Form Factors for Rare B Decays from Lattice QCD

MATTHEW WINGATE DAMTP, CAMBRIDGE

Outline

Motivation
Form factors
Rare (FCNC) decays
Preliminary results
Summary

Two views of a weak decay

Two views of a weak decay

Two views of a weak decay

Full set of form factors

Matrix element	Form factor	Relevant decay(s)
$\langle P ar{q} \gamma^{\mu} b B angle \ \langle P ar{q} \sigma^{\mu u} a b B angle$	f_+, f_0	$egin{array}{c} B o \pi \ell u \ B o K \ell^+ \ell^- \ D & K \ell^+ \ell^- \end{array}$
$egin{array}{lll} \langle V ar{q}\gamma^{\mu}b B angle \ \langle V ar{q}\gamma^{\mu}\gamma^{5}b B angle \end{array}$	V A_0, A_1, A_2	$egin{array}{c} B o K \ell^+ \ell \ & \ B o (ho/\omega) \ell u \ & \ B o K^* \ell^+ \ell^- \end{array}$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$T_1 \ T_2, T_3$	$\left\{ egin{array}{c} B o K^* \gamma \ B o K^* \ell^+ \ell^- \end{array} ight.$

Full set of form factors

Matrix element	Form factor	Relevant decay(s)	
$egin{array}{lll} \langle P ar q \gamma^\mu b B angle \ \langle P ar q \sigma^{\mu u} q_ u b B angle \end{array}$	f_+,f_0 f_T	$egin{array}{c} B o \pi \ell u \ B o K \ell^+ \ell^- \ B o K \ell^+ \ell^- \end{array}$	
$egin{aligned} &\langle V ar{q} \gamma^{\mu} b B angle \ &\langle V ar{q} \gamma^{\mu} \gamma^5 b B angle \end{aligned}$	$V \ A_0, A_1, A_2$	$\left\{ egin{array}{c} B ightarrow (ho/\omega) \ell u \ B ightarrow K^* \ell^+ \ell^- \end{array} ight.$	
$egin{aligned} &\langle V ar{q} \sigma^{\mu u} q_ u b B angle \ &\langle V ar{q} \sigma^{\mu u} \gamma^5 q_ u b B angle \end{aligned}$	$T_1 \ T_2, T_3$	$\left\{ egin{array}{c} B o K^* \gamma \ B o K^* \ell^+ \ell^- \end{array} ight.$	

... also make the spectator an s quark for B_s decays

$B \rightarrow \pi l v$, reviewed by J. Laiho (CKM2010)

BaBar result for $|V_{ub}|$ exclusive

Talk by Martin Simard. Two different analyses, π - η analysis and π - ρ analysis.

Different fit and cut strategies. Fits to different numbers of modes, loose vs tight ν cut selection.

Results for $|V_{ub}|$ consistent within the different approaches. Results from π - η analysis:

Theory	$q^2 ({\rm GeV})^2$	$ V_{ub} (10^{-3})$
HPQCD	> 16	$3.24 \pm 0.13 \pm 0.16^{+0.57}_{-0.37}$
FNAL	> 16	$3.14 \pm 0.12 \pm 0.16^{+0.35}_{-0.29}$
LCSR	< 12	$3.70 \pm 0.07 \pm 0.09^{+0.54}_{-0.39}$

Results for $|V_{ub}|$

Using a BK parameterization for Belle experimental data $|V_{ub}|$ was extracted from the partial branching fraction for a number of different theories to give the normalization.

Simultaneous fit to lattice (Fermilab/MILC) and Belle q^2 dependence (using the *z* parameterization) leads to a model independent result of $|V_{ub}| = (3.43 \pm 0.33) \times 10^{-3}$.

The same procedure with the latest BaBar data leads to $|V_{ub}| = (3.14 \pm 0.07 \pm 0.09^{+0.35}_{-0.29}) \times 10^{-3}.$

Exclusive $B \to \pi \ell \nu$ and $|V_{ub}|$

New result from Belle (talk by Kevin Varvell)

$|V_{ub}|$ status update from LCSR

Talk by Patricia Ball.

LCSR yields value for $f_B f_+(q^2)$, and for consistency, calculation in progress to determine f_B from QCD sum rules. Test sensitivity to radiative corrections by doing calculation to order α_s^2 .

Sum rule results for $|V_{ub}|$ have an $\sim 10\%$ irreducible theory uncertainty, but are still useful at the moment, given the current precision of the lattice and the tension with the inclusive determination.

