DOOB-Physics

Iain Bertram Department of Physics Lancaster University for the DO Collaborations 16th September 2010

DØ Experiment

- Key facts:
- Tweetensgeets: Gentral selengidstation system toroid
 - Reversal of magnetic field every two weeks cancellation Bi-weekly polarity changes ensures ~equal datasets with each of most detector related asymmetries
 - Helps cancel most detector-related asymmetries

B_s Mixing

B Mixing and Oscillations

Δm_s Measurements

Vts & Vtd

$$\left|\frac{V_{td}}{V_{ts}}\right|^2 = \xi^2 \left(\frac{\Delta m_d}{\Delta m_s}\right) \left(\frac{M_{B_s}}{M_{B_d}}\right)$$

D0: $0.2018 \pm 0.0053(exp) \pm 0.0010(\Delta md) + 0.0078 - 0.0058(\xi)$ CDF: $0.2060 \pm 0.0007(exp) \pm 0.0010(\Delta md) + 0.0080 - 0.0060(\xi)$

Ave: $0.2059 \pm 0.0007(exp) \pm 0.0010(\Delta md) + 0.0080-0.0060(\xi)$

- Uncertainty driven by theoretical calculation of ξ .
- Full Uncertainties (added in naive quadrature)
 - D0 4.3% CDF 3.5%
 - Require theoretical improvements to progress here...

Spectroscopy

Heavy Baryons

J = 3/2 b Baryons

Until recently only Λ_b had been observed directly

 $\Lambda_b^0 = |bud\rangle$ D0 and CDF

Heavy Baryons

J = 3/2 b Baryons

 $J = 1/2 \ b$ Baryons 3 b

- Until recently only Λ_b had been observed directly
- High statistics searches

Phys. Rev. Lett. 99, 052001 (2007),

- DØ: many checks that no signal in wrong-sign $\Lambda\pi$ combinations, Ξ sidebands, J/ψ sidebands
- CDF also has signal in $\Xi_b^{\pm} \to \Xi_c^0 \pi^{\pm}$ channel
- DØ: lifetime consistent with expectations:

Phys. Rev. Lett. 101, 232002 (2008)

- Yield $17.8 \pm 4.9 \pm 0.8$ candidates $oldsymbol{0}$
- Likelihood ratio, stat. significance = 5.4σ Include "trials" factor, significance = 5.05σ Remains > 5σ with syst. checks
- After special track reprocessing, large impact parameter tracks

1.7

π

 \mathbf{K}

Ω

 $\Lambda\pi$

1.75

 $M(\Lambda K)$ (GeV)

1.8

veto

Ω_b Baryon : Comparison

Difference of measured masses:

$$m(\Omega_b^-)^{\mathrm{D}\emptyset} - m(\Omega_b^-)^{\mathrm{CDF}}$$
$$= 111 \pm 12 \pm 14 \text{ MeV}$$

Significant (~6o) disagreement!

- DØ's largest mass systematic unc. is 10 times less than this difference
- DØ is working on an update of this measurement with an increased data set that may help address discrepancy.

Relative rates:

$$\begin{split} \mathsf{D}\oslash: \quad \frac{f(b \to \Omega_b^-) \cdot \mathcal{B}(\Omega_b^- \to J/\psi \Omega^-)}{f(b \to \Xi_b^-) \cdot \mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)} &= 0.80 \pm 0.32^{+0.14}_{-0.22} \\ \mathsf{CDF:} \quad \frac{\sigma \cdot \mathcal{B}(\Omega_b^- \to J/\psi \Omega^-)}{\sigma \cdot \mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)} &= 0.27 \pm 0.12 \pm 0.01 \quad \mathsf{Gal} \end{split}$$

5.

Measured and Predicted Masses
for the
$$\Xi_{b}^{-}$$
 and Ω_{b}^{-}
Jenkins (PRD 77,034012(2008))
Lewis et al, (PRD 79,014502(2009))
Karliner et al, (Ann. Phys. 324,2(2008))
Systematic Uncertainties
 Ξ_{-b}^{-} CDF
D0 - PRL 99, 052001
 Ω_{b}^{-} CDF
D0 - PRL 99, 052001
 Ω_{b}^{-} CDF
D0 - PRL 101, 232002 ---
 Ω_{b}^{-} CDF
D0 - PRL 101, 232002 ---
 Ω_{b}^{-} CDF
D0 - PRL 101, 232002 ---
 Ω_{c}^{-} CDF
D0 - PRL 101, 23002 ----
 Ω_{c}^{-} CDF
D0 - PRL 101, 23002 ---- CDF
D0 - PR

