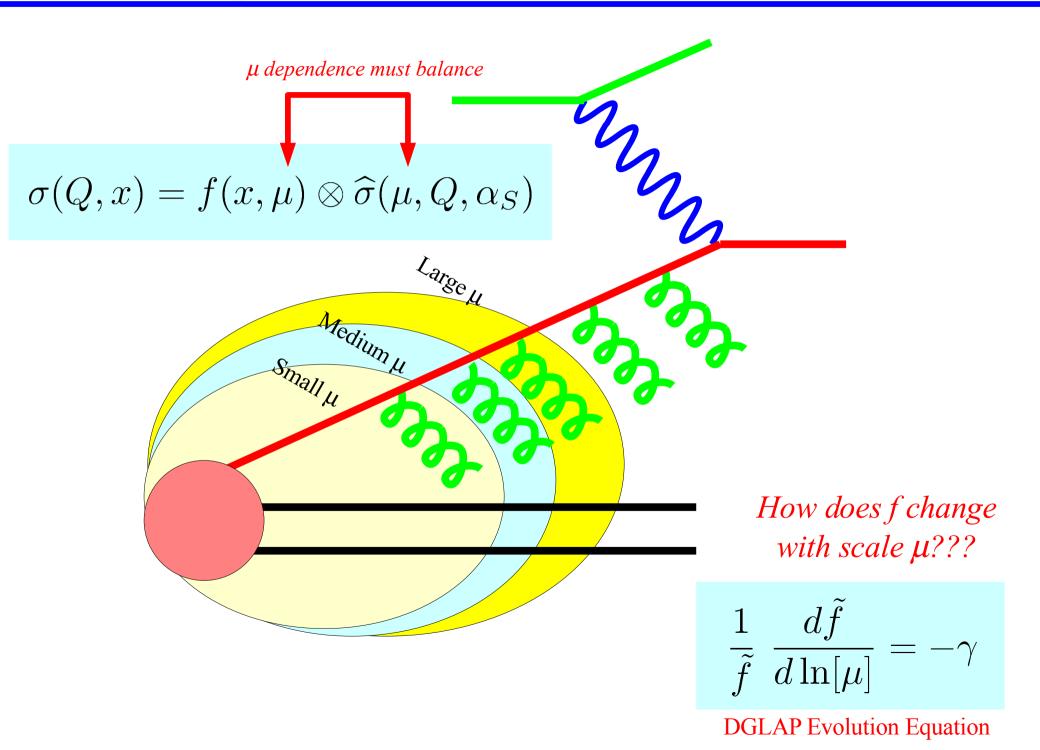
OCHEC-MCnet school on OCD Analysis and Phenomenology and the Physics and Techniques of Byent Generators

Introduction to the Parton Model and Perturbative QCD Fred Olness (SMU)

> Lauterbad (Black Forest), Germany 26 July - 4 August 2010

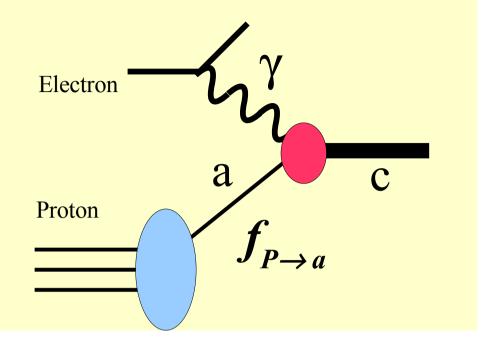
Recap: Parton Model, Factorization, Evolution



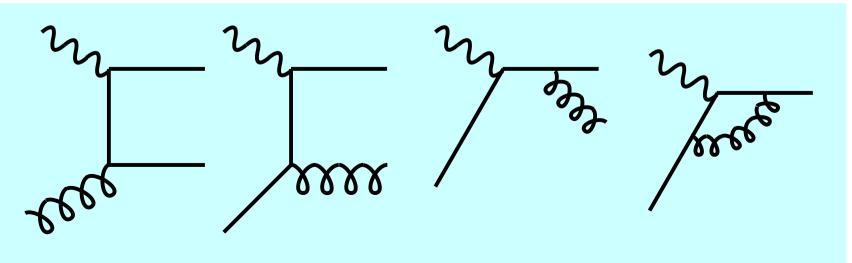
AT

NLO

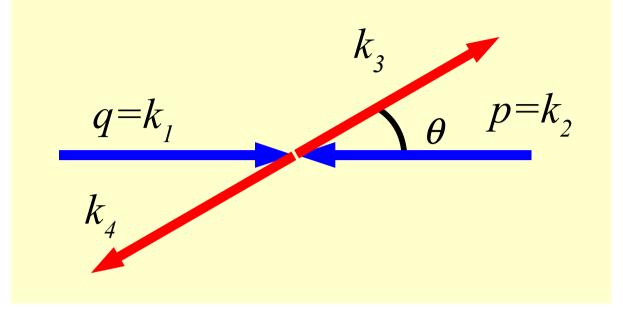
DIS at NLO



Sample NLO contributions to DIS



DIS NLO Kinematics



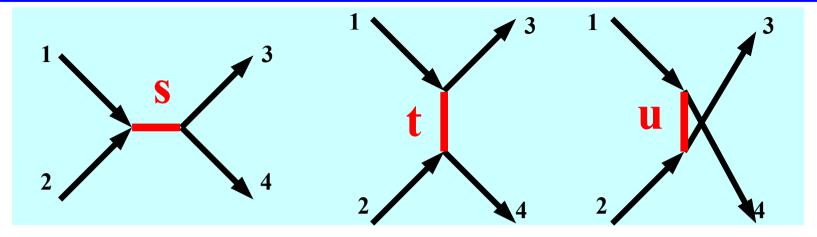
$$k_{1} \equiv q^{\mu} = \left(\frac{s - Q^{2}}{2\sqrt{s}}, 0, 0, \frac{(s + Q^{2})}{2\sqrt{s}}\right) - q^{2} = Q^{2} > 0$$

$$k_{2} \equiv p^{\mu} = \left(\frac{s + Q^{2}}{2\sqrt{s}}, 0, 0, \frac{-(s + Q^{2})}{2\sqrt{s}}\right) \qquad p^{2} = 0$$

$$k_{3}^{\mu} = \frac{\sqrt{s}}{2}(1, +\sin\theta, 0, +\cos\theta) \qquad k_{3}^{2} = 0$$

$$k_{4}^{\mu} = \frac{\sqrt{s}}{2}(1, -\sin\theta, 0, -\cos\theta) \qquad k_{4}^{2} = 0$$

