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Monday: Standard Model and beyond

•• Theoretical introduction

•• Constraints on the Higgs

•• Supersymmetric Higgs sector

Tuesday: LHC Phenomenology

•• Higgs boson decay

•• Higgs boson signals at LHC



Field theory description of the SM (and beyond)

•• A quick review of non-Abelian gauge theories

– Yang-Mills theories

– electroweak interactions

•• Spontaneous symmetry breaking and mass generation: the Higgs boson

•• Theoretical bounds on the mass of the Higgs boson

•• Experimental bounds on the mass of the Higgs boson

•• Extension of the Higgs sector: two Higgs-doublet models and the MSSM
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Non-Abelian (Yang-Mills) gauge theories

The starting point is a Lagrangian of free or self-interacting fields, that is symmetric under a

GLOBAL symmetry

Lψ(ψ, ∂µψ) = iψγµ∂µψ − m ψψ

where

ψ =











ψ1

...

ψn











= multiplet of a compact Lie group G

The Lagrangian is symmetric under the transformation

ψ→ψ′ = U(θ)ψ U(θ) = exp(igTaθa) unitary matrix UU† = U†U = 1

If U is unitary, the Ta are hermitian matrices, called group generators (they “generate”

infinitesimal transformation around the unit element of the group)

U(θ) = 1 + igTaθa + O
(

θ2
)

If U is SU(N) matrix (unitary and det U = 1), then there are N2 − 1 traceless, hermitian

generators Ta = λa
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From ∂µ → Dµ

We obtain a LOCAL invariant Lagrangian if we make the substitution

Lψ(ψ, ∂µψ)→Lψ(ψ, Dµψ) Dµ = ∂µ − igAa
µ(x)Ta ≡ ∂µ − igAµ(x)

with the transformation properties

ψ(x) → U(x)ψ(x) with U(x) = U(θ(x)) = exp(igTaθa(x))

Dµψ(x) → U(x)Dµψ(x) = U(x)DµU−1(x)U(x)ψ(x)

i.e. the covariant derivative must transform as

Dµ →U(x)DµU−1(x) implying Aa
µ → Aa

µ + ∂µθa(x) + g f abc Ab
µθc + · · ·

We can build the kinetic term for the Aa
µ fields from

Fµν = Fa
µνTa =

i

g
[Dµ , Dν ] with Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ + g f abc Ab
µ Ac

ν

which transforms homogeneously under a local gauge transformation

Fµν →UFµνU−1 =⇒ Fa
µνFµν

a ∼ trFµνFµν → trUFµνU−1 UFµνU−1 = trFµνFµν



Remarks on Yang-Mills theories

Gauge invariant Yang-Mills (YM) Lagrangian for gauge and matter fields

LYM = −1

4
Fa
µνFµν

a + Lψ(ψ, Dµψ) with Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν

•• Mass terms Aa
µ Aaµ for the gauge bosons are NOT gauge invariant!

Gauge bosons of (unbroken) YM theories are massless.

•• From the Fa
µνFaµν term in the Lagrangian, we have cubic and quartic gauge boson self

interactions

•• gauge invariance combined with renormalizability (absence of higher powers of fields and

covariant derivatives in L) determines gauge-boson/matter couplings and gauge-boson self

interactions

•• if G =SU(3)c (N = 3) and the fermion are in triplets,

ψ =









ψred

ψblue

ψgreen









=









ψ1

ψ2

ψ3









we have the QCD Lagrangian with N2 − 1 = 8 gauge bosons = gluons.



Electroweak sector

From experimental facts (charged currents couple only to left-handed fermions, existence of a

massless photon and a neutral Z), the gauge group is chosen as SU(2)L× U(1)Y.

ψL ≡ 1

2
(1 −γ5)ψ ψR ≡ 1

2
(1 + γ5)ψ ψ = ψL + ψR

LL ≡ 1

2
(1 −γ5)





νe

e



 =





νeL

eL



 νeR ≡ 1

2
(1 + γ5)νe eR ≡ 1

2
(1 + γ5)e

•• SU(2)L: weak isospin group. Three generators =⇒ three gauge bosons: W1, W2 and W3.

Generators for doublets are Ta = σ a/2, where σ a are the 3 Pauli matrices

For gauge singlets (eR, νR): Ta ≡ 0. All satisfy
[

Ta, Tb
]

= iǫabcTc.

The gauge coupling will be indicated with g.

•• U(1)Y: weak hypercharge Y. One gauge boson B with gauge coupling g′.

One generator (charge) Y(ψ), whose value depends on the fermion field

W3 and B carry identical quantum numbers (T3 = 0, Y = 0) =⇒ they will combine to produce

two neutral gauge bosons: Z and γ.



EW gauge-boson sector of the SM

Gauge invariance and renormalizability completely determine the

kinetic terms for the gauge bosons

LYM = −1

4
BµνBµν − 1

4
Wa

µνWµν
a

Bµν = ∂µBν − ∂νBµ

Wa
µν = ∂µWa

ν − ∂νWa
µ + gǫabc Wb,µ Wc,ν

The gauge symmetry does NOT allow any explicit mass terms for W± and Z,

i.e. forbidden are terms like

LMass =
1

2
m2

WWa
µWµ

a
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Spontaneous symmetry breaking

Experimentally, the weak bosons are massive. We give mass to the gauge bosons through the

Higgs mechanism: generate mass terms from the kinetic energy term of a scalar doublet field Φ

that undergoes spontaneous symmetry breaking.