Rare Decays

 $B_s \rightarrow \mu \mu$

- Current SM Prediction: Buras: <u>hep-ph/0904.4917</u>
 ⇒ BR(B_s→µµ) = (3.6±0.3)×10⁻⁹
 ⇒ BR(B_d→µµ) = (1.1±0.1)×10⁻¹⁰
- Can be enhanced by the presence of non-SM physics MSSM (BR∝tan⁶ß) **(a)** μ* W⁺ b ν t μ W S S μ^+ b Z S lain B

Outline of Measurement

$$\mathcal{B}\left(B_s^0 \to \mu^+ \mu^-\right) = \frac{N(B_s^0)}{N(B^+)} \cdot \frac{\epsilon_{B^+}}{\epsilon_{B_s}} \left\{ \frac{f_u}{f_s} \cdot \mathcal{B}(B^+) \right\}$$

- I. Measure number of possible signal events in B_s mass window
- 2. Normalise to number of $B^+ \rightarrow J/\psi K^+$ events
- 3. Correct for relative reconstruction efficiencies
- 4. Correct for Fragmentation Functions and Branching ratio.
 Particle Data Group (<u>W.M.Yao et al.</u>). 2006.
 Both CDF and D0 use the LEP numbers.

 f_u/f_s is the dominant source of systematic uncertainties at 15%

D0's Latest Result (Summer 2010)

- <u>arXiv:1006.3469v1</u> [hep-ex] submitted to Phys. Lett. B
- 6.1fb⁻¹ data (split into Run 2a 1.3fb⁻¹ and Run 2b 4.8fb⁻¹)
- Many improvements
 - Acceptance Gain (Muons ~10%, Trigger ~16%)
 - Bayesian Neural Networks
 - Improved understanding of discriminating variables
 - Improved MC and Data modelling
 - 2D fit of BNN output and mass spectrum

Events/0.05 GeV

D0 Results

β

arXiv:1006.3469v1 [hep-ex]

Comparison of Results

Upper Limits on BR($B_{g} \rightarrow \mu^{+}\mu^{-}$) at 95% C.L. at Tevatron

CPViolation

$B_s \rightarrow J/\psi \varphi$

- Look for CPViolation in B_s mixing using B_s $\psi \rightarrow J/\psi$
- CPViolation is described using the mixing angle $\varphi^{J/\psi\varphi}$ which can be related to the angle β_s of the unitarity triangle:

• This can be enhanced by new phenomena

$$\Psi_{\Psi_{\varphi},SM} \phi_{s}^{J/\Psi_{\varphi},SM} + \phi_{s}^{NP} = \phi^{J/\Psi_{\varphi},SM} + \phi_{s}^{NP}$$

- Decays into two vector mesons that are either CP-odd (L=I) or CP-even (L= 0,2)
- Angular Analysis of decay products and lifetimes
 - A_{\perp} transverse perpendicular CP odd
 - A_{||}, A₀ transverse parallel & longitudinal CP-even

 $B_s \rightarrow J/\psi \varphi$

- 6.1 fb⁻¹ of data
 - Vertex Constraint
 - Kinematic J/ψ mass constraints
 - Multidimensional unbinned likelihood fit
 - 3435 ± 84 signal events

$B_s \rightarrow J/\psi \varphi$

- Fit data to extract CP-even and odd contributions
 - Use MC simulation to determine efficiency and detector smearing.
 - Assume K⁺K⁻ is in P-wave

B_s→J/ψφ

- Constraints:
 - Gaussian for $\Delta M_s = 17.77 \pm 0.12 \text{ ps}^{-12}$
 - Strong phases between polarisation amplitudes constrained by $B_d \psi \rightarrow J/\psi K^*$ $\delta_1 = -\delta_{\parallel} + \delta_{\perp} = -0.42 \pm 0.18$

$$\delta_2 = -\delta_0 + \delta_\perp = 3.01 \pm 0.14$$

- Check with full MC simulation of CP violating processes
 - no obvious bias observed
 - Ensemble tests (biases seen if strong phase floats)

D0Note 6098-CONF

$$\bar{\tau}_s = 1.45 \pm 0.04 \pm 0.01 \,\mathrm{ps}$$
$$\Delta \Gamma_s = 0.15 \pm 0.06 \pm 0.01 \,\mathrm{ps}^{-1}$$
$$\phi_s^{J/\psi\phi} = -0.76^{+0.38}_{-0.36} \pm 0.02$$

 $A_{\perp}(t=0), |A_0(0)|^2 - |A_{\parallel}(0)|^2$ consistent with $B_d^0 \to J/\psi K^*$