Mandelstam Variables {s,t,u}



$$s = (k_1 + k_2)^2 \equiv (k_3 + k_4)^2$$

$$t = (k_1 - k_3)^2 \equiv (k_2 - k_4)^2$$

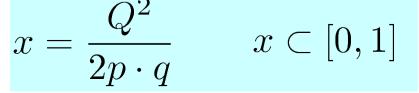
$$u = (k_1 - k_4)^2 \equiv (k_2 - k_3)^2$$

$$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

 $z \equiv \cos \theta$ $z \subset [-1, 1]$

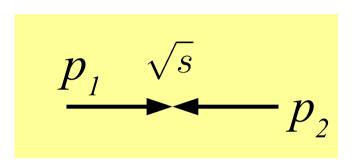
{s,t,u} are partonic
$$\frac{1}{2}(1+z)$$

$$s = +Q^2 \frac{(1-x)}{x} \qquad t = -Q^2 \frac{(1-z)}{2x} \qquad u = -Q^2 \frac{(1+z)}{2x}$$



Homework

1) Let's work out the general $2\rightarrow 2$ kinematics for general masses.



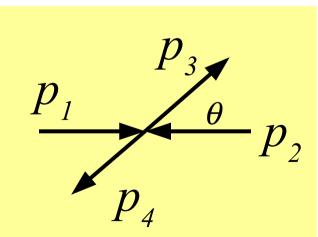
a) Start with the incoming particles.

Show that these can be written in the general form:

$$p_1 = (E_1, 0, 0, +p) \qquad p_1^2 = m_1^2$$

$$p_2 = (E_2, 0, 0, -p) \qquad p_2^2 = m_2^2$$

... with the following definitions:



$$E_{1,2} = \frac{\hat{s} \pm m_1^2 \mp m_2^2}{2\sqrt{\hat{s}}} \qquad p = \frac{\Delta(\hat{s}, m_1^2, m_2^2)}{2\sqrt{\hat{s}}}$$
$$\Delta(a, b, c) = \sqrt{a^2 + b^2 + c^2 - 2(ab + bc + ca)}$$

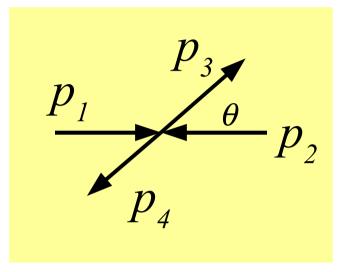
Note that $\Delta(a,b,c)$ is symmetric with respect to its arguments, and involves the only invariants of the initial state: s, m_1^2 , m_2^2 .

b) Next, compute the general form for the final state particles, p_3 and p_4 . Do this by first aligning p_3 and p_4 along the z-axis (as p_1 and p_2 are), and then rotate about the y-axis by angle θ .

Homework Part 2

PROBLEM #2: Consider the reaction: $pp \rightarrow pp \quad (12 \rightarrow 34)$ with **CMS** scattering angle θ . The CMS energy is $\sqrt{s} = 2 T e V$.

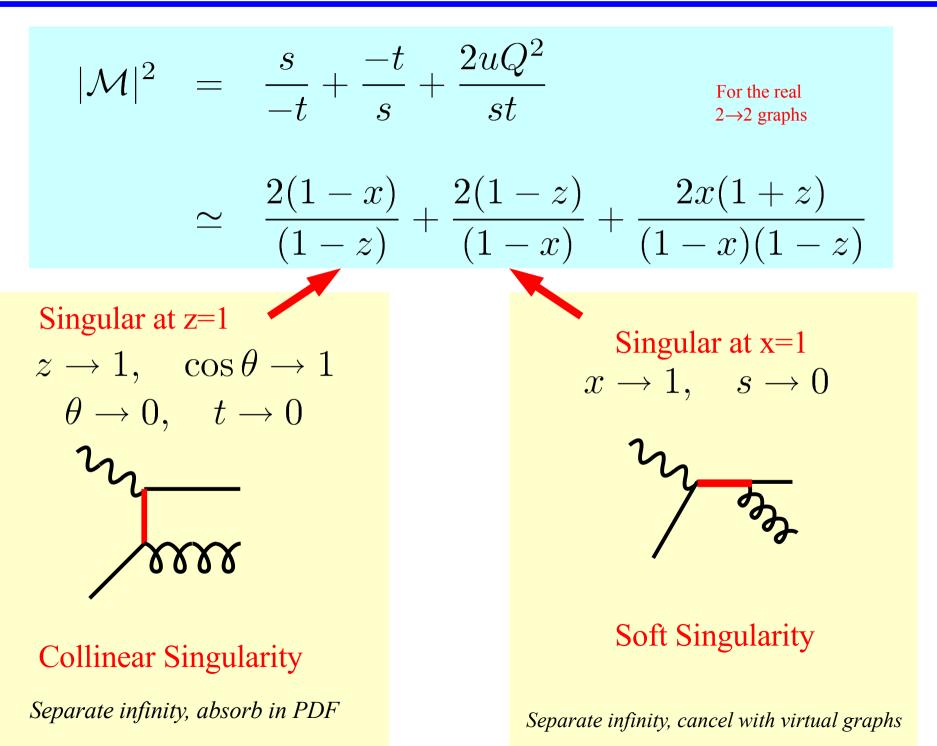
- a) Compute the boost from the CMS frame to the rest frame of #2 (lab frame)
- b) Compute the energy of #1 in the lab frame.
- c) Compute the scattering angle θ_{lab} as a function of the CMS θ and invariants.