Introduce a complex scalar doublet

Φ =





φ+

φ0



 , YΦ =
1

2

LHiggs = (DµΦ)†(DµΦ)− V
(

Φ†Φ
)

Dµ = ∂µ − igWµ
i

σ i

2
− ig′YΦBµ

V
(

Φ†Φ
)

= V0 −µ2Φ†Φ + λ
(

Φ†Φ
)2

, µ2, λ > 0

Notice the “wrong” mass sign. Minimum of potential when

Φ has vacuum expectation value

< |Φ| > =
v√
2

=
|µ|√

2λ

)
V

(|
Φ+ |

0
Φ| ,

|

|Φ +|

Φ0||

µ <02

µ>02

v/ 2



Expanding Φ around the minimum

Φ =





φ+

φ0



 =





φ+

1√
2
[v + H(x) + iχ(x)]



 =
1√
2

exp

[

iσiθ
i(x)

v

]





0

v + H(x)





We can rotate away the fields θi(x) by an SU(2)L gauge transformation

Φ(x)→Φ′(x) = U(x)Φ(x) =
1√
2





0

v + H(x)





where U(x) = exp
[

− iσiθ
i(x)
v

]

.

This gauge choice, called unitary gauge, is equivalent to absorbing the Goldstone modes θi(x).

The vacuum state can be chosen to correspond to the vacuum expectation value

Φ0 =
1√
2





0

v





Notice that only a scalar field can have a vacuum expectation value.The VEV of a fermion or

vector field would break Lorentz invariance.
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Consequences for the scalar field H

The scalar potential

V
(

Φ†Φ
)

= λ

(

Φ†Φ − v2

2

)2

expanded around the vacuum state

Φ(x) =
1√
2





0

v + H(x)





becomes

V =
λ

4

(

2vH + H2
)2

=
1

2
(2λv2)H2 + λvH3 +

λ

4
H4

Consequences:

•• the scalar field H gets a mass which is given by the quartic coupling λ

m2
H = 2λv2

•• there is a term of cubic and quartic self-coupling.



Higgs kinetic terms and coupling to W, Z

DµΦ =

(

∂µ − igWµ
i

σ i

2
− ig′

1

2
Bµ

)

1√
2





0

v + H(x)





=
1√
2





0

∂µ H



 − i

2
√

2



g





Wµ
3 Wµ

1 − iWµ
2

Wµ
1 + iWµ

2 −Wµ
3



 + g′Bµ









0

v + H





=
1√
2









0

∂µ H



 − i

2
(v + H)





g
(

Wµ
1 − iWµ

2

)

−gWµ
3 + g′Bµ









=
1√
2





0

∂µ H



 − i

2

(

1 +
H

v

)





gv Wµ+

−
√

(g2 + g′2)/2 v Zµ





(DµΦ)† DµΦ =
1

2
∂µ H∂µ H +

[

( gv

2

)2
Wµ+W−

µ +
1

2

(

g2 + g′2
)

v2

4
ZµZµ

]

(

1 +
H

v

)2



Consequences

•• The W and Z gauge bosons have acquired masses

m2
W =

g2v2

4
m2

Z =

(

g2 + g′2
)

v2

4
=

m2
W

cos2 θW

From the measured value of the Fermi constant GF

GF√
2

=

(

g

2
√

2

)2 1

m2
W

=⇒ v =

√

1√
2GF

≈ 246.22 GeV

•• the photon stays massless

•• HWW and HZZ couplings from 2H/v term (and HHWW and HHZZ couplings from H2/v2

term)

LHVV =
2m2

W

v
W+

µ W−µ H +
m2

Z

v
ZµZµ H ≡ gmWW+

µ W−µ H +
1

2

gmZ

cosθW
ZµZµ H

Higgs coupling proportional to mass

•• tree-level HVV (V = vector boson) coupling requires VEV! e.g. gmW = g2v/2

Normal scalar couplings give Φ†ΦV or Φ†ΦVV couplings only.



Gauging the symmetry: fermion Lagrangian

Following the gauge recipe (for one generation of leptons, quarks work the same way)

Lψ = i L̄L D/ LL + i ν̄eR D/ νeR + i ēR D/ eR

where

Dµ = ∂µ − igWµ
i Ti − ig′Yψ Bµ Ti =

σ i

2
or Ti = 0, i = 1, 2, 3

Lψ ≡ Lkin + LCC + LNC

Lkin = i L̄L ∂/ LL + i ν̄eR ∂/ νeR + i ēR ∂/ eR

LCC = g W1
µ L̄L γµ σ1

2
LL + g W2

µ L̄L γµ σ2

2
LL =

g√
2

W+
µ ν̄L γµ eL +

g√
2

W−
µ ēL γµ νL

LNC =
g

2
W3

µ [ν̄eL γµ νeL − ēL γµ eL] + g′ Bµ

[

YL (ν̄eL γµ νeL + ēL γµ eL)

+YνeR
ν̄eR γµ νeR + YeR

ēR γµ eR

]

with

W±
µ =

1√
2

(

W1
µ ∓ iW2

µ

)