 $B_s \rightarrow D^{(*)}{}_s D^{(*)}{}_s$

- $B_{S} \rightarrow D_{s}^{(*)}D_{s}^{(*)}$ is almost a pure CP-even (theory assumptions) $\frac{\Delta\Gamma_{s}^{CP}}{\Gamma_{s}} \simeq \frac{2\mathcal{B}\left(B_{s} \rightarrow D_{s}^{(*)}D_{s}^{(*)}\right)}{1-\mathcal{B}\left(B_{s} \rightarrow D_{s}^{(*)}D_{s}^{(*)}\right)}$
- Select events in both the hadronic & semi-leptonic channels:

$$D_s \to \phi \pi$$
 where $\phi \to K^+ K^-$
 $D_s \to \phi \mu \nu$ where $\phi \to K^+ K^-$

$B_s \rightarrow D^{(*)}{}_s D^{(*)}{}_s$

- Fit to 2-dim. distribution m(φπ) of hadronic D_s vs. m(KK) of semileptonic Ds. 4 components:
 - Correlated D_sD_s signal,
 - $(2\times)$ uncorrelated D_s signal with D_s background,
 - correlated D_sD_s background
 - cc, $B_s \rightarrow D_s^{(*)} \varphi \mu \nu$, $B_s \rightarrow D_s^{(*)} D_s^{(*)} KX$)
- Signal template extracted from $B_s \rightarrow D_s^{(*)}\mu\nu$ by removing peaking backgrounds

Extraction of $\Delta \Gamma_s^{CP}/\Gamma_s$

 $\mathcal{B}\left(B_s \to D_s^{(*)} D_s^{(*)}\right) = 0.035 \pm 0.010 \,(\text{stat}) \pm 0.008 \,(\text{exp syst}) \pm 0.007 \,(\text{ext syst})$

• Using heavy quark hypothesis (Phys. Lett. B316 (1993) 567) and assuming no CP-odd component obtain $\Delta\Gamma_s^{CP}$:

$$\frac{\Delta\Gamma_s^{\rm CP}}{\Gamma_s} \simeq \frac{2\mathcal{B}\left(B_s \to D_s^{(*)} D_s^{(*)}\right)}{1 - \mathcal{B}\left(B_s \to D_s^{(*)} D_s^{(*)}\right)} = 0.072 \pm 0.021 \,(\text{stat}) \pm 0.022 \,(\text{syst})$$

Reversing the Magnet

$$n_{q}^{\beta\gamma} = \frac{1}{4} N e^{\beta} \left(1 + qA\right) \left(1 + q\gamma A_{fb}\right) \\ \left(1 + \gamma A_{det}\right) \left(1 + q\beta\gamma A_{\beta\gamma q}\right) \left(1 + \beta\gamma A_{\beta\gamma q}\right) \left(1 +$$

- Use detector to solve acceptance issues
 - A a_{sl} charge asymmetry
 - A_β Toroid Asymmetry
 - A_Y North/South detector (A_{det})
 - $A_{q\gamma}$ Beam related (A_{fb})
 - $A_{q\beta}$ toroid efficiency
 - A_{βY} forward backward toroid asymmetries
 - $A_{q\beta\gamma}$ range out asymmetries (A_{ro})
- Have eight samples based on charge of muon, solve.

$B^+ \rightarrow J/\Psi K^+$ Decays

 $A_{CP} (B^+ \to J/\Psi K^+) = -0.0075 \pm 0.0061 \text{ (stat)} \pm 0.027 \text{ (sys)}$ $A_{CP} (B^+ \to J/\Psi \pi^+) = -0.09 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (sys)}$

- Solve for detector asymmetries
- Subtract Kaon asymmetry

Phys. Rev. Lett. 100, 211802 (2008),

$a^{s}_{sl}: Bs \rightarrow Ds^{-}\mu^{+}\nu X$ decays

$$a_{fs}^{s} = \frac{\Gamma_{\overline{B_s}(t)} - \Gamma_{B_s(t)}}{\Gamma_{\overline{B_s}(t)} + \Gamma_{B_s(t)}} = \frac{\Delta\Gamma_s}{\Delta m_s} \tan\phi_s$$

- Time dependent analysis
 - Removes dependence on B_d result
 - Two reconstructed Decays

$B_s \rightarrow D_s^- \mu^+ \nu X$ decays

$$\Gamma_{B_s(t)\to\bar{f}} = N_f \left|\bar{A}_{\bar{f}}\right|^2 \left(1 - a_{fs}^s\right) \exp\left[-\Gamma_s t \frac{\cosh\left(\Delta\Gamma_s t/2\right) - \cos\left(\Delta m_s t\right)}{2}\right]$$