Hint: by using invariants you can keep it simple. I.e., don't do it the way Goldstein does.

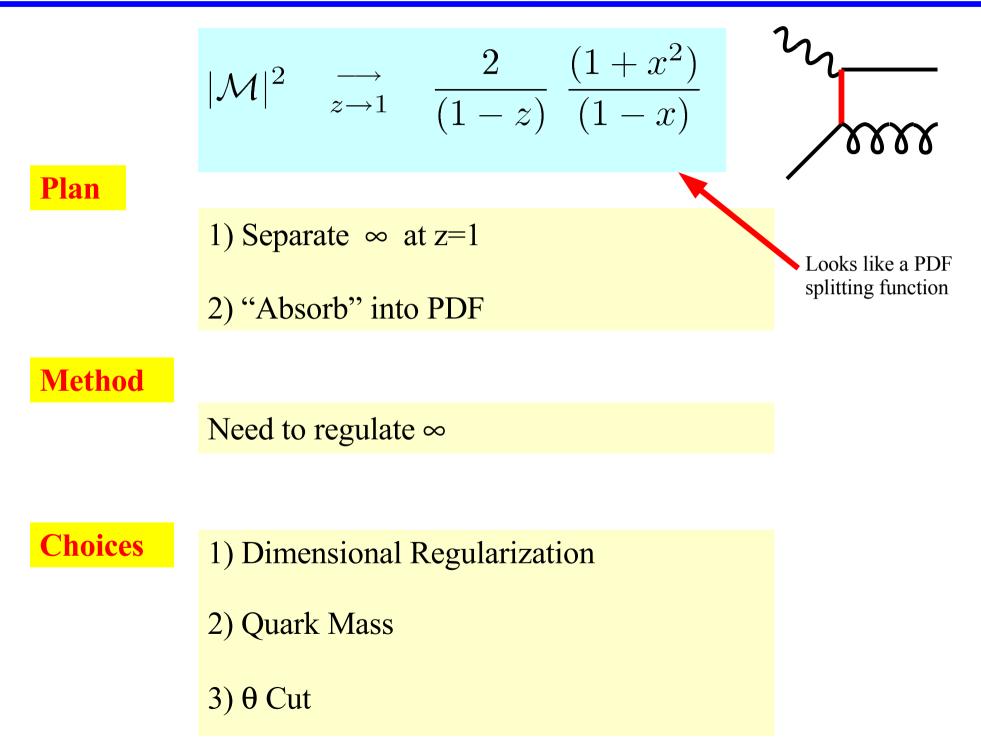
The power of invariants

Matrix element: NLO DIS

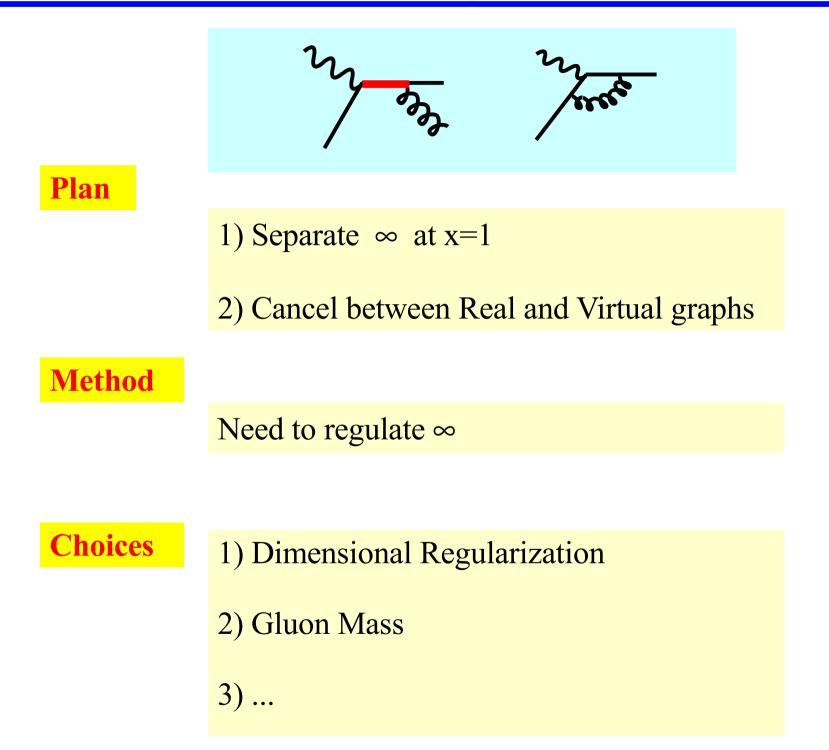


The Plan

Collinear Divergences



Soft Singularities



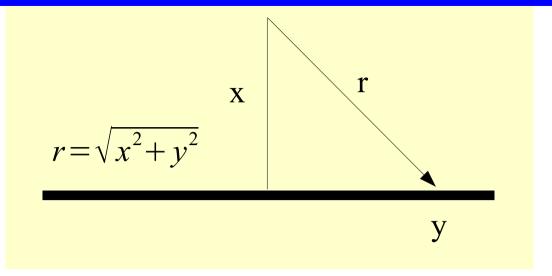
We'll use a simple example to illustrate the key points:

Dimensional Regularization meets Freshman E&M

M. Hans, Am.J.Phys. 51 (8) August (1983). p.694
C. Kaufman, Am.J.Phys. 37 (5), May (1969) p.560
B. Delamotte, Am.J.Phys. 72 (2) February (2004) p.170

Regularization, Renormalization, and Dimensional Analysis: Dimensional Regularization meets Freshman E&M. Olness & Scalise, arXiv:0812.3578 [hep-ph]

Infinite Line of Charge



$$dV = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r} \qquad \lambda = Q/y$$

$$V = \frac{\lambda}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} dy \quad \frac{1}{\sqrt{x^2 + y^2}} = \infty$$

