MENLOPS

Getting the most out of POWHEG & MEPS methods.

K.Hamilton

Università degli Studi di Milano-Bicocca

Theoretical considerations for MEPS \rightarrow MENLOPS.

How close can you get just combining today's tools?

New SHERPA implementation. [S.Höche, F.Krauss, M.Schönherr, F.Siegert]

Throughout this talk

NLO = NLO with respect to the X+O jets process

Wednesday, 8 September 2010

Theoretical considerations for MEPS \rightarrow MENLOPS.

How close can you get just combining today's tools?

New SHERPA implementation. [S.Höche, F.Krauss, M.Schönherr, F.Siegert]

pp →W + 0 jets

W+O parton ME \otimes shower

pp →W + 0 jets

NLO Born kinematics

W+1 parton ME \otimes shower

Accuracy [†]	MEPS	NLOPS	
0-jet events	LO	NLO	
l-jet events	•••	•••	
2-jet events	•••	•••	

NLOPS is best for hard X+0 jet description.

⁺For hard jets.

pp →W + l jets

$pp \rightarrow W + 1 jets$

Wednesday, 8 September 2010

Accuracy [†]	MEPS	NLOPS	
0-jet events	LO	NLO	
l-jet events	LO	LO	
2-jet events	•••	•••	

IPNLOPS & MEPS equal for hard X+1 jet description

⁺ For hard jets.

$pp \rightarrow W + 2 jets$

Wednesday, 8 September 2010

pp →W + 2 jets

Accuracy [†]	MEPS	NLOPS	
0-jet events	LO	NLO	
l-jet events	LO	LO	
2-jet events	LO	LL	

 \bigcirc MEPS best for hard X+22 jet description.

⁺For hard jets.

Accuracy [†]	MEPS	NLOPS	
0-jet events	$ m LO \otimes LL$	$ m NLO \otimes LL$	
l-jet events	$ m LO \otimes LL$	$ m NLO \otimes LL$	Remember disclaimer: In this talk NLO means w.r.t. to X+0.
2-jet events	$ ext{LO} \otimes ext{LL}$	$ m NLO \otimes LL$	

[soft emission in NLOPS shouldn't affect IR safe observables]

[†]For soft jets.

MEPS:

- Inclusive event sample 🗸
- LO description of hardest emission: X+1 jet events 🖌
- X+n jet [n ≥ 2] events LO 🗸
- LL resummation of multiple soft collinear emission \checkmark
- LO normalisation and shape no virtuals imes
- LO sensitivity to μ_R and μ_F
- Lots of mature, trusted, highly automated codes 🗸 🗸

NLOPS:

- Inclusive event sample 🗸
- LO description of hardest emission: X+1 jet events 🖌
- X+n jet $[n \ge 2]$ events shower approx X
- LL resummation of multiple soft collinear emission \checkmark
- NLO normalisation and shape virtuals \checkmark
 - NLO sensitivity to μ_R and μ_F 🖌
 - Lots of well tested codes, automation in progress 🗸 🗸

MENLOPS:

- Inclusive event sample 🗸
- LO description of hardest emission: X+1 jet events 🖌
- X+n jet [n ≥ 2] events LO 🗸
- LL resummation of multiple soft collinear emission \checkmark
- NLO normalisation and shape virtuals \checkmark
 - NLO sensitivity to μ_R and μ_F 🖌

Theoretical considerations for MEPS \rightarrow MENLOPS.

How close can you get just combining today's tools?

New SHERPA implementation. [S.Höche, F.Krauss, M.Schönherr, F.Siegert]

POWHEG oversimplified

POWHEG hardest emission x-sec:

$$d\sigma = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_{T}) \frac{\overline{R}(\Phi_{B}, \Phi_{R})}{\overline{B}(\Phi_{B})} d\Phi_{R} \right]$$

Integrand in $\overline{\Delta}(p_{T})$ is exactly
$$\int d\Phi_{R} \left[\dots \right] = \overline{\Delta}(p_{T,\min}) + \int_{\overline{\Delta}(p_{T,\min})}^{1} d\overline{\Delta}(p_{T}) = 1$$

P.Nason 09/2004

MEPS in the POWHEG language

From general arguments the MEPS x-sec is:

N.B. Integrand in $\overline{\Delta}(p_T)$ is not $\overline{R}(\Phi_B, \Phi_R)/B(\Phi_B)$!

