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Motivation

◮ Low-energy QCD is a strongly-coupled QFT. It also confines.

◮ We need non-perturbative tools to deal with it.

◮ Lattice QCD provides a non-perturbative definition of QCD. It
also provides a first-principles quantitative calculational tool.
And lately it is also becoming a precise tool.



Goals

◮ To make precise calculations in QCD.

◮ To determine the fundamental parameters of QCD: strong
coupling constant and quark masses.



Basics of Lattice QCD

◮ We start with the (Euclidean ) path integral:

Z =

∫

DψDψ̄DAµe
−SQCD [ψ,ψ̄,A]

SQCD [ψ, ψ̄,A] = SG [A] + SF [ψ, ψ̄,A] = SG [A] + ψ̄M[A]ψ

◮ We introduce a space-time lattice, with length L and lattice
spacing a.

◮ We discretize the action: many
possibilities.

◮ Now the path integral is
finite-dimensional.

◮ High-dimensional integral, Euclidean
space-time ⇒ Montecarlo integration.

◮ We eliminate the lattice:
◮ Take the infinite volume limit L → ∞.
◮ Take the continuum limit a → 0.



Systematic Errors

◮ Finite volume: m−1
π ≪ L.

◮ Renormalization constants: The lattice is an ultraviolet
regulator. In general, we need to calculate renormalization
constants to relate quantities calculated in the lattice with
quantities calculated in a different scheme.

◮ Chiral extrapolation: In practice, we are not able to simulate
at physical values of the light quark masses mu,d .

◮ Lattice spacing determination: Error in the determination of
the lattice spacing in physical units.



Systematic Errors

Finite lattice spacing: we need simulations at different values of a,
to extrapolate to the continuum limit a → 0.

◮ To simulate at small values of a, while keeping the physical L
constant is very expensive.

◮ Typically, error ∝ a, a2

◮ Improved actions (and operators) lead to smaller errors,
making the extrapolation from a given set of lattice spacings
more precise.

◮ ASQ(TAD) (S. Naik, the MILC collaboration, G.P. Lepage.)
◮ Discretization errors ≈ O(αsa

2, a4).

◮ HISQ (E.F., Q. Mason, C. Davies, K. Hornbostel, G.P.
Lepage, H. Trottier.)

◮ Discretization errors ≈ O(αsa
2, a4).

◮ Substantially reduced taste-changing.
◮ Can be used to study heavy quarks.



Fixing the parameters

The free parameters in the lattice formulation are fixed by setting a
set of calculated quantities to their measured physical values.

◮ Scale: lattice spacing (equiv. coupling constant) a:
◮ We use r1, related to the heavy quark potential. The value of

r1/a is calculated with high precision on the lattice.
◮ We use several quantities to then calculate r1 in physical units:

mΥ′ −mΥ, mDs
−mηc

/2, fηs
.

◮ Quark masses: mu,d ,ms ,mc , mb.
Fixed by mπ,mK ,mηc ,mηb .
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Determination of quark masses

The lattice QCD parameters can be accurately tuned. The
difficulty is converting to another renormalization scheme.

Direct method

◮ Conceptually straightforward: adjust the lattice parameters to
obtain physical values for a set of quantities: mq,latt .

◮ Now convert to your preferred scheme: mq,M̄S = Z mq,latt

◮ Z can be calculated from lattice perturbation theory (or a
non-perturbative matching.) Very difficult to reduce the
errors. The best error with direct method in ms is ≈ 5% from
αs pert. theory. (Q. Mason et al, HPQCD, hep-lat/0511160.)

Fortunately we have some indirect methods: moments. And ratios
of quark masses can be calculated much more accurately and are
scheme independent up to lattice artifacts.



Heavy Quarks

◮ The discretization errors grow with the quark mass as powers
of am.

◮ For a direct simulation, we need:

amh ≪ 1 (heavy quarks)
La ≫ m−1

π (light quarks)

◮ Two scales. Difficult to do directly.

◮ Instead take advantage of the fact that mh is large: ⇒
effective field theory (NRQCD, HQET). Very successful for b
physics.



Relativistic Heavy Quarks
A relativistic formulation has many advantages:

◮ The parameters of an effective theory have to be matched to
QCD, which is both difficult and introduces another
systematic error.

◮ If the action has enough symmetry, there are quantities which
do not renormalize. For example, for staggered quarks, meson
decay constants do not renormalize because of PCAC.

◮ Using the same formulation for the heavy and the light quarks
is conceptually simpler, and allows, for example, to calculate
accurate ratios of quark masses.

◮ Using the same formulation for the heavy and the light quarks
also provides very stringent tests of the lattice methods,
because there are very few free parameters: all the
calculations should give the right answers once those are fixed.



Charm and bottom quark mass

Work in collaboration with:

K.G. Chetyrkin (Universität Karlsruhe)
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◮ Direct: bare lattice mc (fixed through mηc ) + lattice PT
(2-loops). Very demanding. Combination of diagrammatic +
high-β PT.
Preliminary result: mMS

c (3GeV) = 0.983(23)GeV.

◮ Method of moments: lattice current-current correlators +
high-order (α3

s ) cont. PT.