Note: ∞ *can be very useful*

Scale Invariance



$$V(kx) =$$

$$= \frac{\lambda}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} dy \frac{1}{\sqrt{(kx)^2 + y^2}}$$

$$= \frac{\lambda}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} d\left(\frac{y}{k}\right) \frac{1}{\sqrt{x^2 + (y/k)^2}}$$

$$= \frac{\lambda}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} dz \frac{1}{\sqrt{x^2 + z^2}}$$

$$= V(x)$$

$$V(kx) = V(x)$$

Naively Implies: V(kx) - V(x) = 0 *Note:* $\infty + c = \infty$

 $\therefore \quad \infty - \infty = \mathbf{C}$

How do we distinguish this from

 $\infty - \infty = c + 17$

Cutoff Method

$$V = \frac{\lambda}{4\pi\epsilon_0} \int_{-L}^{+L} dy \frac{1}{\sqrt{x^2 + y^2}}$$
$$V = \frac{\lambda}{4\pi\epsilon_0} \log\left[\frac{+L + \sqrt{L^2 + x^2}}{-L + \sqrt{L^2 + x^2}}\right]$$

V(x) depends on artificial regulator L

We cannot remove the regulator L

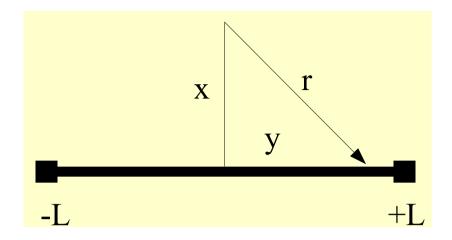
All physical quantities are independent of the regulator:

Electric Field
$$E(x) = \frac{-dV}{dx} = \frac{\lambda}{2\pi\epsilon_0 x} \frac{L}{\sqrt{L^2 + x^2}} \rightarrow \frac{\lambda}{2\pi\epsilon_0 x}$$

Energy $\delta V = V(x_1) - V(x_2) \xrightarrow{\rightarrow} \frac{\lambda}{4\pi\epsilon_0} \log\left[\frac{x_2^2}{x_1^2}\right]$

Problem solved at the expense of an extra scale L <u>AND</u> we have a broken symmetry: translation invariance

Broken Translational Symmetry



Shift:
$$y \rightarrow y' = y - c$$

 $y=[+L+c, -L+c]$

$$V = \frac{\lambda}{4 \pi \epsilon_0} \int_{-L+c}^{+L+c} dy \frac{1}{\sqrt{x^2 + y^2}}$$
$$V = \frac{\lambda}{4 \pi \epsilon_0} \log \left[\frac{+(L+c) + \sqrt{(L+c)^2 + x^2}}{-(L-c) + \sqrt{(L-c)^2 + x^2}} \right]$$

V(r) depends on "y" coordinate!!!

In QFT, gauge symmetries are important. E.g., Ward identies

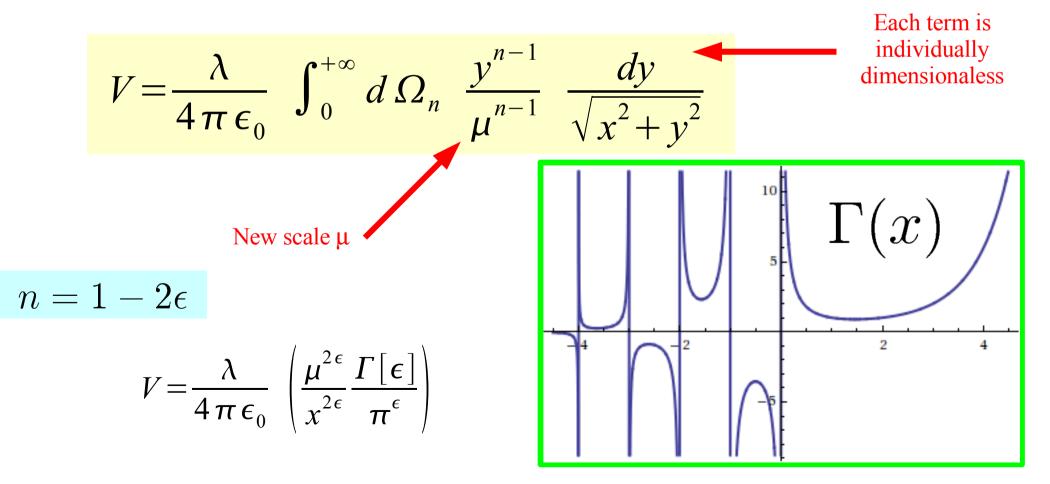
Dimensional Regularization

Compute in n-dimensions

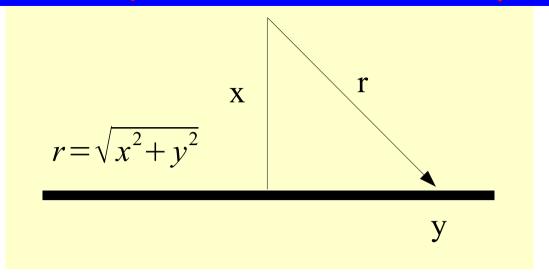
$$dy \rightarrow d^n y = \frac{d \Omega_n}{2} y^{n-1} dy$$

$$\Omega_n = \int d \Omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$$

$$\Omega_{1,2,3,4} = \{2, 2\pi, 4\pi, 2\pi^2\}$$



Why do we need an extra scale μ ???



$$dV = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r} \qquad \lambda = Q/y$$
$$V = \frac{\lambda}{4\pi\epsilon_0} f(x)$$

Dimensional Regularization

All physical quantities are independent of the regulators:

Electric Field
$$E(x) = \frac{-dV}{dx} = \frac{\lambda}{4\pi\epsilon_0} \left[\frac{2\epsilon\mu^{2\epsilon}\Gamma[\epsilon]}{\pi^{\epsilon}x^{1+2\epsilon}} \right] \xrightarrow{\rightarrow} \frac{\lambda}{2\pi\epsilon_0} \frac{1}{x}$$

Energy
$$\delta V = V(x_1) - V(x_2) \xrightarrow{\rightarrow} \frac{\lambda}{4\pi\epsilon_0} \log \left[\frac{x_2^2}{x_1^2} \right]$$

Problem solved at the expense of an extra scale μ <u>AND</u> regulator ϵ

Translation invariance is preserved!!!