KH, P.Nason 04/2010

MEPS in the POWHEG language

From general arguments the MEPS x-sec is:

[For Sudakovs red hats \rightarrow blue hats]

Born x-sec [LO]

$$d\sigma = B(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \right]$$

Effective Sudakov
form factor; same
L accuracy as PS

$$\Rightarrow \int d\Phi_{R} [...] \equiv N(\Phi_{B}) \neq 1$$

 \mathbf{r}

MEPS in the POWHEG language

Unitarity breaking manifest as $\overline{B}_{ME}(\Phi_B)$ fn in MEPS:

$$d\sigma = \overline{B}_{ME}(\Phi_B) d\Phi_B \begin{bmatrix} \overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \\ \hline N(\Phi_B) \end{bmatrix}$$

Integrates to 1
$$\overline{B}_{ME}(\Phi_B) \equiv B(\Phi_B) \times N(\Phi_B)$$
$$= B(\Phi_B) \times [1 + O(\alpha_s)]$$

Turning MEPS into MENLOPS

Promoting MEPS \rightarrow MENLOPS:

$$d\sigma = \overline{B}_{ME}(\Phi_B) d\Phi_B \begin{bmatrix} \overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \\ N(\Phi_B) \end{bmatrix}$$

Integrates to 1

calculate $\overline{B}_{ME}(\Phi_B)$ and reweight MEPS by:

KH, P.Nason 04/2010

 $\frac{\overline{B}(\Phi_{B})}{\overline{B}_{ME}(\Phi_{B})}$

Turning MEPS into MENLOPS

Promoting MEPS \rightarrow MENLOPS:

$$d\sigma = \overline{B}(\Phi_B) d\Phi_B \begin{bmatrix} \overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \\ N(\Phi_B) \end{bmatrix}$$

Integrates to 1

calculate $\overline{B}_{ME}(\Phi_B)$ and reweight MEPS by: $\frac{\overline{B}(\Phi_B)}{\overline{B}_{ME}(\Phi_B)}$

KH, P.Nason 04/2010

Turning MEPS into MENLOPS

Promoting MEPS \rightarrow MENLOPS:

N.B. We do not claim this is a general solution to the problem of NLOPS-MEPS merging; only for simple processes.

KH, P.Nason 04/2010

Theoretical considerations for MEPS \rightarrow MENLOPS.

How close can you get just combining today's tools?

New SHERPA implementation. [S.Höche, F.Krauss, M.Schönherr, F.Siegert]

Basic idea:

- Choose 'MENLOPS jet merging scale' such that for X+≥2 jets MEPS is always at least as good as NLOPS.
- I.E. MEPS is not allowed to generate events in which two or more jets can be considered soft.
- For X+0 jets take events from an NLOPS
- For X+1 jets take events from an NLOPS
- For X+≥2 jets take events from an MEPS

Surely this destroys NLO accuracy?

You get a sample of NLOPS events and replace the 2-jet events with ones from your MEPS.

Sounds pretty crude ...

But think about the 2-jet events come from the point of view of a perturbative expansion of the x-section ...

From earlier:

MENLOPS:

Integrates to 1

MENLOPS:

$$d_{O}^{[X+O]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q < q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right]$$
$$d_{O}^{[X+1]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] \Delta_{ME}(q^{*})$$
$$d_{O}^{[X+22]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] [1 - \Delta_{ME}(q^{*})]$$

Approximating MENLOPS:

$$d_{\sigma}^{[X+0]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_{T})\frac{\overline{R}}{B}\Theta(q < q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right]$$
$$d_{\sigma}^{[X+1]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T})\frac{\overline{R}}{B}\Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] \Delta_{ME}(q^{*})$$
$$d_{\sigma}^{[X+28]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T})\frac{\overline{R}}{B}\Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] [1 - \Delta_{ME}(q^{*})]$$

