First V+jets results with CMS

Vitaliano Ciulli (Univ. & INFN Firenze) V+jets workshop, 8-10 Sep 2010, Durham

Outline

Jet and missing energy reconstruction

W and Z selections and cross-section measurement

First results on W+jets

Systematic uncertainty from Jet Energy Corrections

First look at 1.1 pb⁻¹

P. Lenzi in the next talk will discuss the prospects for measurements of W/Z + jets with full 2010/2011 LHC data

CMS detector

- Forward Calorimeter: $|\eta| < 5.2$

Jet reconstruction

Standard jet reconstruction: anti-KT algorithm with $\Delta R = 0.5$

Four different jet types:

- Calo Jets: based on calorimetric towers only
- Jet Plus Tracks (JPT): Calo jets complemented with track informations
- Particle Flow (PF): jet clustering start from a list of "identified particles"; more similar to generator level jets
- Track jets: use only tracks

Using different inputs allows for systematic cross-checks

Results based on PF jets: smaller jet energy corrections in the tracker acceptance, $|\eta| < 2.5$

Good agreement between MC and data in minimum bias events

$W \rightarrow \mu \nu \text{ events}$

- Event triggered with $p_T > 9 \text{ GeV}$
- Muon p_T >20 GeV, $|\eta| < 2.1$
- Isolation (Σp_T (tk)+ ΣE_T (had+em))/p_T< 15%
- ME_T reconstructed using PF technique
- Drell Yan rejection (veto on events with a second muon of p_T>10 GeV)

- Main source of BG: QCD (b hadron decays)
- W Signal yield extracted through a Binned Likelihood fit to the M_T distribution (Signal + QCD & EWK BGs)
- W Signal and EWK MT shapes modeled from MC
- QCD M_T shape extracted from data (isolation inversion)

$W \rightarrow ev \text{ events}$

- Events triggered with $E_T > 15 \text{ GeV}$
- Electron $E_T > 20 \text{ GeV}$
- |η| < 1.4442 (Barrel), 1.566 < |η| < 2.5 (Endcap)
- Isolation (independent cuts on track, em, had)
- Drell Yan rejection (veto on events with a second electron of ET>20 GeV)

- QCD BG dominated by fake electrons
- Unbinned Likelihood fit to the MET distribution
- W Signal and Electroweak MET shape modeled from Monte Carlo
- QCD background is parameterized and fixed using an inverted isolation cut sample

$Z \rightarrow \mu\mu$ and $Z \rightarrow ee$

Z decays selected with same p_T cut on the leptons and looser isolation and identification criteria

mass range $60 < m_{ee} < 120 \text{ GeV}$

77 candidates selected the invariant mass range 60 < $m_{\mu\mu}$ < 120 GeV

Cross-section results

Results are on the lower side, but consistent with SM within the uncertainty on luminosity

Ratio W/Z is also consistent with the SM expectations

Cross-section results

Jets in events with W candidates

W selection as for the inclusive analysis

Jets reconstructed using Particle Flow objects in $|\eta| < 2.5$

Jets must be separated from the lepton by $\Delta R > 0.5$

- avoids counting the lepton as a jet
- no effects on jet counting as leptons are required to be isolated

Signal and EWK background are normalized to NLO cross-section calculated with MCFM

Leading jet E_T distribution in W events

Jet rates

Yields shown for events with $\geq n$ jets

inclusive rates

Two ET thresholds considered:

- ► E_T>15 GeV
- E_T>30 GeV (shown here)

W signal extracted with a fit to the MT distribution in each sample

- statistical errors only are shown
- tt background sizeable for $n \ge 3$

Jet multiplicity

The use of Particle Flow jets allows to lower the jet E_T threshold to $E_T > 15$ GeV

No big differences within PS (PYTHIA) and ME+PS (MadGraph)

But strong dependence on the MC tune (more in next talk)

W plots with 1.1 pb⁻¹

Z plots with 1.1 pb⁻¹

Summary

With few hundreds nb⁻¹ we have shown that our detector is well suited to perform nice physics studies with vector bosons and jets

- basic kinematic variables and measurements are in good agreement with expectations from Monte Carlo
- the jet E_T spectrum in particular can be studied down to very low momentum

The LHC is expected to deliver about 30 pb⁻¹ by the end of 2010

More (and better) to come...

Backup slides

Systematics errors for W x-sec

- Efficiencies and scales studied in Z events and recoil studies
- Background uncertainties from cut inversion studies and control samples
- PDF uncertainties evaluated via CTEQ66, MSTW08NLO, NNPDF2.0 sets

Source	W → μν (%)	W → ev (%)
Lepton reconstruction	3.0	6.1
Trigger Efficiency	3.2	0.6
Isolation Efficiency	0.5	1.1
Momentum/energy scale	1.0	2.7
MET scale and resolution	1.0	1.4
Background subtraction	3.5	2.2
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.4	1.3
Total systematic error	6.3	7.7
Luminosity uncertainty	11.0	11.0

Systematic errors for Z x-sec

Source	Z → μμ (%)	Z → ee (%)
Lepton reconstruction	2.5	7.2
Trigger Efficiency	0.7	-
Isolation Efficiency	1.0	1.2
Momentum/energy scale	0.5	-
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.6	1.3
Total systematic error	3.8	7.7
Luminosity uncertainty	11.0	11.0

MET vs jet multiplicity

Uncorrected
 Calo MET in jet
 events for different
 SumE_T ranges

Different jet multiplicity bins (jets w/p_T>20 GeV, |η|<3)

=> MET
distribution
"primarily"
controlled by
SumE_T, and
not jet
multiplicities