Dimensional Regularization respects symmetries

Renormalization

$$V \to \frac{\lambda}{4\pi\epsilon_0} \left[\frac{1}{\epsilon} + \ln\left[\frac{e^{-\gamma_E}}{\pi}\right] + \ln\left[\frac{\mu^2}{x^2}\right] \right] \qquad \text{Original}$$
$$V \to \frac{\lambda}{4\pi\epsilon_0} \left[\frac{1}{\epsilon} + \ln\left[\frac{e^{-\gamma_E}}{\pi}\right] + \ln\left[\frac{\mu^2}{x^2}\right] \right] \qquad \text{MS}$$
$$V \to \frac{\lambda}{4\pi\epsilon_0} \left[\frac{1}{\epsilon} + \ln\left[\frac{e^{-\gamma_E}}{\pi}\right] + \ln\left[\frac{\mu^2}{x^2}\right] \right] \qquad \text{MS-Bar}$$

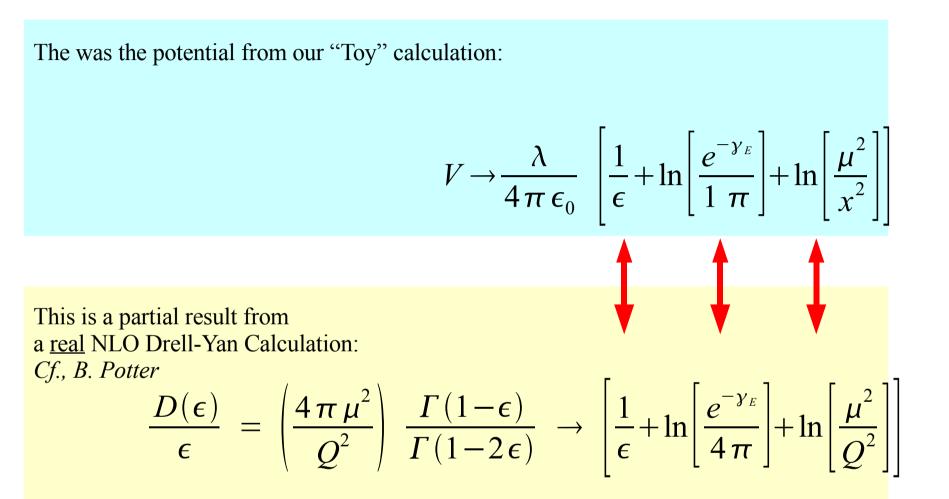
Physical quantities are independent of renormalization scheme!

$$V_{\overline{MS}}(x_1) - V_{\overline{MS}}(x_2) = \delta V = V_{MS}(x_1) - V_{MS}(x_2)$$

But only if performed consistently:

$$V_{\overline{MS}}(x_1) - V_{MS}(x_2) \neq \delta V \neq V_{MS}(x_1) - V_{\overline{MS}}(x_2)$$

Connection to QFT



Regulator provides unique definition of V, f, ω

Cutoff regulator L: simple, but does NOT respect symmetries

Dimensional regulator ε:

respects symmetries: translation, Lorentz, Gauge invariance introduces new scale μ

All physical quantities (E, dV, σ) are independent of the regulator AND the new scale μ Renormalization group equation: $d\sigma/d\mu=0$

We can define renormalized quantities (V,f,ω) Renormalized (V,f,ω) are scheme dependent and arbitrary Physical quantities (E,dV, σ) are unique and scheme independent if we apply the scheme consistently

Apply

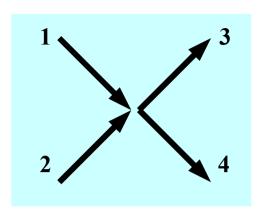
Dimensional

Regularization

to QFT

D-Dimensional Phase Space

$$d\sigma = \frac{1}{2s} |\mathcal{M}|^2 d\Gamma$$
$$d\Gamma_i = \frac{d^D k_i}{(2\pi)^D} (2\pi) \,\delta(k_i^2) \qquad \text{1-particle}$$



$$d\Gamma = d\Gamma_3 \, d\Gamma_4 \, (2\pi)^D \, \delta^D (k_1 + k_2 - k_3 - k_4)$$
 Final state

$$d\Gamma = \frac{1}{16\pi} \left(\frac{s}{16\pi}\right)^{-\epsilon} \frac{(1-z^2)^{-\epsilon}}{\Gamma[1-\epsilon]} dz \qquad \qquad \text{Final state}$$

$$g \to g \, \mu^\epsilon$$
 Enter, μ scale

$$d\Gamma = \frac{1}{16\pi} \left(\frac{16\pi\mu^2}{Q^2}\right)^{+\epsilon} \frac{1}{\Gamma[1-\epsilon]} \frac{x^{\epsilon}}{(1-x)^{\epsilon}} \frac{\text{All the pieces}}{(1-z^2)^{-\epsilon}} dz$$

Homework: Part 1

#1) Show:

$$\frac{d^{3} p}{(2\pi)^{3} 2E} = \frac{d^{4} p}{(2\pi)^{4}} (2\pi) \delta^{+} (p^{2} - m^{2})$$