Fermion couplings fixed by renormalizability and gauge quantum numbers

SU(3) SU(2) U(1)Y

Qi
L =





uL

dL









cL

sL









tL

bL



 3 2 1
6

ui
R = uR cR tR 3 1 2

3

di
R = dR sR bR 3 1 − 1

3

Li
L =





νeL

eL









νµL

µL









ντL

τL



 1 2 − 1
2

ei
R = eR µR τR 1 1 −1

νi
R = νeR νµR ντR 1 1 0



Weak mixing angle

W3
µ and Bµ mix to produce two orthogonal mass eigenstates

massive partner : g W3
µ−g′ Bµ =

√

g2 + g′2 Zµ =
√

g2 + g′2
(

W3
µcosθW − BµsinθW

)

orthogonal, massless : g′ W3
µ + g Bµ =

√

g2 + g′2 Aµ =
√

g2 + g′2
(

W3
µsinθW + BµcosθW

)

with mixing angle fixed by cosθW =
g

√

g2 + g′2
sinθW =

g′
√

g2 + g′2

Write the NC Lagrangian in terms of these mass eigenstates

LNC = ψ̄γµ

(

gT3Wµ
3 + g′YBµ

)

ψ = ψ̄γµ

(

1
√

g2 + g′2
(g2T3 − g′2Y)Zµ +

gg′
√

g2 + g′2
(T3 + Y)Aµ

)

ψ

Must identify positron charge, e, as

e =
gg′

√

g2 + g′2
= g sinθW = g′ cosθW

and the charge of a particle, as a multiple of the positron charge, is given by the

Gell-Mann–Nishijima formula: Q = T3 + Y



The neutral current

It is customary to write the Z coupling to fermions in terms of the electric charge Q and the third

component of isospin (T3 = ±1/2 for left-chiral fermions, 0 for right-chiral fermions)

LNC = ψγµ

(

1
√

g2 + g′2
(g2T3 − g′2Y)Zµ +

gg′
√

g2 + g′2
(T3 + Y)Aµ

)

ψ = eψγµQψAµ + ψγµQZψZµ

QZ is given by

QZ =
1

√

g2 + g′2
(g2T3 − g′2(Q − T3)) =

e

cosθW sinθW

(

T3 − Q sin2 θW

)

This procedure works for leptons and also for the quarks (see more later)

Qi
L =





uL

dL



 ,





cL

sL



 ,





tL

bL





ui
R = uR, cR, tR

di
R = dR, sR, bR
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Fermion mass generation

A direct mass term is not invariant under SU(2)L or U(1)Y gauge transformation

m f ψψ = m f

(

ψRψL + ψLψR

)

Generate fermion masses through Yukawa-type interaction terms

LYukawa = −ΓdQLΦdR − ΓddRΦ†QL

−ΓuQLΦcuR + h.c. Φc = iσ2Φ
∗ =

1√
2





v + H(x)

0





−ΓeLLΦeR + h.c.

−ΓνLLΦcνR + h.c.

where Q, L are left-handed doublet fields and dR, uR, eR, νR are right-handed SU(2) -singlet

fields.

Notice: neutrino masses can be implemented via Γν term. Since mν ≈ 0 we neglect it in the

following.



Fermion masses for three generations

Generate fermion masses for three generations of quarks and leptons by generalizing

LYukawa = −Γ
i j
d Q

′ i
L Φd

′ j
R − Γ

i j∗
d d

′ i
R Φ†Q

′ j
L

−Γ
i j
u Q

′ i
L Φcu

′ j
R + h.c. Φc = iσ2Φ

∗ =
1√
2





v + H(x)

0





−Γ
i j
e L

i
LΦe

j
R + h.c.

where Q′, u′ and d′ are quark fields that are generic linear combination of the mass eigenstates u

and d and Γu, Γd and Γe are 3 × 3 complex matrices in generation space, spanned by the indices i

and j.

LYukawa is Lorentz invariant, gauge invariant and renormalizable, and therefore it can

(actually it must) be included in the Lagrangian.
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Expanding around the vacuum state

In the unitary gauge we have

Q
′ i
L Φ d

′ j
R =

(

u′ i
L d

′ i
L

)





0

v+H√
2



 d
′ j
R =

v + H√
2

d
′ i
L d

′ j
R

Q
′ i
L Φc u

′ j
R =

(

u′ i
L d

′ i
L

)





v+H√
2

0



 u
′ j
R =

v + H√
2

u′ i
L u

′ j
R

and we obtain

LYukawa = −Γ
i j
d

v + H√
2

d
′ i
L d

′ j
R − Γ

i j
u

v + H√
2

u′ i
L u

′ j
R − Γ

i j
e

v + H√
2

ei
L e

j
R + h.c.

= −
[

M
i j
u u′ i

L u
′ j
R + M

i j
d d

′ i
L d

′ j
R + M

i j
e ei

L e
j
R + h.c.

]

(

1 +
H

v

)

with mass matrices Mi j = Γ i j v√
2
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Diagonalizing M f

It is always possible to diagonalize M
i j
f ( f = u, d, e) with a bi-unitary transformation

(U
f

L/R
must be unitary in order to preserve the form of the kinetic terms in the Lagrangian)

f ′Li =
(

U
f
L

)

i j
fL j

f ′Ri =
(

U
f
R

)

i j
fR j

with U
f
L and U

f
R chosen such that

(

U
f
L

)†
M f U

f
R = diagonal

For example:

(Uu
L)† MuUu

R =









mu 0 0

0 mc 0

0 0 mt









(

Ud
L

)†
MdUd

R =









md 0 0

0 ms 0

0 0 mb








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Mass terms

LYukawa = − ∑
f ,i, j

M
i j
f f

′ i
L f

′ j
R

(

1 +
H

v

)

+ h.c.

= − ∑
f ,i, j

f
i
L

[

(

U
f
L

)†
M f U

f
R

]

i j

f
j
R

(

1 +
H

v

)

+ h.c.