Sum rule results (which use exclusive $B \rightarrow \pi \ell \nu$) tend to be less than 4 and in better agreement with lattice.

$B \rightarrow \pi l v$, reviewed by J. Laiho (CKM2010)

BaBar result for $|V_{ub}|$ **exclusive**

Talk by Martin Simard. Two different analyses, π - η analysis and π - ρ analysis.

Different fit and cut strategies. Fits to different numbers of modes, loose vs tight ν cut selection.

Results for $|V_{ub}|$ consistent within the different approaches. Results from π - η analysis:

Theory	$q^2 ({\rm GeV})^2$	$ V_{ub} (10^{-3})$
HPQCD	> 16	$3.24 \pm 0.13 \pm 0.16^{+0.57}_{-0.37}$
FNAL	> 16	$3.14 \pm 0.12 \pm 0.16^{+0.35}_{-0.29}$
LCSR	< 12	$3.70 \pm 0.07 \pm 0.09^{+0.54}_{-0.39}$

Exclusive $B \rightarrow \pi \ell \nu$ and $|V_{ub}|$

Results for $|V_{ub}|$

Using a BK parameterifrom the partial bra normalization

Simu z pare

 $|V_{ub}| =$

The same procedure with the latest BaBar data leads to $|V_{ub}| = (3.14 \pm 0.07 \pm 0.09^{+0.35}_{-0.29}) \times 10^{-3}.$

LCSR yields value for $f_B f_+(q^2)$, and for consistency, calculation in progress to determine f_B from QCD sum rules. Test sensitivity to radiative corrections by

Sum rule results for $|V_{ub}|$ have an $\sim 10\%$ irreducible theory uncertainty, but are still useful at the moment, given the current precision of the lattice and the tension with the inclusive determination.

Sum rule results (which use exclusive $B \to \pi \ell \nu$) tend to be less than 4 and in better agreement with lattice.

$b \rightarrow s$ is rare in the SM

Dominant operators

Long distance effects

Phenomenological calculations necessary

Charmonium resonances

Khodjamirian, et al, PLB **402** (1997) Grinstein & Pirjol, PRD **62** (2000), PRD **70** (2004) Khodjamirian, et al, arXiv:1006.4945

Weak annihilation

Regions of applicability

 $q^2({
m GeV}^2)$

Plot from E Lunghi's CKM2008 talk

Form factors in $B \rightarrow K^{(*)} l^+ l^-$

- Differential branching fractions in q^2 regions
- Expt. in agreement with present SM estimates (Ali, Ball, Handoko, Hiller, PRD 61, 2000)
- Form factors needed as input for calculations of other observables: e.g. A_{FB} (when nonzero), F_L, A_T^(j) (Bobeth, Hiller, van Dyk, arXiv:1006:5013)

Form factor definitions

$$q^{\nu} \langle K^{*}(p',\lambda) | \bar{s}\sigma_{\mu\nu} b | B(p) \rangle = 4 T_{1}(q^{2}) \epsilon_{\mu\nu\rho\sigma} e_{\lambda}^{*\nu} p^{\rho} p'^{\sigma},$$

$$q^{\nu} \langle K^{*}(p',\lambda) | \bar{s}\sigma_{\mu\nu} \gamma_{5} b | B(p) \rangle = 2i T_{2}(q^{2}) \left[e_{\lambda\mu}^{*} (M_{B}^{2} - M_{K^{*}}^{2}) - (e_{\lambda}^{*} \cdot q)(p+p')_{\mu} \right] + 2i T_{3}(q^{2})(e_{\lambda}^{*} \cdot q) \left[q_{\mu} - \frac{q^{2}}{M_{B}^{2} - M_{K^{*}}^{2}}(p+p')_{\mu} \right].$$

$$\langle K^*(p',\lambda)|ar{s}\gamma^\mu b|B(p)
angle = rac{2iV(q^2)}{M_B+M_{K^*}}\epsilon^{\mu
u
ho\sigma}e^*_{\lambda
u}p'_
ho p_\sigma,$$

$$egin{aligned} &\langle K^*(p',\lambda)|ar{s}\gamma^\mu\gamma_5b|B(p)
angle &= 2M_{K^*}A_0(q^2)rac{e_\lambda^*\cdot q}{q^2}q^\mu\ &+ (M_B+M_{K^*})A_1(q^2)\left[e_\lambda^{*\mu}-rac{e_\lambda^*\cdot q}{q^2}q^\mu
ight]\ &- A_2(q^2)rac{e_\lambda^*\cdot q}{M_B+M_{K^*}}\left[p^\mu+p'^\mu-rac{M_B^2-M_{K^*}^2}{q^2}q^\mu
ight] \end{aligned}$$

