

Prospects on V+Jets @ 7TeV with the CMS Detector

Piergiulio Lenzi on behalf of the CMS collaboration

V+jets: Backgrounds for new physics and testing ground for QCD 09-09-2010

- Motivations for V+jets studies
- Observables
 - What are we starting with?
 - Precision studies
- MC generators for V+jets in CMS
 - What we use
 - What we would like
- What is the best way of presenting data
- Plans

Motivations

- Important test of perturbative QCD
 - Compare rates to NLO predictions (MCFM, BlackHat, Rocket)
 - Compare shapes and relative rates to matrix element + parton shower calculations
- Final states with a vector boson plus jets are useful for searches, i.e.:
 - Normalization of SM backgrounds ($Z \rightarrow vv$, $W \rightarrow \tau v$)
 - Direct search of significant deviations in (W+n jets)/(Z+n jets) or [V+(n+1)jets]/[V+n jets]
- Important for detector commissioning
 - Jet energy scale calibration

What is a jet?

- Only infrared-collinear safe algorithms used in CMS
 - Anti-kt is our default
- Where to put the pt cut?
 - Low p_T cut makes the measurement sensitive to the Underlying event
 - High p_T cut is sensitive to higher order corrections
 - We are currently using two thresholds:
 - 15 GeV
 - 30 GeV

Short term plan: Measuring Rates

Short term plan, O(50 pb⁻¹):

- Measure the rate of jet production in association with a weak boson
 - $(1/\sigma_0) d\sigma/dNj, \sigma[V+Nj]/\sigma[V+(N+1)j], d\sigma/dNj$
 - Comparison of rates, $\sigma(W+Nj)/\sigma(Z+Nj)$

Program for measuring rates

- Start with ratios

- Z/W + n jets absolute cross section suffers from experimental uncertainties (luminosity, jet energy scale, acceptance...)
- Check Berends-Giele scaling
 - Many systematics cancel out

- Measure the W/Z ratio and the double ratio

- Keeping W and Z selections in sync allows almost complete cancellation of reconstruction efficiency
- Unfold detector effects
- Deliver cross section measurements

MC study @ 10 TeV for O(100 pb⁻¹)

Precision studies: differential distributions

Longer term plan:

- Characterize V + jets in greater detail
 - $d\sigma/dE_{T}$ for each jet, $d\sigma/dR_{jj}$, $d\sigma/dM_{jj}$, $d\sigma/d\Delta y_{jj}$
- Events shapes
 - Differential jet rates
 - Very challenging
 - Usually, for jets:
 - * Cluster uncorrected energy
 - *Apply a global correction
 - For differential jet rates we need to enter the clustering step with objects that have the correct energy scale
 - → Particle Flow

- We can use V+soft jets to study Underlying Event
 - E.g. using 15 GeV threshold, a not negligible fraction of jets come from UE
 - Z pT in events with at least
 1 jet

Missing shower from MPI partons in old model based tunes.

da/dp/tp/0 DW 1 Po ProPTo ProO₂₀ 10^{-2} Pythia 6.423 1.4 1.2 0.8 0.6 100 150 200 p_T [GeV]

D6T

- Tuning status of ME+PS tools?

Rapidity gaps in V+jets

Rapidity gaps:

- Average number of jets VS rapidity gap between the forward and the backward jets
- Similar pattern in W+di-jets and in gluon fusion Higgs
- We can exploit W+di-jet to study the gg contamination to VBF

Monte Carlos for V+jets

What are the desirable features?

- Describe multi jet topologies
 - ME + PS techniques
- Describe angular separation between jets and leptons
 - Our selections rely on isolation
- Refined treatment of QED fsr
 - FSR photons can fake jets
- Light and heavy flavor jets
 - We have both in the data
- It has to be tuned to data
 - Extremely important for a good understanding of isolation efficiencies

Parton level calculations

- FEWZ, DYNNLO, MCFM
 - To compute overall k-factors
- BlackHat and Rocket
 - We are in contact with the authors to get ntuples for W+1,2,3 jets at NLO 7TeV
 - samples produced with at least two scale choices
 - Parton level ntuples, so that we can re-cluster partons with different algorithms/cuts

Comparing data and theory

- How to present data to be most effectively comparable to theory predictions?
 - Unfold detector effects to particle level
 - Best solution to compare to MC particle level programs
 - Acceptance can be different as a function of the number of jets
 - Quote results both with and without acceptance corrections
 - How to compare with parton level calculations?
 - Unfold hadronization effects?
 - Apply corrections for the UE?

- Need for a clear picture of how different generators compare to Tevatron
 - Example: Comparison to
 Z + jets @D0 for Sherpa

plots from Sherpa web page

Conclusion

- Our plan for V+jets can be summarized as:
 - Short term: measure ratio of rates, rates
 - Longer term: measure differential distributions, event shapes
- We are using all the most popular particle level MC for our simulations
 - Status of tuning
 - Clear picture of how they compare to Tevatron
 - Need a good description of observables related to isolation and QED fsr
- We have a well established strategy for early analysis:
 - data driven techniques
 - unfolding of detector effects