= −∑
f

m f

(

f L fR + f R fL

)

(

1 +
H

v

)

We succeed in producing fermion masses and we got a fermion-antifermion-Higgs coupling

proportional to the fermion mass.

The Higgs Yukawa couplings are flavor diagonal: no flavor changing Higgs interactions.
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Mass diagonalization and charged current interaction

The charged current interaction is given by

e√
2 sinθW

u′ i
L /W+ d′ i

L + h.c.

After the mass diagonalization described previously, this term becomes

e√
2 sinθW

ui
L

[

(Uu
L)† Ud

L

]

i j
/W+d

j
L + h.c.

and we define the Cabibbo-Kobayashi-Maskawa matrix VCKM

VCKM = (Uu
L)† Ud

L

•• VCKM is not diagonal and then it mixes the flavors of the different quarks.

•• It is a unitary matrix and the values of its entries must be determined from experiments.
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Feynman rules for Higgs couplings

H

f

f

−i
m f

v

H

Wµ
+

Wν
-

ig mW gµν

H

Zµ

Zν

i g 1
cosθW

mZ gµν

Within the Standard Model, since almost all masses have been measured, the Higgs couplings

are almost completely known. The only free parameter (not yet measured) is the Higgs mass

m2
H = 2λv2



Constraints on the Higgs Boson Mass

We had found that the Higgs boson mass is related to the value of the quartic Higgs coupling λ:

L = (DµΦ)†(DµΦ)− λ

(

Φ†Φ − v2

2

)2

leads to

m2
H = 2λv2

So far we have measured neither mH nor λ =⇒ no direct experimental information

This raises several questions

•• Can we get rid of the Higgs by setting mH = ∞ and λ = ∞? Can we eliminate the Higgs

from the SM?

•• Does consistency of the SM as a renormalizable field theory provide constraints?

•• Is there indirect information on mH , e.g. from precision observables and loop effects?
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The perturbative unitarity bound

A very severe constraint on the Higgs boson mass comes from unitarity of the scattering

amplitude.

unitarity ⇐⇒ QM probability < 1

Scattering probability bounded from above!

Considering the elastic scattering of longitudinally polarized Z bosons

ZLZL → ZLZL

M = −m2
H

v2

[

s

s − m2
H

+
t

t − m2
H

+
u

u − m2
H

]

in the s ≫ m2
Z limit

where s, t and u are the usual Mandelstam variables.

The perturbative unitary bound on the J = 0 partial wave amplitude takes the form

s ≫ m2
H : |M0|2 =

[

3

16π

m2
H

v2

]2

< 1 =⇒ mH <

√

16π

3
v ≈ 1 TeV
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Unitarity of WW scattering

Partial wave amplitudes are bounded by a constant

=⇒ M ∼ s
m2

W

violates unitarity at sufficiently high energy

Without the Higgs contribution, the J = 0 partial wave violates unitarity for
√

s > 1.2 TeV

Destructive interference between Higgs exchange amplitudes and gauge boson scattering

amplitudes works for s > m2
H only

=⇒ mH
<∼ 1 TeV

or new physics at the TeV scale

or both
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Running of λ

The one-loop renormalization group equation (RGE) for λ(µ) is

dλ(µ)

d log µ2
=

1

16π2

[

12λ2 +
3

8
g4 +

3

16

(

g2 + g′2
)2

−3h4
t − 3λg2 − 3

2
λ

(

g2 + g′2
)

+ 6λh2
t

]

where

mt =
htv√

2
and m2

H = 2λv2

This equation must be solved together with the one-loop RGEs for the gauge and Yukawa

couplings, which, in the Standard Model, are given by

dg(µ)

d log µ2
=

1

32π2

(

− 19

6
g3

)

dg′(µ)

d log µ2
=

1

32π2

41

6
g′3

dgs(µ)

d log µ2
=

1

32π2

(

−7g3
s

)

=
1

32π2

(

−(11 − 2

3
n f )g3

s

)

dht(µ)

d log µ2
=

1

32π2

[

9

2
h3

t −
(

8g2
s +

9

4
g2 +

17

12
g′2

)

ht

]

here gs is the strong interaction coupling constant, and the MS scheme is adopted.



Solutions for λ(µ)

Solving this system of coupled equations with the initial condition

λ (mH) =
m2

H

2v2



Lower bound for mH : vacuum stability

It can be shown that the requirement that the Higgs potential be bounded from below, even after

the inclusion of radiative corrections, is fulfilled if λ(µ) stays positive, at least up to a certain

scale µ ≈ Λ, the maximum energy scale at which the theory can be considered reliable.

✗ This limit is extremely sensitive to the top-quark mass.

✓ The stability lower bound can be relaxed by allowing metastability
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Upper bound for mH : triviality bound

For large values of the Higgs boson mass, the coupling

λ(µ) grows with increasing µ, and eventually leaves the

perturbative domain (λ <∼ 1): the solution has a singular-

ity in µ , known as the Landau pole.

For the theory to make sense up to a scale Λ, we must ask

λ(µ) <∼ 1 (or something similar), for µ ≤ Λ.

Neglecting gauge and Yukawa coupling, we have

λ(µ2) =
λ(m2

H)

1 − 3
4π2 λ(m2

H) log µ2

m2
H

singular when µ2 ≈ Λ2
L ≡ m2

H exp

[

4π2

3λ
(

m2
H

)

]

For any value of λ
(

m2
H

)

the theory has

an upper scale Λ of validity.

