B Physics(I)

2010 CTEQ - MCnet Summer School on QCD Phenomenology and Monte Carlo Event Generators 26 July-4 August 2010, Lauterbad, Germany

Tatsuya NAKADA Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland

Production of b-hadron

play ground of strong interactions LHC results are becoming available

Decay of b-hadron

interplay between the weak and strong interactions dominated by BABAR and Belle

Extraction of the CKM matrix elements

mainly limited by the strong interactions

Indirect search of new physics loop effect

Production

theoretically calculated

Production

in pp interactions

Production

in pp interactions that is why LHCb is a forward spectrometer

Production

in pp interactions can exploit low $p_{\rm T}$ particles

 $\sigma_{b\bar{b}}$ expected in pp collisions at $\sqrt{s} = 14$ TeV: 500µb 5×10^{11} bb pairs in 10⁷ s with $L = 10^{32}$ cm⁻²s⁻¹

Production

in pp interactions

Productionin pp interactionsATLAS J/ψ signal

Production in pp interactions ATLAS J/ψ signal

Production in pp interactions ATLAS J/ψ signal

Productionin pp interactionsATLAS J/ψ signal

LHC experiments have started

to measure the b cross section

at $\sqrt{s} = 7 \text{ TeV}$

Productionin pp interactionsATLAS J/ψ inclusive

ProductionLHC experiments have started
to measure the b cross section
 $at \sqrt{s} = 7 \text{ TeV}$ ATLAS J/ ψ inclusive and from b-hadrons

In agreement with the ATLAS result.

2010 CTEQ MCnet Summer School, Lauterbad, Germany, 2.7-4.8.2010 T. Nakada

LHC experiments have started to measure the b cross section at $\sqrt{s} = 7$ TeV b-jet tagging

Efficiency for a b-jet tagging algorithm based on the secondary vertex in a jet

agree with model calculations

ProductionLtoin pp interactionsLHCb b from $B \rightarrow DlX$

ProductionLHC experiments have started
to measure the b cross section
at $\sqrt{s} = 7$ TeVin pp interactionsat $\sqrt{s} = 7$ TeVLHCb b from $B \rightarrow D/X$ at $\sqrt{s} = 7$ TeVAdding μ with a right sign enhances D from B:
e.g. $B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \mu^- X$ [$B^- \rightarrow D^0 (\rightarrow K^+ \pi^-) \mu^- X$ only through DCSD]

ProductionLHC experiments have started
to measure the b cross section
 $at \sqrt{s} = 7 \text{ TeV}$ LHCb b from B \rightarrow D/X

 σ_{bb} in $4\pi = 292 \pm 15 \pm 43 \ \mu b$ (with LEP $B_u/B_d/B_s/\Lambda_b$)

2010 CTEQ MCnet Summer School, Lauterbad, Germany, 2.7-4.8.2010 T. Nakada

Production

in pp interactions

- ATLAS, CMS and LHCb already producing results on b production in pp interactions at $\sqrt{s} = 7$ TeV
- By the autumn this year, 100 times or even more data expected:
 - finer binning for $d^2\sigma/dp_T dy$
 - $d^2\sigma/dp_T dy$ for Υ
 - polarization for J/ ψ and Υ

will lead to a detailed comparison with theory

decay and oscillation amplitudes

lowest order weak interactions

decay and oscillation amplitudes

lowest order weak interactions

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

No QCD tree diagram

ecays

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

decay and oscillation amplitudes

lowest order weak interactions

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$

No QCD tree diagram

+ one gluon tree diagrams with two different colour structures

decay and oscillation amplitudes

lowest order weak interactions

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_i)_{V-A}$ No QCD tree diagram

+ one gluon tree diagrams with two different colour structures $(\overline{s_i} \, b_i)_{V-A} (\overline{c_i} \, c_j)_V$

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_i)_{V-A}$

+ gluon penguins with two different colour structure gluon = V

$$(\overline{s}_{j} b_{i})_{V-A} (\overline{c}_{i} c_{j})_{V}$$

decay and oscillation amplitudes

lowest order weak interactions

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$ No QCD tree diagram

+ one gluon tree diagrams with two different colour structures

+ gluon penguins with two different colour structure gluon = V $\rightarrow \text{ split to } (V-A) + (V+A) \ (\overline{s_j} \, \overline{b_i})_{V-A} \ (\overline{c_i} \, c_j)_{V-A}$ $(\overline{s}_i b_i)_{V-A} (\overline{c}_i c_j)_{V+A}$

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

```
(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_i)_{V-A}
```

$$(\overline{s_i} \, b_i)_{V-A} \, (\overline{c_j} \, c_j)_{V-A}$$
$$(\overline{s_i} \, b_i)_{V-A} \, (\overline{c_j} \, c_j)_{V+A}$$

2010 CTEQ MCnet Summer School, Lauterbad, Germany, 2.7-4.8.2010 T. Nakada

decay and oscillation amplitudes

lowest order weak interactions

operators

 Q_2

 Q_1

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

No QCD tree diagram

- + one gluon tree diagrams with two different colour structures $(\overline{s_i} \, b_i)_{V-A} (\overline{c_i} \, c_j)_{V-A}$
- + gluon penguins with two different colour structure g

 Q_3

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

 Q_5 $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_{V+A}$

$$\begin{array}{ll} \text{sluon} = V \\ \rightarrow \text{ split to } (V - A) + (V + A) & (\overline{s_j} \, b_i)_{V - A} & (\overline{c_i} \, c_j)_{V - A} & Q_4 \\ & (\overline{s_i} \, b_i)_{V - A} & (\overline{c_i} \, c_j)_{V + A} & Q_6 \end{array}$$

2010 CTEQ MCnet Summer School, Lauterbad, Germany, 2.7-4.8.2010 T. Nakada

2010 CTEQ MCnet Summer School, Lauterbad, Germany, 2.7-4.8.2010 T. Nakada

decay and oscillation amplitudes

Theoretical tool to describe the decay amplitude for $M \rightarrow F$ $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$

 $G_{\rm F}$: Fermi constant, $Q_i(\mu)$: Local four-fermion operators evaluated at energy scale μ calculable in perturbation $C_i(\mu)$: Coupling constants for $Q_i(\mu)$ at energy scale μ i.e. Wilson coefficient, calculable in perturbation $\langle F|Q_i(\mu)|M \rangle$: Hadronic matrix element long distance effect $\xi_i^{\rm CKM}$: Combination of the CKM elements the ultimate interest for B physics extraction of the CKM matrix, search for new physics

decay and oscillation amplitudes

- Theoretical tool to describe the decay amplitude for $M \rightarrow F$ $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$
- Comparing the full and effective theory at $\mu = m_W$ $\rightarrow C_i(\mu = m_W)$
- Scale C_i down to $\mu \approx 1$ GeV (K), m_c (D), m_b (B)

$$C_i(\mu) = U_{ij}(\mu, \mu = m_W)C_j(\mu = m_W)$$

 U_{ii} not diagonal \Rightarrow mixing of the operators in the evolution

 Evaluate <*F*|*Q_i*(μ)|*M*> (hadronic matrix element) with non perturbative methods at μ lattice, HQET, QCD sum rule, etc. major source of uncertainties