This relation is often useful as the RHS is manifestly Lorentz invariant

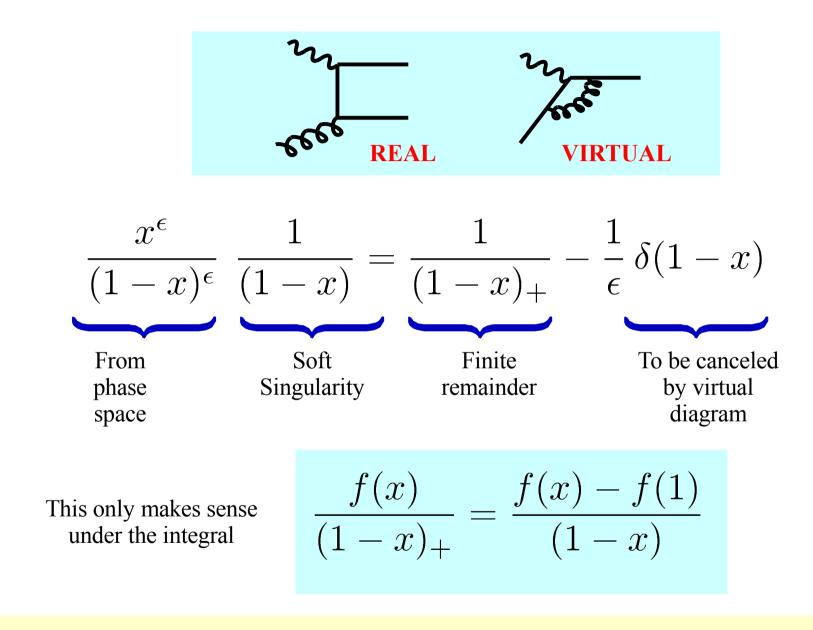
#2) Show that the 2-body phase space can be expressed as:

$$d\Gamma = \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) = \frac{d\cos(\theta)}{16\pi}$$

Note, we are working with massless partons, and θ is in the partonic CMS frame

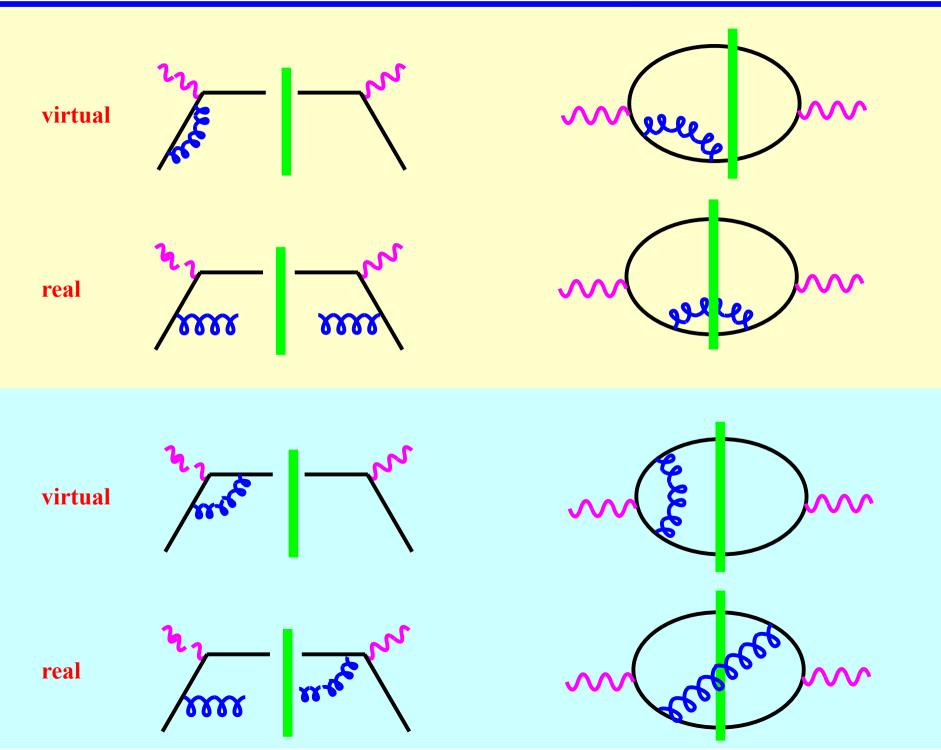
Soft Singularities

Soft Singularities



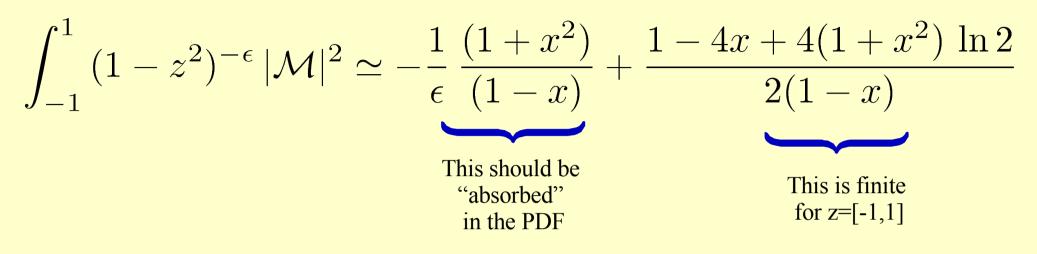
$$\int_0^1 dx f(x) \frac{x^{\epsilon}}{(1-x)^{1+\epsilon}} = \int_0^1 dx \frac{f(x) - f(1)}{(1-x)} - \frac{1}{\epsilon} \int_0^1 dx \,\delta(1-x) \,f(x)$$