Λ→∞ for pure scalar theory possible

only if λ(µ) ≡ 0, i.e. no scalar self-

coupling =⇒ free or trivial theory



Higgs boson mass bounds

Renormalization group constraints on the Higgs boson mass, mH =
√

2λv

Riesselmann, hep-ph/9711456

Notice the small window

130 GeV <∼ mH
<∼ 180 GeV, where

the theory is valid up to the Planck

scale MPlanck = (h̄c/GNewton)1/2 ≈
1.22 × 1019 GeV.

For a cutoff scale of Λ > 1000 TeV

the Higgs boson should lie in the mass

window 110 GeV < mH < 300 GeV
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Constraints from precision data

α =
1

4π

g2g′2

g2 + g′2
=

1

137.03599976(50)

GF =
1√
2v2

= 1.16637(1) × 10−5 GeV−2

mZ =
1

2

√

g2 + g′2 v = 91.1875(21) GeV ,

where the uncertainty is given in parentheses. The value of α is extracted from low-energy

experiments, GF is extracted from the muon lifetime, and mZ is measured from e+e− annihilation

near the Z mass.

At tree level, we can express mW as

m2
W =

1

sin2 θW

πα√
2GF

where

sin2 θW = 1 − m2
W

m2
Z
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Clues to the Higgs boson mass

From the sensitivity of electroweak observables to the mass of the top, we are able to measure its

mass, even without directly producing it

W W

t

b

Z Z

t

t

These quantum corrections alter the link between W and Z boson masses

m2
W =

1

sin2 θW (1 − ∆ρ)

πα√
2GF

∆ρ(top) ≈ − 3GF

8π2
√

2

1

tan2 θW
m2

t

The strong dependence on m2
t accounts for the precision of the top-quark mass estimates derived

from electroweak observables.
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The Higgs boson quantum corrections are typically smaller than the top-quark corrections, and

exhibit a more subtle dependence on mH than the m2
t dependence of the top-quark corrections.

H

+

H

∆ρ(Higgs) =
11GFm2

Z cos2 θW

24
√

2π2
log

(

m2
H

m2
W

)

Since mZ has been determined at LEP to 23 ppm, it is interesting to examine the dependence of

mW upon mt and mH .

Indirect measurements of mW and mt (dashed line)

Direct measurements of mW and mt (solid line)

mt = 173.1 ± 1.3 GeV

mW = 80.399 ± 0.023 GeV

both shown as one-standard-deviation regions.
80.3

80.4

80.5

150 175 200

mH [GeV]
114 300 1000

mt  [GeV]
m

W
  [

G
eV

]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

August 2009

The indirect and direct determinations are in reasonable agreement and both favor a light Higgs

boson, within the framework of the SM.



Summary of EW precision data

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.399 ± 0.023 80.379

ΓW [GeV]ΓW [GeV] 2.098 ± 0.048 2.092

mt [GeV]mt [GeV] 173.1 ± 1.3 173.2

August 2009

Better estimates of the SM Higgs boson mass

are obtained by combining all available data:

Summary of electroweak precision measure-

ments (status summer 2009) as given on LEP-

EWWG page:

http://lepewwg.web.cern.ch/LEPEWWG/



SM Higgs mass fit to EW precision data

mH = 87+35
−26 GeV

Including theory uncertainty

mH < 157 GeV (95% CL)

Does not include

Direct search limit from LEP

mH > 114 GeV (95% CL)

Renormalize probability for

mH > 114 GeV to 100%:

mH < 186 GeV (95% CL)

0

1

2

3

4

5

6

10030 300

mH [GeV]
∆χ

2
Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty
August 2009 mLimit = 157 GeV



The MSSM Higgs sector

The SM uses the conjugate field Φc = iσ2Φ
∗ to generate down quark and lepton masses. In

supersymmetric models this must be an independent field

LYukawa = −ΓdQ̄LΦ1dR − Γe L̄LΦ1eR + h.c.

−ΓuQ̄LΦ2uR + h.c.

Two complex Higgs doublet fields Φ1 and Φ2 receive mass and VEVs v1, v2 from generalized

Higgs potential. Mass eigenstates constructed out of these 8 real fields are

Neutral sector:

2 CP even Higgs bosons: h and H

1 CP odd Higgs boson: A

1 Goldstone boson: χ0

Charged sector:

charged Higgs bosons: H±

charged Goldstone boson: χ±
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Higgs mixing and MSSM parameters

The Higgs potential leads to general mixing of the 2 doublet fields

Φ1 =
1√
2





√
2[H− sin β − χ− cos β]

v1 + [H cosα − h sinα] + i[A sin β + χ0 cos β]



 → 1√
2





√
2H− sin β

v1 +ϕ1 + iA sin β





Φ2 =
1√
2





v2 + [H sinα + h cosα] + i[A cos β − χ0 sin β]
√

2[H+ cos β + χ+ sin β]



 → 1√
2





v2 +ϕ2 + iA cos β
√

2H+ cos β





The angle β is determined by the VEVs:

v1 = v cos β , v2 = v sin β , =⇒ v2

v1
= tan β

The mixing angle α between the 2 CP even scalars and the masses are determined by

tan β , mA , v =
√

v2
1 + v2

2 = 246 GeV
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SUSY Higgs mass relations

Higgs potential in the MSSM produces distinct mass relations at tree level

m2
h, m2

H =
1

2

[

m2
A + m2

Z ±
√

(

m2
A + m2

Z

)2 − 4m2
Am2

Z cos2 2β

]

mH± =
√

m2
A + m2

W > mW

Pseudoscalar mass mA sets scale for H and H± mass, but h must be light

m2
h =

2m2
Am2

Z cos2 2β

m2
A + m2

Z +
√

(

m2
A + m2

Z

)2 − 4m2
Am2

Z cos2 2β

< m2
Z cos2 2β

because quartic coupling is proportional to g2, g′2

Problem: mh < mZ is ruled out by LEP data! =⇒ need to include radiative corrections

Behaviour for mA ≫ mZ:

m±
H ≈ mA ≈ mH , mh = mZ| cos 2β|

mh is largest for tan β→0, ∞.