Form factor definitions

$$q^{\nu} \langle K^{*}(p',\lambda) | \bar{s}\sigma_{\mu\nu}b | B(p) \rangle = 4T_{1}(q^{2})\epsilon_{\mu\nu\rho\sigma}e_{\lambda}^{*\nu}p^{\rho}p'^{\sigma},$$

$$q^{\nu} \langle K^{*}(p',\lambda) | \bar{s}\sigma_{\mu\nu}\gamma_{5}b | B(p) \rangle = 2iT_{2}(q^{2}) \left[e_{\lambda\mu}^{*}(M_{B}^{2} - M_{2}^{2} - M_{1}^{2} + m_{1}^{2})\right]$$

$$(e_{\lambda}^{*} \cdot q)(p + p')_{\mu} + 2iT_{3}(q^{2})(e_{\lambda}^{*} \cdot q) \left[q_{\mu} - \frac{q^{2}}{\mu}\right]$$

$$\langle K^{*}(p',\lambda) | \bar{s}\gamma^{\mu}b | B(p) \rangle = \frac{2iV(q^{*} + \frac{Factor}{M_{B} + M_{K}}) e_{\rho}p_{\sigma},$$

$$\langle K^{*}(p',\lambda) | \bar{s}\gamma^{\mu}\gamma_{5}b | B(p) \rangle = 2M_{K^{*}}A_{0}(q^{2})\frac{e_{\lambda}^{*} \cdot q}{q^{2}}q^{\mu}$$

$$+(M_{B} + M_{K^{*}})A_{1}(q^{2}) \left[e_{\lambda}^{*\mu} - \frac{e_{\lambda}^{*} \cdot q}{q^{2}}q^{\mu}\right]$$

$$-A_{2}(q^{2})\frac{e_{\lambda}^{*} \cdot q}{M_{B} + M_{K^{*}}} \left[p^{\mu} + p'^{\mu} - \frac{M_{B}^{2} - M_{K^{*}}^{2}}{q^{2}}q^{\mu}\right]$$

Early LQCD work on $B \rightarrow K^* \gamma$

Bowler, *et al.* (UKQCD) (1994)
 Bernard, Hsieh, Soni (1994)
 Abada, *et al.* (APE) (1996)
 Bhattacharya and Gupta (1995)
 Del Debbio, *et al.* (UKQCD) (1998)

BLM quenched $B \rightarrow K^*$

Bećirević-Lubicz-Mescia, Nucl. Phys. B769, 31 (2007)

♦ Most recent study of form factor for B → K*γ
♦ Calculate with heavy quarks such that m_H ≈ m_D
♦ Allows calculation with q² = 0
♦ Extrapolate using T^{H→V}(0) × m^{3/2}_{H_s} = c₀ + c₁m⁻¹_{H_s} + c₂m⁻²_{H_s}
♦ Ouenched result:

> $T^{B o K^*}(q^2 = 0; \mu = m_b) = 0.24 \pm 0.03^{+0.04}_{-0.01}$ $T^{B o K^*}(0)/T^{B o
> ho}(0) = 1.2 \pm 0.1$

BLM quenched $B \rightarrow K^*$

Bećirević-Lubicz-Mescia, Nucl. Phys. B769, 31 (2007)

UKQCD quenched $B \rightarrow \rho l v$

Bowler, Gill, Maynard, Flynn, JHEP 05 (2004) 035

Form factors A₀, A₁, A₂, V
Extrapolate up in m_Q
Partially integrated decay rate
For 12.7 GeV² < q² < 18.2 GeV²
Γ_{PI}/|V_{ub}| = 4.9⁺¹²⁺⁰₋₁₀₋₁₄ ps⁻¹

UKQCD quenched $B \rightarrow \rho l v$

Bowler, Gill, Maynard, Flynn, JHEP 05 (2004) 035

Lattice NRQCD approach

with Stefan Meinel, Zhaofeng Liu, Eike Müller, A. Hart, R. Horgan

NRQCD formulation to calculate QCD dynamics of physically heavy b quark

Matching to MSbar scheme in pert. th. (Hart, Horgan, Müller, in prep)

Can work in lattice frame boosted relative to B (Horgan et al, PRD **80**, 2009)

Stat. and EFT errors mandate working at low recoil

 $N_f = 2 + 1$ (MILC) configurations. No unquenched calculations of $B \rightarrow V$ form factors published yet.