KLN (Kinoshita, Lee, Nauenberg) Theorem

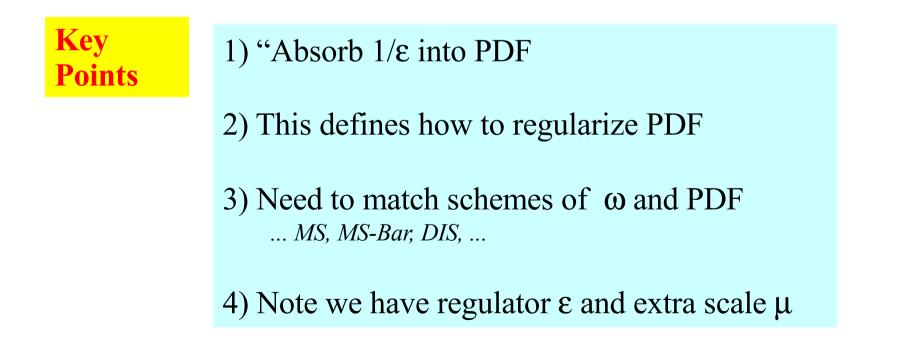


Collinear Singularities

Collinear Singularity

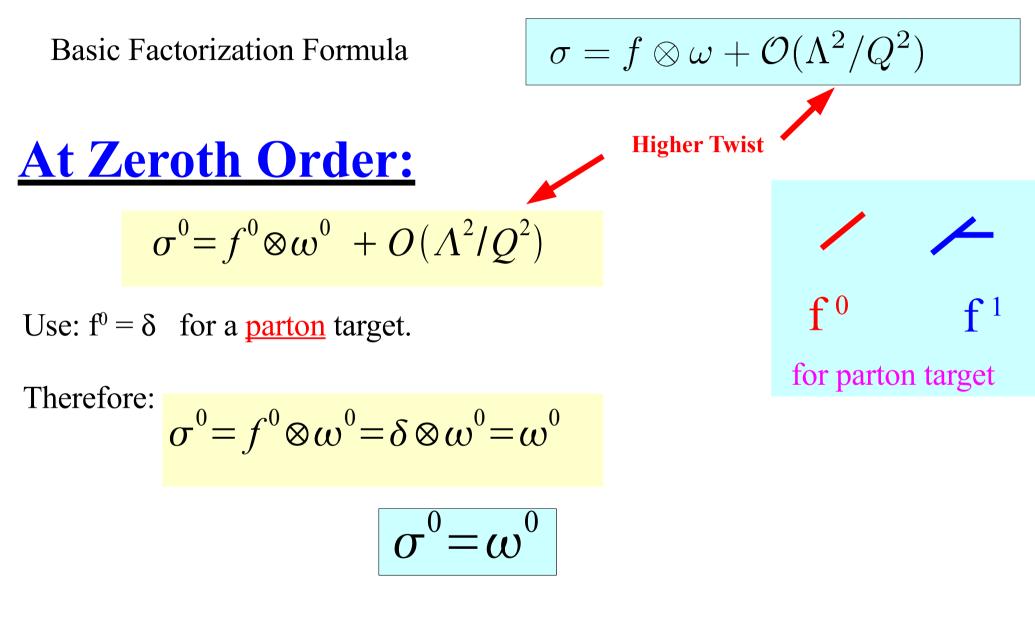


... looks like a splitting kernel



How do we know what to "absorb" into PDFs ???

Compute NLO Subtractions for a <u>partonic</u> target **Application of Factorization Formula at Leading Order (LO)**



Warning: This trivial result leads to many misconceptions at higher orders

Application of Factorization Formula at NLO

Basic Factorization Formula

$$\sigma = f \otimes \omega + \mathcal{O}(\Lambda^2/Q^2)$$

At First Order:

$$\sigma^{1} = f^{1} \otimes \omega^{0} + f^{0} \otimes \omega^{1}$$
$$\sigma^{1} = f^{1} \otimes \sigma^{0} + \omega^{1}$$

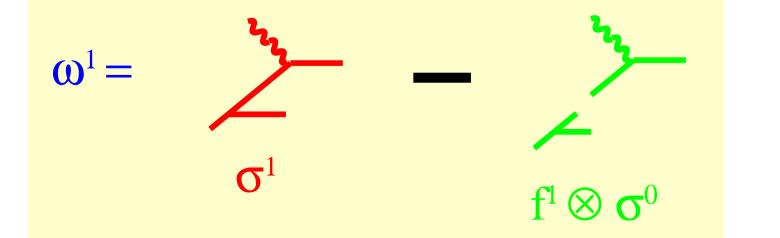
We used: $f^0 = \delta$ for a <u>parton</u> target.

Therefore:

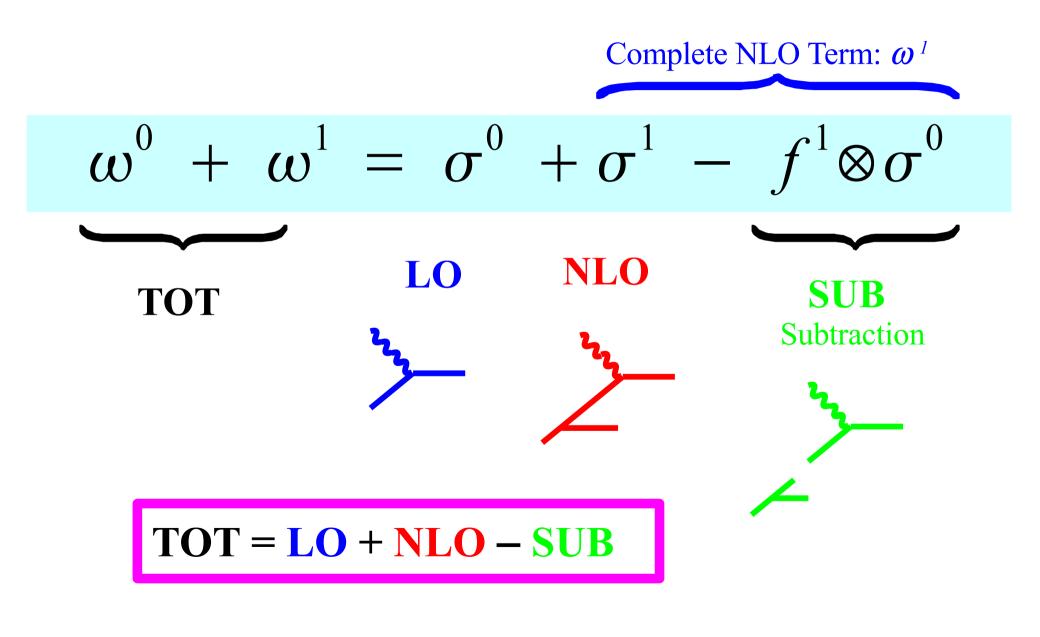
$$\omega^1 = \sigma^1 - f^1 \otimes \sigma^0$$