Later: h has SM couplings in mA→∞ limit (decoupling limit)









Lightest Higgs mass mh
<∼ 135 GeV since quartic coupling is given by gauge couplings,

Vquartic = (g2 + g
′2)/8

(

Φ
†
1Φ1 − Φ

†
2Φ2

)2
+ g2/2 Φ

†
1Φ2Φ

†
2Φ1



Higgs mixing and MSSM parameters

The Higgs potential leads to general mixing of the 2 doublet fields

Φ1 =
1√
2





√
2[H− sin β − χ− cos β]

v1 + [H cosα − h sinα] + i[A sin β + χ0 cos β]



 → 1√
2





√
2H− sin β

v1 +ϕ1 + iA sin β





Φ2 =
1√
2





v2 + [H sinα + h cosα] + i[A cos β − χ0 sin β]
√

2[H+ cos β + χ+ sin β]



 → 1√
2





v2 +ϕ2 + iA cos β
√

2H+ cos β





The angle β is determined by the VEVs:

v1 = v cos β , v2 = v sin β , =⇒ v2

v1
= tan β

The mixing angle α between the 2 CP even scalars and the masses are determined by

tan β , mA , v =
√

v2
1 + v2

2 = 246 GeV
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Coupling to gauge bosons

L = (DµΦ1)
† DµΦ1 + (DµΦ2)

† DµΦ2

=
1

2
|∂µφ1|2 +

1

2
|∂µφ2|2 +

(

g2
Z

8
ZµZµ +

g2

4
W+

µ W−µ

)

[

(v1 +ϕ1)
2 + (v2 +ϕ2)

2
]

+ ...

The v2
1 + v2

2 = v2 term gives same masses to W, Z as in the SM

m2
W =

g2v2

4
m2

Z =

(

g2 + g′2
)

v2

4
=

m2
W

cos2 θW

The couplings to the gauge bosons arise from

2v1ϕ1 + 2v2ϕ2 = 2v [ H cos(β −α) + h sin(β −α) ]

=⇒ extra coupling factors for hVV and HVV couplings as compared to SM

hVV ∼ sin(β −α) HVV ∼ cos(β −α)
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Coupling to fermions

LYuk. = −Γb b̄LΦ0
1bR − Γt t̄LΦ0

2uR + h.c.

= −Γb b̄L
v1 + H cosα − h sinα + iA sin β√

2
bR − Γt t̄L

v2 + H sinα + h cosα + iA cos β√
2

tR + h.c.

The v1, v2 terms are the fermion masses

mb =
Γbv1√

2
mt =

Γtv2√
2

=⇒ Γb√
2

=
mb

v cos β

Γt√
2

=
mt

v sin β

Expressed in terms of masses the Yukawa Lagrangian is

LYuk. = −mb

v
b̄

(

v + H
cosα

cos β
− h

sinα

cos β
− iγ5 A tan β

)

b − mt

v
t̄

(

v + H
sinα

sin β
+ h

cosα

sin β
− iγ5 A cot β

)

t

=⇒ coupling factors compared to SM h f f coupling −i m f /v
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Decoupling limit for fermions

Consider limit sin(β −α)→1, cos(β −α)→0

• hbb, hττ :

− sinα

cos β
= sin(β −α)− tan β cos(β −α) → 1

• htt:

cosα

sin β
= sin(β −α) +

cos(β −α)

tan β
→ 1

• Hbb, Hττ :

cosα

cos β
= cos(β −α)+ tan β sin(β −α) → tan β

• Htt:

sinα

sin β
= cos(β −α)− sin(β −α)

tan β
→ −1

tan β

In the large mA regime

•• light h couplings to

fermions approach SM

values

•• hb̄b (and Ab̄b, H/Aττ) cou-

plings are enhanced ∼ tan β

=⇒ large cross sections at

LHC
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Higgs phenonomenology

Importance of decoupling limit in MSSM (large mA) =⇒ Concentrate on SM case

Higgs couples to fermions and gauge bosons proportional to their mass =⇒
Heavy SM particles are involved in both production and decay processes

W, Z, t, b, τ

Consider

•• Higgs decay: total width and decay branching fractions

•• Production cross sections at LHC

•• Signatures and backgrounds

•• Measurement of Higgs couplings
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Decay of the SM Higgs

Higgs decay width and branching fractions within the SM
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Higgs Production Modes at Hadron Colliders

g
p t

H
p

X

X

p

V H
p

V

q

q
Gluon fusion Weak-Boson Fusion

V

p Hq

p

_

q p

H
_p t

t

Higgs Strahlung tt̄H
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Total SM Higgs cross sections at the LHC

σ(pp → H + X) [pb]
√s = 14 TeV

NLO / NNLO

MRST

gg → H (NNLO)

qq → Hqq
qq

_
' → HW

qq
_
 → HZ

gg/qq
_
 → tt

_
H (NLO)

MH [GeV]
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Inclusive search channels

•• inclusive search for

H →γγ

invariant-mass peak, for mH < 150 GeV

•• inclusive search for

H → ZZ∗ → ℓ+ℓ−ℓ+ℓ−

for mH ≥ 130 GeV and mH 6= 2mW .