Approximating MENLOPS:

[X+O formally equivalent to exact method - by definition]

$$d\sigma_{PW}^{[X+0]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q < q^*) d\Phi_R \right]$$

$$d_{\sigma}^{[X+1]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] \Delta_{ME}(q^{*})$$
$$d_{\sigma}^{[X+22]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] [1 - \Delta_{ME}(q^{*})]$$

Approximating MENLOPS:

[X+O formally equivalent to exact method - by definition]

$$d\sigma_{PW}^{[X+0]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q < q^*) d\Phi_R \right]$$

[X+1 formally equivalent to exact method - by definition]
$$d_{O_{PW}}^{[X+1]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R \right] \Delta_{MC}(q^*)$$

$$d_{\sigma}^{[X+\geq 2]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] [1 - \Delta_{ME}(q^{*})]$$

Approximating MENLOPS:

[X+O formally equivalent to exact method - by definition]

$$d_{\sigma_{PW}}^{[X+0]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q < q^*) d\Phi_R \right]$$

[X+1 formally equivalent to exact method - by definition]
$$d\sigma_{PW}^{[X+1]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R\right] \Delta_{MC}(q^*)$$

[Equivalent to exact method neglecting irrelevant $O(\alpha_s^2)$]

$$d_{\sigma_{ME}}^{[X+\geq2]} = \kappa B(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R \right] [1 - \Delta_{ME}(q^*)]$$

Approximating MENLOPS:

[X+0 formally equivalent to exact method - by definition]

$$d_{O_{PW}}^{[X+0]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q < q^{*}) d\Phi_{R} \right]$$

$$[X+1 \text{ forma} What \text{ about unitarity and lefinition }]$$

$$d_{O_{PW}}^{[X+1]} = \overline{B}(\Phi_{B}) \begin{array}{c} \Psi_{B} (\Phi_{B}) \Phi_{R} \\ \Psi_{B} (\Phi_{B}) \Phi_{R} (\Phi_{C}) \Phi_{R} \end{array} \right] \Delta_{MC}(q^{*})$$

[Equivalent to exact method neglecting irrelevant O(α_s^2)]

$$d\sigma_{ME}^{[X+\geq 2]} = \kappa B(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R \right] [1 - \Delta_{ME}(q^*)]$$

Integrate approximate x-sec over Φ_R :

$$d\sigma = d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq 2]} - d\sigma_{PW}^{[X+\geq 2]}$$
$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$
$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K \ d\sigma_{MEPS}^{[X+\geq 2]} - d\sigma_{PW}^{[X+\geq 2]}$$
$$= \overline{B}(\Phi_{B}) \ d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq 2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq 2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$
$$At \ LL \ d\sigma_{MEPS}^{[X+\geq 2]} = d\sigma_{PW}^{[X+\geq 2]}$$

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$
$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$
$$= \frac{1}{1 + O(\alpha_{S})}$$

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K \ d\sigma_{MEPS}^{[X+\geq 2]} - d\sigma_{PW}^{[X+\geq 2]}$$

$$= \overline{B}(\Phi_{B}) \ d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq 2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$
Insist this be $\leq \alpha_{S}$

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$

$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$

$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$

$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + O(\alpha_{S}^{2}) \right]$$

NLO accuracy will be safe if the fraction of X+>2 jet events in the MENLOPS sample is less than α_s :

Seen differently this is equivalent to confining the 2-jet phase space to the region where MEPS is always at least as good as NLOPS: it avoids the 'double-soft' region which would result in the 2-jet x-sec becoming O(1)!

Exact MENLOPS vs approximate MENLOPS

means that you can't merge MEPS & NLOPS at whatever MENLOPS scale you want - limitation of the approximation!

The MENLOPS merging scale q^* is bounded from below: if the scale gets too small P(\geq 2-jets) gets bigger than O(α_s) spoiling NLO accuracy.

In the exact method there is no MENLOPS scale dependence [there is no such thing - just the MEPS scale].