 $f^1 \sim \frac{\alpha_s}{2\pi} P^{(1)}$

P⁽¹⁾ defined by scheme choice



Combined Result:



HOMEWORK PROBLEM: NNLO WILSON COEFFICIENTS

Use the Basic Factorization Formula

$$\sigma = f \otimes \omega \otimes d + \mathcal{O}(\Lambda^2/Q^2)$$

At Second Order (NNLO):

$$\sigma^{2} = f^{2} \otimes \omega^{0} \otimes d^{0} + \dots + f^{1} \otimes \omega^{1} \otimes d^{0} + \dots$$
$$\omega^{2} = ???$$

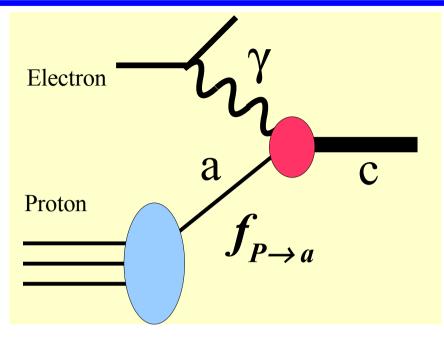
Therefore:

Include Fragmentation Functions d

Compute ω^2 at second order. Make a diagrammatic representation of each term.

Do we get different answers if we "absorb" different terms into PDFs ???

Pictorial Demonstration of Scheme Consistency

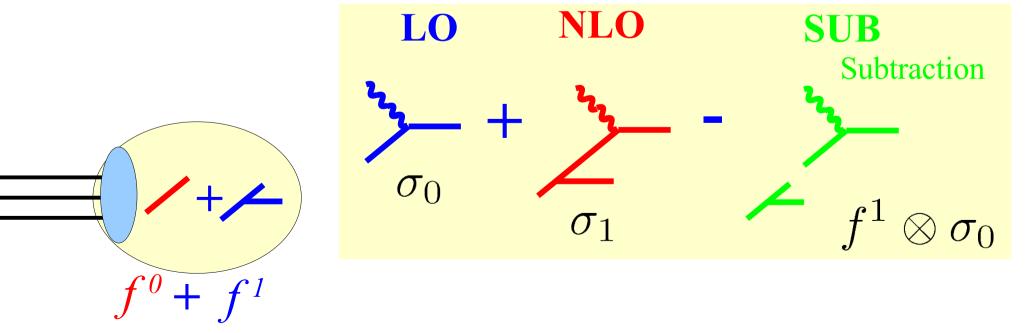


Parton Model

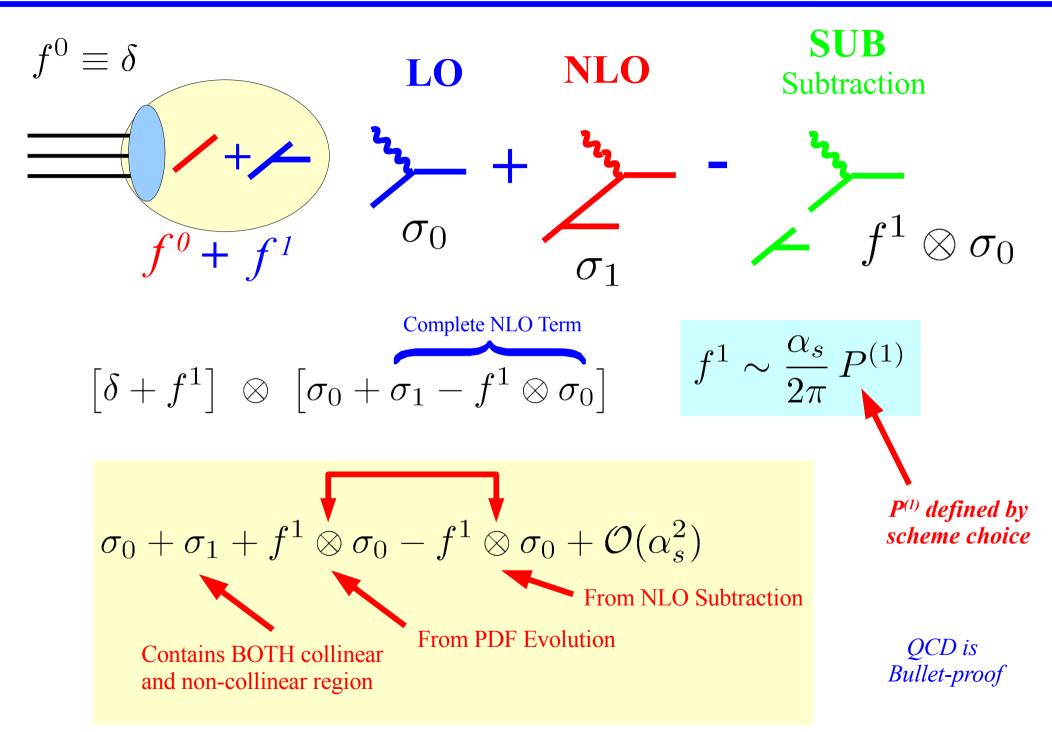
$$\sigma(Q^2) = f(\mu, \alpha_s) \otimes \widehat{\omega}(Q^2, \mu^2, \alpha_s)$$

Evolution Equation

$$\frac{df}{\ln[\mu^2]} = P \otimes f$$



Pictorial Demonstration of Scheme Consistency



Do we get different answers if we "absorb" different terms into PDFs ???

- NLO Theoretical Calculations:
 - Essential for accurate comparison with experiments
- We encounter singularities:
 - Soft singularities: cancel between real and virtual diagrams
 - Collinear singularities: "absorb" into PDF
- Regularization and Renormalization:
 - Regularize & Renormalize intermediate quantities
 - Physical results independent of regulators (e.g., L, or μ and ϵ)
 - Renormalization introduces scheme dependence (MS-bar, DIS)
- Factorization works:
 - Hard cross section $\hat{\sigma}$ or ω is not the same as σ
 - Scheme dependence cancels out (if performed consistently)

END OF LECTURE 3