•• inclusive search for

H →W+W− → ℓ+ν̄ℓ−ν

for 140 GeV ≤ mH ≤ 200 GeV
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H →γγ

H

g

g

γ

γ

W/tt

✗ BR(H →γγ) ≈ 10−3

✗ large backgrounds from qq̄→γγ and gg→γγ

✓ but CMS and ATLAS will have excellent

photon-energy resolution (order of 1%)

Look for two isolated photons.
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H →γγ

✓ Look for a narrow γγ invariant

mass peak

✓ extrapolate background into the

signal region from sidebands.
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H → ZZ → ℓ+ℓ−ℓ+ℓ−

The gold-plated mode

H

g

g

l+

l-

l+

l-

Z

Z

✓ This is the most important and clean

search mode for 2mZ < mH < 600 GeV.

✓ continuum, limited, irreducible back-

ground from qq̄→ ZZ

✗ small BR(H → ℓ+ℓ−ℓ+ℓ−) ≈ 0.15%

(even smaller when mH < 2mZ)
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H → ZZ → ℓ+ℓ−ℓ+ℓ−

✓ invariant mass of the charged leptons

fully reconstructed

For mH ≈ 0.6–1 TeV, use the “silver-plated” mode H → ZZ →νν̄ℓ+ℓ−

✓ BR(H →νν̄ℓ+ℓ−) = 6 BR(H → ℓ+ℓ−ℓ+ℓ−)

✓ the large ET missing allows a measurement of the transverse mass
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H → WW → ℓ+ν̄ℓ−ν

H

g

g

ν

l-

l+

ν

W-

W+

✓ Exploit ℓ+ℓ− angular correlations

✓ measure the transverse mass with a Jaco-

bian peak at mH

mT =
√

2 pℓℓ
T /ET (1 − cos (∆Φ))

✗ background and signal have similar

shape =⇒ must know the background

normalization precisely

ATLAS TDR
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Associated production search channels

•• pp→ tt̄H → tt̄bb̄

for mH < 120 –130 GeV

•• qq̄→WH , ZH New and improved: Butterworth, Davison, Rubin, Salam, arXiv:0802.2470

trigger on leptonic decay of W or Z, look for H→bb̄

New idea for WH and ZH associated production: concentrate on high pT(H) >∼ 200 GeV:

• =⇒ fat Higgs jet with bb̄(g) subjet structure

• small separation of b-quark jets from H→bb decay =⇒ better bb̄(g) invariant mass resolution

• lower background fraction than at low pT(H)
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Expected signal in HZ and HW at pT(H) > 200 GeV

Example: mH = 120 GeV,
∫

Ldt = 30 fb−1

•• Need excellent b tagging

and non-b rejection efficien-

cies (assumed: 60% and 2%

respectively)

•• Search in

(a) HZ with Z→ll

(b) HZ with Z→νν and

(c) WH→lνbb̄ samples

•• Promising signal with

30 fb−1 when combining all

3 channels

Detailed studies with full detetc-

tor simulation on the way
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Vector Boson Fusion

p

V H
p

V

q

q

W

W

H mH > 120 GeV

τ+

−τ

H mH < 140 GeV

γ

γ

W
H

mH < 150 GeV

[Eboli, Hagiwara, Kauer, Plehn, Rainwater, D.Z. . . . ]

Most measurements can be performed at the LHC with statistical accuracies on the measured

cross sections times decay branching ratios, σ× BR, of order 10% (sometimes even better).

Dieter Zeppenfeld Higgs Physics 68











Central Jet Veto: H j j j from VBF vs. gluon fusion

[ Del Duca, Frizzo, Maltoni, JHEP 05 (2004) 064]

• Angular distribution of third (softest) jet follows classically expected radiation pattern

• QCD events have higher effective scale and thus produce harder radiation than VBF (larger

three jet to two jet ratio for QCD events)

• Central jet veto can be used to distinguish Higgs production via GF from VBF



VBF signature

pp

J1J2

µ+

e-

ϕ

θ1θ2

J1

J2

µ+

e-

∆ϕjj

ϕ

η

Characteristics:

•• energetic jets in the forward and backward directions (pT > 20 GeV)

•• large rapidity separation and large invariant mass of the two tagging jets

•• Higgs decay products between tagging jets

•• Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange

(central jet veto: no extra jets with pT > 20 GeV and |η| < 2.5)
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Higgs discovery potential

S√
B
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Reach for H/A discovery within MSSM

Enhancement of

Hbb and Abb coupling

by factor tan β

compared to SM Higgs

=⇒ large production cross

section for pp→b̄bH/A

=⇒ decay dominated by

H/A→b̄b, τ+τ−

ATLAS TDR

5σ discovery contours
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Reach for H± discovery within MSSM

•• For mH± > mt + mb expect

H±→tb decay

•• Dominant production pro-

cess

gg→H±tb

b-quark has low pT :

gb→H±t is dominant sub-

process

•• Main background from

t̄t(+jets) production

ATLAS TDR

5σ discovery contours
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Statistical and systematic errors at LHC for SM Higgs rate

Assumed errors in fits to

couplings:

•• QCD/PDF uncertainties

- ±5% for VBF

- ±20% for gluon fu-

sion

•• luminosity/acceptance

uncertainties

- ±5%



Measuring Higgs couplings at LHC

LHC rates for partonic process pp→H→xx given by σ(pp→H) · BR(H→xx)

σ(H) × BR(H→xx) =
σ(H)SM

Γ SM
p

· ΓpΓx

Γ
,

Measure products ΓpΓx/Γ for combination of processes (Γp = Γ(H→pp))

Problem: rescaling fit results by common factor f

Γi→ f · Γi , Γ→ f 2Γ = ∑
obs

f Γi + Γrest

leaves observable rate invariant =⇒ no model independent results at LHC

Loose bounds on scaling factor:

f 2Γ > ∑
obs.

f Γx =⇒ f > ∑
obs.