1. compute P[O-jets] from NLOPS [NLO]

2. compute P[1-jet|≥1-jet] from MEPS [LO]

3. From 1. & 2. compute:

Defines proportions for MENLOPS sample

Case studies: tt and W production

- MEPS: MadGraph with 'MLM-k_T' scheme
- NLOPS: POWHEG-hvq [tt
 , tops set stable]
- NLOPS: POWHEG-w [$W \rightarrow e^{\overline{v}_e}$]
- PYTHIA: Q² ordered shower in MEPS
- PYTHIA: p_T ordered shower for NLOPS
- PDF: MRST 2002 NLO used everywhere
- LHC nominal C.O.M. energy \sqrt{S} = 14 TeV

KH, P.Nason 04/2010

Case studies: tt and W production

tt production:

- MEPS merging scale: 30 GeV
- MENLOPS clustering scale: 60 GeV
- MENLOPS MEPS content: 12.5 %

W⁻production:

- MEPS merging scale: 20 GeV
- MENLOPS merging scale: 25 GeV
- MENLOPS MEPS content: 5 %

Inclusive quantities: tt rapidity

$Log[y_{nm}]$ differential jet rates in tt events

Inclusive quantities: W⁻ rapidity

Inclusive quantities: $W^{-} p_{T}$

p_T of hardest Jet in W⁻ production

p_T of hardest Jet in W⁻ production

Same again but MENLOPS scale floating: N[25 GeV,5² GeV²]

2nd Jet p_T and rapidity in W⁻ events

NLOPS & MEPS features.

Theoretical considerations for MEPS \rightarrow MENLOPS.

How close can you get just combining today's tools?

New SHERPA implementation. [S.Höche, F.Krauss, M.Schönherr, F.Siegert]

- Aims at the same exact 'master formula'.
- Slightly different perspective: POWHEG examined from the MEPS point of view instead of the other way round.

$$\begin{split} \langle O \rangle^{(\text{MENLOPS})} &= \sum_{\{\vec{f}\}} \int \mathrm{d}\Phi_B(\{\vec{p}\}) \,\bar{\mathrm{B}}(\{\vec{a}\}) \left[\underbrace{\Delta^{(\text{ME})}(t_0, \mu^2; \{\vec{a}\})}_{\text{virtual/unresolved}} O(\{\vec{a}\}) \\ &+ \sum_{\{\vec{i}\vec{j},\vec{k}\}} \sum_{f_i = \{\vec{f}_{\vec{i}\vec{j}},g\}} \frac{1}{16\pi^2} \int_{t_0}^{\mu^2} \mathrm{d}t \int_{z_{\min}}^{z_{\max}} \mathrm{d}z \int_{0}^{2\pi} \frac{\mathrm{d}\phi}{2\pi} J_{ij,k}(t,z,\phi) \\ &\times \frac{1}{S_{ij}} \frac{S(r_{\tilde{i}j,\vec{k}}(\{\vec{f}\}))}{S(\{\vec{f}\})} \frac{\mathrm{R}_{ij,k}(r_{\tilde{i}j,\vec{k}}(\{\vec{a}\}))}{\mathrm{B}(\{\vec{a}\})} O(r_{\tilde{i}\vec{j},\vec{k}}(\{\vec{a}\})) \\ &\times \left(\underbrace{\Delta^{(\mathrm{ME})}(t,\mu^2; \{\vec{a}\}) \Theta\left(Q_{\mathrm{cut}} - Q_{ij,k}\right)}_{\mathrm{resolved}, \,\mathrm{PS \, domain}} + \underbrace{\Delta^{(\mathrm{PS})}(t,\mu^2; \{\vec{a}\}) \Theta\left(Q_{ij,k} - Q_{\mathrm{cut}}\right)}_{\mathrm{resolved}, \,\mathrm{ME \, domain}} \right) \right] \,. \end{split}$$

MENLOPS scale implicit as MEPS merging scale Q_{cut}.