Lattice data

Toward high statistics

MILC lattices (2+1 asqtad staggered)

	<i>a</i> (fm)	am _{sea}	Volume	$N_{conf} imes N_{src}$	am _{val}
coarse	\sim 0.12	0.007/0.05	$20^{3} \times 64$	2109 imes 8	0.007/0.04
		0.02/0.05	$20^3 \times 64$	2052 imes 8	0.02/0.04
fine	${\sim}0.09$	0.0062/0.031	$28^3 \times 96$	1910 imes 8	0.0062/0.031

Light meson momenta (units of $2\pi/L$)

- $(p_x, p_y, p_z) = (0, 0, 0).$
- $(\tilde{q},0,0)$, $(0,\tilde{q},0)$, $(0,0,\tilde{q})$, where $\tilde{q}=1$ or 2.
- (1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1).
- (1,1,1), (1,1,-1), (1,-1,1), (1,-1,-1).

Many Source/Sink separations (16 coarse, 22 fine)

So far, only *v*=0 NRQCD used (*B* at rest). Larger *v* (mNRQCD) next.

Leading order (HQET) current presently used. $1/m_b$ current matrix elements computed, matching calc. in progress

Preliminary results

Preliminary results

Extrapolation of
$$T_1$$
 and T_2 to $q^2 = 0$

Pole dominance [Becirevic & Kaidalov (2000), Ball & Zwicky (2005), Becirevic et al. (2007)]

T(0) = 0.161(45) if $M_{B_s^*}$ is a free parameter (left graph). T(0) = 0.164(38) if $M_{B_s^*} = 5.4158$ GeV is fixed from PDG2010.

Zhaofeng Liu (DAMTP, University of CambriLattice calculation of $B \to K^{(*)} II$ form facto

University of Warwick

14 / 12

Preliminary results

Pole dominance [Becirevic & Kaidalov (2000), Br Becirevic et al. (2007)]

Preliminary results
trapolation of
$$T_1$$
 and T_2 to $q^2 = 0$
le dominance [Becirevic & Kaidalov (2000), Bet up by 2 to compare al; Ball, et al.
cirevic et al. (2007)]
 $T_1(q^2) = \frac{T(0)}{(1-\tilde{q}^2)(1-\alpha\tilde{q}^2)}, \quad T_2(q^2) = \frac{1}{1-\tilde{q}} \frac{Becirevic}{4} = q^2/M_{B_s^*}^2.$

T(0) = 0.161(45) if $M_{B_s^*}$ is a free parameter (left graph). T(0) = 0.164(38) if $M_{B_{\epsilon}^*} = 5.4158$ GeV is fixed from PDG2010.

Zhaofeng Liu (DAMTP, University of CambriLattice calculation of $B \to K^{(*)} II$ form facto

University of Warwick

14 / 12

Form factor shapes

With limited data now, try Becirevic-Kaidalov, Ball-Zwicky formulae

Much work done on (z) series expansion recently

Boyd, Grinstein, Lebed, PRL (1995); Boyd, Savage, PRD (1997); Caprini, Lellouch, Neubert; Arneson et al, PRL (2005); Bharucha, Feldmann, Wick, arXiv:1004.3249

✤ HPQCD *D* → *K* paper: generalized expansion to simultaneously fit q^2 , m_q , & *a* dependences

Na et al, arXiv:1008.4562

Light quark mass extrapolation

- In present LQCD calculations, masses and kinematics are such that ρ and K^* are stable
- Could there be large threshold effects in matrix elements?
- Simpler to study ρ and K^* decay constants
- ✤ Internal consistency check: $|V_{ub}|$ from *B* → *πlv* and *B* → *ρlv*. Agreement would suggest extrapolations trustworthy within errors.

Summary

- Calculations in high gear now
- Lattice complications
 - ✦ Worse statistics than pseudoscalar final states
 - Light quark mass extrapolations through thresholds
- Phenomenology essential
 - Estimate effects of long distance effects
 - Check of sum rule results, esp. at large q^2
- Being further from perfection is no excuse for giving up!