Method of moments

Compare derivatives of the vacuum polarization function
(calculated in PT) with moments of of the experimental
cross-section for heavy quark production in e+e− annihilation.

Can substitute experiments by lattice data: this allows the use of
other currents beyond the vector current (for example,
pseudoscalar current.)

G (t) ≡ a6
∑

x

(am0h)
2 〈0|j5(x, t)j5(0, 0)|0〉

j5 = ψ̄hγ5ψh

Mass factors → independent of the cutoff in the continuum limit
(PCAC):

Glat(t)
a→0
→ Gcont(t)



Method of moments

Gn =
∑

t

(t/a)nG (t)

Low n moments perturbative (mh large).

Gn =
gn(αM̄S(µ), µ/mh)

(amh(µ))n−4

Better to use reduced moments:

Rn ≡







G4/G
(0)
4 n = 4

amηh

2am0h

(

Gn/G
(0)
n

)1/(n−4)
n ≥ 6

Rn =

{

r4(αM̄S(µ), µ/mh) n = 4
mηh

2mh(µ)
rn(αM̄S(µ), µ/mh) n ≥ 6



Method of moments

Different currents agree on
mc .
Pseudoscalar determination is
the most precise.
Can also extract αs .



Method of moments: mc

mnf =4
c (3GeV ) = 0.986(6)GeV

Agrees well with continuum
determination from vector
current and experimental
R(e+e):

mcnf =4(3GeV ) = 0.986(13)GeV

mc error budget in
%

a2 extrapolation 0.2
perturbation theory 0.4
αM̄S uncertainty 0.1
gluon condensate 0.2
statistical errors 0.2
errors in r1/a 0.1
errors in r1 0.1
mu/d/s extrapolation 0.2

Total 0.6



Method of moments: mb

Calculate for mh > mc .

Slight extrapolation to mb.

m
nf =5
b (10GeV ) = 3.617(25)GeV

Agrees well with determination

from experimental R(e+e):

m
Nf =5
b (10GeV ) = 3.610(16)GeV



Quark mass ratios

◮ Mass ratios can be calculated very accurately, in a purely
non-perturbative way.

◮ We use the same action for all quarks ⇒ the matching factors
cancel up to lattice artifacts, which vanish when extrapolating
to the continuum:

mq1,latt

mq2,latt

a→0
−→

mq1,MS(µ)

mq2,MS(µ)



Quark mass ratios

◮ We can use this as a consistency check for our previous
calculation:

(

mb

mc

)non−pert

= 4.49(4)

(

mb

mc

)pert

= 4.53(4)

◮ Leverage the precision on mc to get to ms and ml .
mc

ms

= 11.85(16) ⇒ ms(2GeV ) = 92.4(1.5)Mev
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Light quarks

Using MILC’s values for the ratios of the strange to the light quark
masses, ms

ml
= 27.2(3), and of u and d quark masses, mu

md
= 0.42(4)

we obtain:

m̄l
(3)(2Gev) = 3.40(7)Mev

m̄
(3)
u (2Gev) = 2.01(14)Mev

m̄
(3)
d (2Gev) = 4.79(16)Mev



Quark masses: summary

Using accurate heavy quark
masses and accurate ratios we
can leverage to a 1.5% ms

accuracy.
Accurate ratios rule out some
quark mass matrix models based
on textures.
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C. McNeile arXiv:1004.4985.
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QED effects
In the light quark sector we have strong em. and isospin-violating
contributions. They are usually estimated phenomenologically.
Simulations with quenched QED are starting to get a handle on
these effects from the lattice (Blum et al, 1006:1311; also
simulations by MILC.)
Violations of Dashen’s theorem are usually parameterized by

(

M2
K± −M2

K0

)

em
= (1 +∆E )

(

M2
π± −M2

π0

)

em

Blum et al find a value for ∆E roughly of order O(1), in line with
phenomenological estimates.
They find

(

M2
π± −M2

π0

)LO+NLO

em
= 4.50(23)Mev exp. 4.5936(5)Mev

(

M2
K± −M2

K0

)LO+NLO

em
= 1.87(10)Mev exp. − 3.937(28)Mev

(

M2
K± −M2

K0

)

mu−md
= −5.840(96)Mev



Conclusions

◮ The use of a highly improved quark action and fine enough
lattices provides a very good way of doing precision
calculations in heavy-heavy and heavy-light systems. In
particular it can be used to obtain the most accurate
determination of the mc mass to date.

◮ Using the same, relativistic action for heavy and light quarks
allows us to leverage the precision results for the heavy quark
masses to obtain precision results for the light quark masses.

◮ It provides a stringent test of the lattice methods, because by
fixing a small number of parameters in the lattice formulation
we should reproduce a large number of experimental
measurements.



Outlook

◮ With 0.03 fm ensembles we should be able to simulate at the
b mass without extrapolation. This is a promising way of
achieving precision b physics calculations from the lattice.

◮ Precise results using different fermion discretizations are
arriving, and should give us increased confidence that we have
the systematic errors under control.

◮ Simulations which include em. effects (at least in the
quenched approximation) are starting to appear. They should
provide a handle on em and isospin-breaking effects from first
principles.
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