- Unbinned likelihood fit
 - depends on tagging, decay length, decay length resolution, and background fractions
- Extract Signal Amounts

$B_s \rightarrow D_s^- \mu^+ \nu X$ decays

Asymmetries with statistical uncertainties

	$\mu^+ \phi \pi^-$	$\mu^+ K^{0*} K^-$	Combined
$a_{fs}^s imes 10^3$	-7.0 ± 9.9	20.3 ± 24.9	-1.7 ± 9.1
$a^d_{fs} imes 10^3$	-21.4 ± 36.3	50.1 ± 19.5	40.5 ± 16.5
$a_{fs}^{ m bkg.} imes 10^3$	-2.2 ± 10.6	-0.1 ± 13.5	-3.1 ± 8.3
$A_{fb} imes 10^3$	-1.8 ± 1.5	-2.0 ± 1.5	-1.9 ± 1.1
$A_{ m det} imes 10^3$	3.2 ± 1.5	3.1 ± 1.5	3.1 ± 1.1
$A_{ m ro} imes 10^3$	-36.7 ± 1.5	-30.2 ± 1.5	-33.3 ± 1.1
$A_{eta\gamma} imes 10^3$	1.1 ± 1.5	0.2 ± 1.5	0.6 ± 1.1
$A_{m{q}eta} imes 10^3$	4.3 ± 1.5	2.0 ± 1.5	3.1 ± 1.1

$$A_{fs}^{s} = \left[-1.7 \pm 9.1 \,(\text{stat}) \,\frac{+1.2}{-2.3} \,(\text{sys})\right] \times 10^{-3}$$

Factor 2 improvement over previous result. Phys. Rev. D 82, 012003 (2010)

Anomalous Dimuon

 Asymmetry in "same-sign" muons from decays of mixed neutral B mesons:

$$a_{sl}^b \equiv \frac{\Gamma\left(\bar{B} \to \mu^+ X\right) - \Gamma\left(B \to \mu^- X\right)}{\Gamma\left(\bar{B} \to \mu^+ X\right) + \Gamma\left(B \to \mu^- X\right)}$$

$$A_{sl}^b \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

<u>Grossman, Nir, Raz,</u> <u>Phys.Rev.Lett.97:151801,2006.</u>

- Extract in multiple ways
 - Time dependent tagged decays (e.g. DØ B_S semi-leptonic decays lifetime analysis <u>arxiv.org:0904.3907</u>)
 - asymmetry in single muon, or same sign dimuon events

 Inclusive, untagged analysis has contributions form both B_d and B_s. Take the measured production fractions (CDF) and mixing properties:

$$A_{sl}^b = (0.506 \pm 0.043) a_{sl}^d + (0.494 \pm 0.043) a_{sl}^s$$

- Large contribution from B_s
- Can be written in terms of CP-violating mixing phase: $a_{sl}^{q} = \frac{\left|\Gamma_{q}^{12}\right|}{\left|M_{q}^{12}\right|} \sin \theta_{q} = \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \theta_{q}$

• and in the SM it is given by:

$$A_{sl}^{b}(\mathrm{SM}) = \left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4}$$

Lenz, Nierste, JHEP 0706:072,2007

Measurement

Measure both dimuon asymmetry A and inclusive asymmetry a:

Both A & a contain contributions from A^bsl and backgrounds

$$A = K \times A_{sl}^b + A_{bkg}, \ a = k \times A_{sl}^b + a_{bkg}$$

- contribution from A^{b}_{sl} is suppressed by background k=0.041 ± 0.003
- Determine background from data with minimal use of simulation
- Exploit correlations between backgrounds to minimise uncertainty.

Cross Check - rebin in dimuon Mass

Compare a and a_{bkg} to verify description of background

•
$$\chi^2 = 2.4/5$$
 d.o.f.

Anomalous Dimuon

$A_{sl}^b = (-0.957 \pm 0.251 \,(\text{stat}) \pm 0.146 \,(\text{syst}))\%$

- Use to extract a band on the a^d_{sl} vs. a^s_{sl} plane
- Compared with Bfactories and other D0 results

Combination of DØ Results

DØ Note 6093-CONF

¥

Combination of DØ Results

Prospects - Current Data Taking

Last Words

- D0 has a broad and interesting b-physics programme
- Tevatron aims to run until 2014 and collect up to 16 fb⁻¹
- Aim to concentrate on strengths and uniqueness:
 CP violation
 - Anomalous dimuons.
 - $B_s \rightarrow J/\psi \varphi$
 - Aim to improve sensitivity in key measurables.