SHERPA MENLOPS

[X+0 formally equivalent to exact method - by definition]

$$d\sigma_{PW}^{[X+0]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q < q^*) d\Phi_R \right]$$

[MEPS for [X+≥1] but with $B(\Phi_B) \rightarrow \overline{B}(\Phi_B)$] $d\sigma^{[X+>1]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q>q^*) d\Phi_R\right]$

SHERPA MENLOPS

[X+O formally equivalent to exact method - by definition]

$$d\sigma_{PW}^{[X+0]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q < q^*) d\Phi_R \right]$$

[MEPS for [X+>1] but with $B(\Phi_B) \rightarrow \overline{B}(\Phi_B)$]

$$d\sigma_{\text{SHERPA}}^{[X+\geq 1]} = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R\right]$$

But remember MEPS [...] isn't unitary in Φ_B . Need to make sure integral over Φ_R in $d_{O_{SHERPA}}^{[X+\geq 1]}$ is $O(\alpha_S)$. So, again q^* is bounded from below to preserve NLO accuracy.

Figure 9: The transverse momentum of the reconstructed Z boson in Drell-Yan production at the Tevatron at $\sqrt{s} = 1.96$ TeV. Experimental data stem from the DØ experiment [35, 36] and are described in the text.

Figure 11: Inclusive jet multiplicity [39] (left) and transverse momentum of the leading jet [41] (right) in Z+jets events at the Tevatron at $\sqrt{s} = 1.96$ TeV.

Figure 12: Transverse momentum of the second and third jet [41] in Z+jets events at the Tevatron at $\sqrt{s} = 1.96$ TeV.

NLO matrix elements and truncated showers

Stefan Höche¹, Frank Krauss^{2,3}, Marek Schönherr⁴, Frank Siegert^{2,5}

- Higgs production
- WW production at LHC
- Comparison to TVT W/Z+jets data
- Comparison to LEP data
- Comparison to HERA data

NLOPS & MEPS features:

NLOPS is great except if you are as interested in $X+\geq 2$ jet events as you are in X+0 & X+1 jet events then MEPS is better.

Theoretical considerations for MEPS \rightarrow MENLOPS. MENLOPS combines the accuracy of a *SINGLE* NLOPS with that of an MEPS. Key point: in the general case you need to make MEPS unitary [at least up to terms $O(\alpha_s^2)$]!

Summary:

New SHERPA implementation.

Fresh perspective and first attempt at theoretical extension of original exact MENLOPS theory to general case of multiple momentum mappings! Implementation too [see this weeks arXiv].

Approximating MENLOPS using today's tools. Works great too! NLO accuracy provided $X+\geq 2$ jet fraction is less than α_s . Easy to do: we just ran codes off the shelf, out of the box; could've used Alpgen / Sherpa / Helac / Herwig++ / MC@NLO. In W events for MENLOPS scale = MEPS scale: P[X+\geq 2-jets] < 8%.
Original exact MENLOPS scheme $\overline{B} / \overline{B}_{ME}$ only considered for simplest case of ONE inverse momentum mapping $\Phi_R \rightarrow \Phi_B$ i.e. old plus function / new FKS subtraction, with simple processes in mind[†]: hh $\rightarrow V / H / VH / VV / tt$.

Non-trivial theoretical extension needed for general case of multiple inverse mappings $\Phi_R \rightarrow \Phi_B$ [need Sudakov FFs & real ME's to pick which mapping ...].

First attempt by Höche, Krauss, Schönherr, Siegert for dipole subtraction method! Implemented in SHERPA [see the arXiv this week ...].

⁺ Processes with only two genuine collinear singularities

For the description of events with two hard jets the distributions in the approximate & exact methods tend to the tree order 2-jet cross section:

$$d_{\sigma}^{[X+\geq 2]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] [1 - \Delta_{ME}(q^{*})]$$

$$d_{\sigma_{ME}}^{[X+\geq2]} = \kappa B(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R\right] [1 - \Delta_{ME}(q^*)]$$

For the description of events with two hard jets the distributions in the approximate & exact methods tend to the tree order 2-jet cross section:

$$\mathbf{d}_{\sigma}^{[X+\geq 2]} = \mathbf{R}_{2}(\Phi_{B}, \Phi_{R}, \Phi_{R'}) \, \mathbf{d}_{\Phi} \, \mathbf{d}_{\Phi} \, \mathbf{d}_{\Phi} \, \mathbf{d}_{R'}$$

$$d\sigma_{ME}^{[X+\geq 2]} = R_2(\Phi_B, \Phi_R, \Phi_{R'}) d\Phi_B d\Phi_R d\Phi_{R'}$$

Both agree neglecting terms $O(\alpha_s^3)$.