Γx

Γ
= ∑

obs.

BR(H→xx)(= O(1))

Total width below experimental resolution of Higgs mass peak (∆m = 1 . . . 20 GeV)

f 2Γ < ∆m =⇒ f <

√

∆m

Γ
< O(10 − 40)



Fit LHC data within constrained models

•• gHττ

gHbb
= SM value •• gHWW

gHZZ
= SM value •• no exotic channels

With 200 fb−1 measure partial width with 10–30% errors, couplings with 5–15% errors



Distinguishing the MSSM Higgs sector from the SM

Alternative: compare data to predictions of

specific models

Example: mmax
H scenario of LEP analyses

Consider modest mA:

•• decoupling almost complete for hWW

and hγγ (effective) vertices

•• enhanced hbb and hττ couplings com-

pared to SM increases total width of h

=⇒

•• ≈ SM rates for h→ττ in VBF

•• suppressed h→γγ and h→WW rates in

VBF

3σ-effects or more at small mA

 3
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 200  300  400  500  600  700

ta
n 

β

MA  (GeV)

mh = 130 GeV

125 GeV

3σ

mh
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2 * 30 fb-1

2 * 300 + 2 * 100 fb-1

2 * 300 fb-1
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Corrections for Higgs production cross sections

Measurement of Higgs couplings from measured signal rates

=⇒ need QCD corrections to production cross sections. Much progress in recent years

•• gg→H (all but NLO in mt→∞ limit)

– NLO for finite mt: Graudenz, Spira, Zerwas (1993)

– NNLO: Harlander, Kilgore (2001); Anastasiou, Melnikov (2002); Ravindran, Smith, van

Neerven (2003)

– N3LO in soft approximation: Moch, Vogt (2005)

•• H j j by gluon fusion at NLO: Campbell, Ellis, Zanderighi (2006)

•• Higgsstrahlung: implemented in MC@NLO Frixione, Webber

•• weak boson fusion

– distributions at NLO: Figy, Oleari, D.Z (2003); Campbell, Ellis, Berger (2004)

– 1-loop EW corrections: Ciccolini, Denner, Dittmaier (2007)

– approx. NLO QCD to H j j j: Figy, Hankele, D.Z (2007)

•• t̄tH associated production at NLO: Beenakker et al.; Dawson, Orr, Reina, Wackeroth (2002)

•• b̄bH associated production at NLO: Dittmaier, Krämer, Spira; Dawson et al. (2003)



QCD corrections to gg→H

Moch & Vogt, hep-ph/0508265
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NLO QCD corrrections to bb̄H productionq�q bH�b bH�bgg
•• Discovery channel for H/A in the MSSM

at sizeable tan β

•• NLO corrections known for b̄bH final

state

•• b-quarks at low pT : effective process is

b̄b→H: cross section known at NNLO

Harlander, Kilgore (2003)

Dittmaier, Krämer, Spira hep-ph/0309204
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NLO QCD corrections to VBF

✓ Small QCD corrections of

order 10%

✓ Tiny scale dependence of

NLO result

- ±5% for distributions

- < 2% for σtotal

✓ K-factor is phase space

dependent

✓ QCD corrections under

excellent control

✗ Need electroweak correc-

tions for 5% uncertainty mH = 120 GeV, typical VBF cuts
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QCD + EW corrections to Hjj production

Cross sections without and with VBF cuts: pT( j) > 20 GeV |y j1 − y j2 | > 4, y j1 · y j2 < 0
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NLO, no cuts
LO, no cuts

pp → Hjj + X

MH [GeV]
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Ciccolini, Denner, Dittmaier, arXiv:0710.4749



Relative size of 1-loop corrections

Consider distributions of hardest jet in the event:

pT distribution rapidity distribution

QCD
EW

EW+QCD
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pp → Hjj + X

pj1,T [GeV]

dσ
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− 1 [%]
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H j j cross section for gluon fusion

Calculation of H j j cross section at NLO in mt→∞ limit by Campbell, Ellis, Zanderighi, hep-ph/0608194

•• Modest increase of cross section at 1-loop: K-factor of order 1.2 - 1.4

•• Reduced scale dependence at NLO: remaining scale uncertainty ≈ ±20%



Conclusions

•• Spontaneous breaking of SU(2) × U(1) symmetry is largely

untested experimentally =⇒ most important task for the LHC

•• LHC will observe a SM-like Higgs boson in multiple channels,

with 5 . . . 20% statistical errors

=⇒ great source of information on Higgs couplings

•• Absence of HVV and AVV couplings for the heavy H/A

of the MSSM make their observation more challenging

=⇒ Need large tan β rate enhancement for their discovery

•• NLO QCD corrections and improved simulation tools are impor-

tant for precise measurements with full LHC data.

•• An exciting new era of particle physics is starting right now.
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