For the description of events with two soft jets the distributions in the approximate & exact methods factorise in Φ_B and Φ_R :

$$d_{\sigma}^{[X+\geq 2]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] [1 - \Delta_{ME}(q^{*})]$$

$$d_{\sigma_{ME}}^{[X+\geq2]} = \kappa B(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R\right] [1 - \Delta_{ME}(q^*)]$$

For the description of events with two soft jets the distributions in the approximate & exact methods factorise in Φ_B and Φ_R :

$$d\sigma^{[X+\geq 2]} = \overline{B}(\Phi_B) U(\Phi_R) d\Phi_B d\Phi_R$$

$$d\sigma_{ME}^{[X+\geq 2]} = K B(\Phi_B) U(\Phi_R) d\Phi_B d\Phi_R$$

The exact method is NLO in Φ_B but the approximate one is LO. Moreover for $q^* \rightarrow 0$ the integral over Φ_R is O(1) i.e. big unitarity violation. Avoid $q^* \rightarrow 0$ for have NLO accuracy.

Wednesday, 8 September 2010

For the description of events with one hard and one soft jet [or two moderately soft jets] the distributions in the approximate & exact methods basically tend to:

$$d_{\sigma}^{[X+\geq 2]} = \overline{B}(\Phi_{B}) d\Phi_{B} \left[\frac{\overline{\Delta}(p_{T}) \frac{\overline{R}}{B} \Theta(q > q^{*}) d\Phi_{R}}{N(\Phi_{B})} \right] [1 - \Delta_{ME}(q^{*})]$$

$$d_{\sigma_{ME}}^{[X+\geq2]} = \kappa B(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_T) \frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R\right] [1 - \Delta_{ME}(q^*)]$$

For the description of events with one hard and one soft jet [or two moderately soft jets] the distributions in the approximate & exact methods basically tend to:

$$d\sigma^{[X+\geq 2]} = \overline{B}(\Phi_B) d\Phi_B \left[\frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R - N(\Phi_B) \right]$$

$$d\sigma_{ME}^{[X+\geq 2]} = K B(\Phi_B) d\Phi_B \left[\frac{\overline{R}}{B} \Theta(q > q^*) d\Phi_R\right]$$

Both agree neglecting terms $O(\alpha_s^2)$. Fine for NLO. So insisting that the total 2-jet fraction is $\leq \alpha_s$ this should be the limiting behaviour in the 2-jet subsample.

Wednesday, 8 September 2010

$$d\sigma = \overline{B}(\Phi_B) d\Phi_B \left[\overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{R(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \right]$$

$$d\sigma = d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq 2]} - d\sigma_{PW}^{[X+\geq 2]}$$

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$
$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$
$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$
$$= \frac{1}{1 + O(\alpha_{S})}$$

Integrate approximate x-sec over Φ_R :

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$
$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$
$$= \frac{1}{1 + O(\alpha_{S})}$$

<u>I.E.</u> if this goes $\geq \alpha_{s}$ in a high energy regime it's OK as POWHEG doesn't give you exactly the same as NLO result anyway there.

$$d\sigma = \int_{\Phi_{R}} d\sigma_{PW} + K d\sigma_{MEPS}^{[X+\geq2]} - d\sigma_{PW}^{[X+\geq2]}$$

$$= \overline{B}(\Phi_{B}) d\Phi_{B} \left[1 + \frac{K \int_{\Phi_{R}} d\sigma_{MEPS}^{[X+\geq2]}}{\overline{B}(\Phi_{B})} \left[1 - \frac{\int_{\Phi_{R}} d\sigma_{PW}^{[X+\geq2]}}{K \int_{\Phi_{R}} d\sigma_{MEPS}} \right] \right]$$

Just some reassurance in case you thought I messed up the NLO calculation on the last slide:

