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In lattice phenomenology we:
1 Consider What Next? for "mature" quantities which are being calculated with

"good" precision.
2 Continue to extend the range of physical quantities which can be calculated.
3 Need new ideas for some important phenomenological quantities which I

don’t know how to start evaluating.
Non-leptonic B-decays. /

We understand how to calculate the spectrum, quark masses, and matrix
elements of the form 〈0|O(0)|h〉 and 〈h2|O(0)|h1〉. These continue to be calculated
with ever improving precision.
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Perturbation Theory

The precision of lattice calculations is now reaching the point where we need
better interactions with the NnLO QCD perturbation theory community.

The traditional way of dividing responsibilities is:

Physics = C × 〈 f |O | i〉
↑ ↑

Perturbative Lattice
QCD QCD

The two factors have to be calculated in the same scheme.

Can we meet half way?

bare operators
lattice −→ ? ←− renormalized

operators in MS scheme

What is the best scheme for ? (RI-SMOM, Schrödinger Functional, · · · )?
Recent examples of such collaborations following J.Gracey . . . :

two-loop matching factor for mq between the RI-SMOM schemes and MS.
M.Gorbahn and S.Jager, arXiv:1004:3997, L.Almeida and C.Sturm, arXiv:1004:4613

HPQCD + Karlsruhe Group in determination of quark masses.
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2. Vus from Lattice Simulations
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Vus

lattice result for f+(0), Nf = 2+1

lattice result for fK/fπ , Nf = 2+1

lattice results for Nf = 2+1 combined

lattice result for f+(0), Nf = 2 

lattice result for fK/fπ , Nf = 2

lattice results for Nf = 2 combined

unitarity
our estimate
nuclear β decay

Flavianet Lattice Averaging Group

(preliminary)

Lattice calculations of fK/fπ
combined with the experimental
widths⇒ Vus/Vud.

Following the suggestion of
Becirevic et al., precise lattice
calculations of the Kℓ3 form
factor f +(0) are possible⇒ Vus.

hep-ph/0403217

Results are in remarkable
agreement with SM.

Currently the main uncertainty on
f +(0) is due to the chiral extrapolation.

RBC-UKQCD, arXiv:1004:0886
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Results in the Standard Model

FLAG – Preliminary

We have the two precise results:
∣

∣

∣

∣

Vus fK
Vud fπ

∣

∣

∣

∣

= 0.27599(59) and |Vus f+(0)|= 0.21661(47)

Flavianet – arXiv:0801.1817

We can view these as two equation for the four unknowns fK/fπ , f+(0), Vus and
Vud .

Within the Standard Model we also have the unitarity constraint:

|Vud|2 + |Vus|2 + |Vub|2 = 1

Thus we now have 3 equations for four unknowns.

There has been considerable work recently in updating the determination of Vud
based on 20 different superallowed transitions. Hardy and Towner, arXiV:0812.1202

|Vud|= 0.97425(22) .

If we accept this value then we are able to determine the remaining 3 unknowns:

|Vus|= 0.22544(95), f+(0) = 0.9608(46),
fK
fπ

= 1.1927(59) .
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Unitarity and the First Row of the CKM Matrix

FLAG - Preliminary

The results are remarkably consistent with the unitarity of the CKM Matrix

Taking the experimental results for Kℓ2 and Kℓ3 decays and dividing by the
Nf = 2+1 lattice values of fK/fπ and f +(0) gives:

V2
ud +V2

us = 1.002(16) .

If we combine the experimental results with the value of Vud and the lattice values
of f +(0) or fK/fπ we find:

V2
ud +V2

us = 1.0000(7) or V2
ud +V2

us = 0.9999(7) .
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SU(2) ChPT and f0(q2
max); q2

max = (mK −mπ )2

mπ f0(q2
max)

670 MeV 1.00029(6)
555 MeV 1.00192(34)
415 MeV 1.00887(89)
330 MeV 1.02143(132)

RBC-UKQCD (Nf = 2+1), arXiv:0710.5136

mπ f0(q2
max)

575 MeV 1.00016(6)
470 MeV 1.00272(34)
435 MeV 1.00416(43)
375 MeV 1.00961(123)
300 MeV 1.01923(121)
260 MeV 1.03097(224)
ETM (Nf = 2), arXiv:0906.4728

In the SU(2) chiral limit, mud = 0, we have the Callan-Treiman Relation

f0(q
2
max) =

fK
fπ
≃ 1.26.

We have investigated whether the difference of the numbers in the table and 1.26
can be understood using SU(2) ChPT. J.Flynn & CTS, arXiv:0809.1229

The one-loop chiral logarithms have a large coefficient and are of the correct
size to account for the difference. However they have the wrong sign!
There are linear and quadratic terms in mπ .
They cannot be calculated in SU(2) ChPT, but estimating the LECs by
converting results from SU(3) ChPT suggests that these terms have the
correct sign and magnitude to account for the difference.

The same features hold for B→ π and D→ π semileptonic decays.
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SU(2) ChPT at q2 = 0 - Hard-Pion Chiral Perturbation Theory

We also argue that information can be obtained at values of q2 where the external
pion is not soft, such as at the reference point q2 = 0 . J.Flynn, CTS, arXiV:0809.1229.

f 0(0) = f +(0) = F+

(

1− 3
4

m2
π

16π2f 2 log

(

m2
π

µ2

)

+c+m2
π

)

f−(0) = F−

(

1− 3
4

m2
π

16π2f 2 log

(

m2
π

µ2

)

+c−m2
π

)

.

It is possible to calculate the chiral logarithm because this comes from a soft
internal loop.

The approach can be applied at other values of q2.

This idea has recently been extended to K→ ππ decays,
J.Bijnens and A Celis, arXiV:0906.0302

and to B→ π and D→ π semileptonic decays. J.Bijnens and I Jemos, arXiV:1006.1197

Since the chiral extrapolation is a major source of systematic uncertainty for the
lattice determination of Vus from Kℓ3 decays, it is important to have all the possible
theoretical information to guide us.

It would be useful to know the result at NNLO.

It would be reassuring to confirm that it is possible to develop an effective theory
in which hard and soft pions are separated.
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3. εK , |Vcb| and sin2β

Lunghi and Soni, arXiv:0803.4340 [hep-ph]

Buras and Guadagnoli, arXiv:0805.3887 [hep-ph], arXiv:0901.2056 [hep-ph]

Buras, Guadagnoli and Isisdori, arXiv:1002.3612 [hep-ph]

Within the standard model the indirect CP-Violation parameter

εK =
2η+−+η00

3
, ηij =

A (KL→ π iπ j)

A (KS→ π iπ j)
,

can be written in the form

εK = κε Cε B̂K |Vcb|2|Vus|2
(

1
2
|Vcb|2R2

t sin2βηttS0(xt)+Rt sinβ (ηctS0(xc,xt)−ηcc xc)

)

with

Cε =
G2

F f 2
KMK0M2

W

6
√

2π2(∆MK)
xi = m̄2

i (m̄i), Rt ≃
1
λ
|Vtd|
|Vts|

.

Two recent developments move the SM prediction downwards:

1 Precise lattice values of B̂K are "low":

B̂K = 0.720(13)(37) D.J.Antonio et al., RBC-UKQCD, hep-ph/0702042

B̂K = 0.724(8)(28) C.Aubin, J.Laiho and R.Van de Water, arXiv:0905.3947
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εK , |Vcb| and sin2β , cont.

εK = κε Cε B̂K |Vcb|2|Vus|2
(

1
2
|Vcb|2R2

t sin2βηttS0(xt)+Rt sinβ (ηctS0(xc,xt)−ηcc xc)

)

2 Write εK = eiφε sin(φε )

(

ImMK
12

∆MK
+ξ

)

, where

ξ =
ImA0

ReA0
and φε = arctan(2∆MK/∆Γ) = (43.51±0.05)◦ .

κε = 0.92±0.02 is a correction factor taking into account the difference of φε from
45◦ as well as the presence of the ξ term.

Using the above values of B̂K and κε , Buras and Guadagnoli find: arXiv:0901.2056

|εK |SM = (1.78±0.25)10−3 to be compared to |εK |exp = (2.229±0.012)10−3 .

2σ "tension"

The top-quark contribution to εK is the dominant one so that approximately:

|εK | ∝ κε f 2
K B̂K |Vcb|4ξ 2

s sin(2β )

so that the prediction is very sensitive to |Vcb| ?
= (41.2±1.1)10−3 and

ξs =
fBs

√

B̂s

fBd

√

B̂d

?
= 1.21±0.06
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4. K→ ππ decay amplitudes from K→ π Matrix Elements

At lowest order in the SU(3) chiral expansion one can obtain the K→ ππ decay
amplitude by calculating K→ π and K→ vacuum matrix elements.

In 2001, two collaborations published some very interesting (quenched) results
on non-leptonic kaon decays in general and on the ∆I = 1/2 rule and ε ′/ε in
particular:

Collaboration(s) Re A0/Re A2 ε ′/ε

RBC 25.3±1.8 −(4.0±2.3)×10−4

CP-PACS 9÷12 (-7÷ -2)×10−4

Experiments 22.2 (17.2±1.8)×10−4

This required the control of the ultraviolet problem, the subtraction of power
divergences and renormalization of the operators – highly non-trivial.

Four-quark operators mix, for example, with two quark operators⇒ power
divergences:

u

s

u

d

⇒

s d

u
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Sample Results from CP-PACS (hep-lat/0108013)

Re A0/Re A2 as a function of the
meson mass.
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The RBC and CP-PACS simulations were quenched, and relied on the validity of
lowest order χPT in the region of approximately 400-800MeV.

Given the cancelations between different matrix elements (particularly O6 and O8)
the negative value of ε ′/ε is not such an embarrassment but

Must do better!
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Unquenched Calculation

S.Li, Ph.D. thesis, RBC-UKQCD in preparation
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RBC/(UKQCD) have repeated the calculation with the 243 DWF ensembles in the
pion-mass range 240-415MeV.

For illustration consider the determination of α27, the LO LEC for the (27,1)
operator. Satisfactory fits were obtained, but again the corrections were found to
be huge, casting serious doubt on the approach.

Soft pion theorems are not sufficiently reliable⇒ need to compute K→ ππ matrix
elements.

To arrive at this important conclusion required a truly major effort.

J.Laiho et al. challenge this conclusion. Poster, Lattice conference
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RBC/(UKQCD) have repeated the calculation with the 243 DWF ensembles in the
pion-mass range 240-415MeV.

For illustration consider the determination of α27, the LO LEC for the (27,1)
operator. Satisfactory fits were obtained, but again the corrections were found to
be huge, casting serious doubt on the approach.

Soft pion theorems are not sufficiently reliable⇒ need to compute K→ ππ matrix
elements.

To arrive at this important conclusion required a truly major effort.

J.Laiho et al. challenge this conclusion. Poster, Lattice conference

Chris Sachrajda Lattice meets Phenomenology, 17/9/2010 13



K→ (ππ)I=2 decay amplitudes

Preliminary results from the RBC/UKQCD study were presented by E.Goode and
M.Lightman at

Lattice 2009: arXiv:0912.1667

∆I = 3/2, K→ ππ Decays with Light, Non-Zero Momentum Pions
Lattice 2010:

http://agenda.infn.it/contributionDisplay.py?contribId=11&sessionId=22&confId=2128

∆I = 3/2, K→ ππ Matrix Elements with Nearly Physical Pion Masses
Of course we would like to evaluate all the K→ ππ matrix elements in lattice
simulations and reconstruct A0 and A2 and understand the ∆I = 1/2 rule and the
value of ε ′/ε (see below).
In the meantime however, we know Re A0 and Re A2 from experiment.
I now attempt to demonstrate that we can also compute Re A2.

The experimental value of ε ′/ε gives us one relation between Im A0 and Im A2,
thus if we evaluate Im A2 then within the standard model we know Im A0 to some
precision. Thanks to Andrzej Buras for stressing this to me.

I also attempt to demonstrate that we can indeed compute Im A2.

I stress again that ultimately of course, we wish to do better than this.
See next section

All numerical results are preliminary.
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Direct Calculations of K→ ππ Decay Amplitudes

We need to be able to calculate K→ ππ matrix elements directly.

The main theoretical ingredients of the infrared problem with two-pions in the
s-wave are now understood.

Two-pion quantization condition in a finite-volume

δ (q∗)+φP(q∗) = nπ ,

where E2 = 4(m2
π +q∗2), δ is the s-wave ππ phase shift and φP is a kinematic

function. M.Lüscher, 1986, 1991, · · · .
The relation between the physical K→ ππ amplitude A and the finite-volume
matrix element M

|A|2 = 8πV2 mKE2

q∗2

{

δ ′(q∗)+φP ′(q∗)
}

|M|2 ,

where ′ denotes differentiation w.r.t. q∗ .
L.Lellouch and M.Lüscher, hep-lat/0003023; C.h.Kim, CTS and S.Sharpe, hep-lat/0507006;

N.H.Christ, C.h.Kim and T.Yamazaki hep-lat/0507009

Computation of K→ (ππ)I=2 matrix elements does not require the subtraction of
power divergences or the evaluation of disconnected diagrams.

In principle, we understand how to calculate the ∆I = 3/2 K→ ππ matrix elements.

Our aim is to calculate the matrix elements with as good a precision as we can.
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K→ (ππ)I=2 Decays and the Wigner-Eckart Theorem

The operators whose matrix elements have to be calculated are:

O3/2
(27,1)

= (s̄idi)L
{

(ūjuj)L− (d̄jdj)L
}

+(s̄iui)L (ūjdj)L

O3/2
7 = (s̄idi)L

{

(ūjuj)R− (d̄jdj)R
}

+(s̄iui)L (ūjdj)R

O3/2
8 = (s̄idj)L

{

(ūjui)R− (d̄jdi)R
}

+(s̄iuj)L (ūjdi)R

It is convenient to use the Wigner-Eckart Theorem: (Notation - O∆I
∆Iz

)

I=2〈π+(p1)π0(p2) |O3/2
1/2|K

+〉= 3
2
〈π+(p1)π+(p2) |O3/2

3/2|K
+〉 ,

where
– O3/2

3/2 has the flavour structure (s̄d)(ūd).

– O3/2
1/2 has the flavour structure (s̄d)((ūu)− (d̄d))+(s̄u)(ūd).

We can then use antiperiodic boundary conditions for the u-quark say, so that the
ππ ground-state is 〈π+(π/L)π+(−π/L) | . C-h Kim, Ph.D. Thesis

– Do not have to isolate an excited state.
– Size (L) needed for physical K→ ππ decay halved (6 fm→ 3 fm).
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K→ (ππ)I=2 - Evaluating the LL Factor

C.h. Kim and CTS, arXiv:1003.3191

Use the Wigner-Eckart Theorem to relate the physical K→ π+π0 matrix element
to that for K→ π+π+

I=2〈π+(p1)π0(p2) |O3/2
1/2|K

+〉= 3
2
〈π+(p1)π+(p2) |O3/2

3/2|K
+〉 ,

Calculate the K→ π+π+ matrix element with the u-quark with twisted boundary
conditions with twisting angle θ .

Perform a Fourier transform of one of the pion interpolating operators with
additional momentum −2π/L.
The ground state now corresponds to one pion with momentum θ/L and the other
with momentum (θ −2π)/L.

The corresponding ππ s-wave phase-shift can then be obtained by the Lüscher
formula as a function of θ ⇒ this allows for the derivative of the phase-shift to be
evaluated directly at the masses being simulated.

We have carried this procedure out in an exploratory calculation. Fig

Unfortunately this technique does not work for K→ (ππ)I=0 decays.
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Exploratory Evaluation of the Lellouch-Lüscher Factor

C.h. Kim and CTS, arXiv:1003.3191
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K→ (ππ)I=2 - Evaluating the LL Factor

C.h. Kim and CTS, arXiv:1003.3191

Use the Wigner-Eckart Theorem to relate the physical K→ π+π0 matrix element
to that for K→ π+π+

I=2〈π+(p1)π0(p2) |O3/2
1/2|K

+〉= 3
2
〈π+(p1)π+(p2) |O3/2

3/2|K
+〉 ,

Calculate the K→ π+π+ matrix element with the d-quark with twisted boundary
conditions with twisting angle θ .

Perform a Fourier transform of one of the pion interpolating operators with
additional momentum −2π/L.
The ground state now corresponds to one pion with momentum θ/L and the other
with momentum (θ −2π)/L.

The corresponding ππ s-wave phase-shift can then be obtained by the Lüscher
formula as a function of θ ⇒ this allows for the derivative of the phase-shift to be
evaluated directly at the masses being simulated.

We have carried this procedure out in an exploratory calculation. Fig

Unfortunately this technique does not work for K→ (ππ)I=0 decays.
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Hard-Pion Chiral Perturbation Theory

We argued that SU(2) ChPT can be used for Kℓ3 form factors at q2 = 0 (and other
q2 where the pion is not soft) . J.Flynn, CTS, arXiV:0809.1229.

f 0(0) = f +(0) = F+

(

1− 3
4

m2
π

16π2f 2 log

(

m2
π

µ2

)

+c+m2
π

)

f−(0) = F−

(

1− 3
4

m2
π

16π2f 2 log

(

m2
π

µ2

)

+c−m2
π

)

.

It is possible to calculate the chiral logarithm because this comes from a soft
internal loop.

This idea has been extended to K→ ππ decays, J.Bijnens and A Celis, arXiV:0906.0302

A2 = ALO
2

(

1− 15
4

m2
π

16π2f 2 log

(

m2
π

µ2

))

+λ2 m2
π

A0 = ALO
0

(

1− 3
4

m2
π

16π2f 2 log

(

m2
π

µ2

))

+λ0 m2
π ,

(and to B→ π and D→ π semileptonic decays. J.Bijnens and I Jemos, arXiV:1006.1197)

It would be useful to know the results at NNLO.

It would be reassuring to confirm that it is possible to develop an effective theory
in which hard and soft pions are separated.
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Preliminary ∆I = 3/2 Matrix Elements

RBC-UKQCD, M.Lightman and E.Goode, Lattice 2010

K π+

π+

O′

s

The RBC/UKQCD strategy at this stage is to perform the simulations on a large
lattice, L≃ 4.5 fm, with light pions (323×64×32)

mπ ≃ 145MeV Unitarymπ ≃ 180MeV.

The price is that the lattice is coarse, a−1 ≃ 1.4GeV.

With DWF, mres increases as the coupling becomes stronger⇒ change the gauge
action (from Iwasaki) by multiplying by the Auxilliary Determinant .

D.Renfrew, T.Blum, N.Christ, R.Mawhinney and P.Vranas, arXiv:0902.2587

R. Mawhinney, Lattice 2010

This is tuned to suppress mres but to maintain topology changing.
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Preliminary ∆I = 3/2 Matrix Elements – Cont.

K π+

π+

O′

s

The masses and momenta are as follows:

Quantity This Calculation Physical
mπ 145.6(5)MeV 139.6 MeV
mK 519(2)MeV 493.7 MeV

Eππ(pπ ≃ 0) 294(1)MeV
Eππ(pπ ≃

√
2π/L) 516(9) MeV

Eππ(pπ ≃
√

2π/L)−mK -2.7(8.3)MeV

The results presented here were obtained with 47 configurations (we are
continuing to 100) .
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Effective Masses

0 1 0 2 0 3 0 4 0 5 0 6 0t0 . 0 80 . 0 90 . 10 . 1 10 . 1 20 . 1 3
Eff ecti veM ass
mπ = 0.10400(37)⇒ 145.6(5) MeV

N o i s ec o n t i n u e st o i n c r e a s e
mK = 0.3706(13)⇒ 519(2) MeV

0 1 0 2 0 3 0 4 0 5 0 6 0t00 . 10 . 20 . 30 . 4
Eff ecti veM ass

Eππ = 0.2100(10)⇒ 294(1) MeV

N o i s ec o n t i n u e st o i n c r e a s e
Eππ = 0.3687(61)⇒ 516(9) MeV
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Effective Masses – Cont.

K π+

π+

O′

s

Source Re(A2) (10−8 GeV)
tK = 20 1.52(12)
tK = 24 1.52(10)
tK = 28 1.71(13)
tK = 32 1.35(22)

Weighted Average 1.56(7)
Experiment 1.5

Stat. error only
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O′3/2
(27,1)

= (s̄d)L (ūd)L O′3/2
7 = (s̄d)L (ūd)R O′3/2

8 = (s̄idj)L (ūjdi)R

Sample plateaus for the matrix elements at matched kinematics (pπ =
√

2pmin).
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(Preliminary) Conclusions from K→ (ππ)I=2 study

We have preliminary results for the ∆I = 3/2 K→ ππ decay amplitude on 323

lattices with 2+1 flavours of DWF and the Iwasaki-DSDR gauge action.

mπ = 145.6(5) MeV, mK = 519(2) MeV, Eππ = 516(9) MeV .

Re A2 = 1.56(7)(25)×10−8 GeV .
Error is dominated by lattice artefacts, a−3 on a coarse lattice.

Im A2 =−9.6(4)(24)×10−13 GeV .
In addition to lattice artefacts, we are in the process of performing the NPR for the
EWP operators O7,8 The result above is obtained by taking Zij = 0.9(0.18)δ ij.

Im A2/Re A2 =−6.2(0.3)(1.3)10−5 .

We are confirming that these calculations are possible.

Calculations of the ∆I = 1/2 amplitudes are much more challenging - Next
Section.

Chris Sachrajda Lattice meets Phenomenology, 17/9/2010 25



K→ (ππ)I=0 Decays

The I = 0 final state has vacuum quantum numbers.

Vacuum contribution must be subtracted; disconnected diagrams require
statistical cancelations to obtain the e−2mπ t behaviour.

Consider first the two-pion correlation functions, which are an important
ingredient in the evaluation of K→ ππ amplitudes.

0 t
V

1

2

4

3

0 0t t 0 t
D C R

2

1 4

3 2

1 4

3 2

1 4

3

For I=2 ππ states the correlation function is proportional to D-C.

For I=0 ππ states the correlation function is proportional to 2D+C-6R+3V.

The major practical difficulty is to subtract the vacuum contribution with sufficient
precision.

We are performing high-statistics experiments on a 163×32 lattice,
a−1 = 1.73GeV, mπ = 420MeV, propagators evaluated from each time-slice.

Qi Liu – Lattice 2010
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Diagrams contributing to two-pion correlation functions
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For I=2 ππ states the correlation function is proportional to D-C.

For I=0 ππ states the correlation function is proportional to 2D+C-6R+3V.
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RBC/UKQCD, Qi Liu – Lattice 2010

Chris Sachrajda Lattice meets Phenomenology, 17/9/2010 27



Two-pion Correlation Functions
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I = 2 (Correlator and
Effective Mass)

Eππ = 0.5054(15)

I = 0 (Correlator and
Effective Mass)

Eππ = 0.450(17)

We are now doubling the
statistics.

I = 0 (Correlator - V and
Effective Mass)

Eππ = 0.4392(59)
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K→ (ππ)I=0 Decays

K

π

π
Type1

s

K

π

π
Type2

s
K

π

π
Type3

s

l,s

K

π

π
Type4

s l,s
K

π

π
Mix3

s

K

π

π
Mix4

s

There are 48 different contractions and we classify the contributions into the 6
different types illustrated above.

Mix3 and Mix4 are needed to subtract the power divergences which are
proportional to matrix elements of s̄γ5d .
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Sample Results for Q6 = (s̄idj)L ∑q (q̄jqi)R
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Results from exploratory simulation at unphysical kinemat ics

RBC/UKQCD, Qi Liu – Lattice 2010

These results are for the K→ ππ (almost) on-shell amplitudes with 420 MeV
pions at rest:

Re A0 (3.0±0.8)10−7 GeV
Im A0 −(2.9±2.2)10−11 GeV
Re A2 (5.395±0.045)10−8 GeV
Im A2 −(7.79±0.08)10−13 GeV

This is an exploratory exercise in which we are learning how to do the calculation.

We are currently doubling the statistics to confirm our belief that a direct
calculation appears to possible.

The next stage is to proceed towards physical kinematics.
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K→ ππ Decays - Conclusions

From computations of K→ π matrix elements in the pion mass-range
240-420 MeV using NLO ChPT, RBC/(UKQCD) conclude that they cannot
determine the LO LEC for K→ ππ decays reliably
⇒ need to calculate K→ ππ matrix elements directly.

The computation of K→ (ππ)I=2 amplitudes is progressing well, with the
preliminary result for Re A2 is good agreement with the physical value.

Normalized Im A2 available soon.
This will become a benchmark computation which will be improved in the
coming years (finer lattices?).

The exploratory results for K→ (ππ)I=0 decays encourage us to proceed to
physical kinematics.

⇒ an understanding of the ∆I = 1/2 rule and the value of ε ′/ε.
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5. η and η ′ Mesons

RBC-UKQCD – arXiV:1002.2999

A related topic is the study of the η-η ′ system.

To study η and η ′ we also need to evaluate disconnected diagrams.

l

l

s

s

Cll Css

l l

Dll

s s

Dss

l s

Dls

Here l represents the u or d quark (mu = md) and s the strange quark.
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η and η ′ Mesons

RBC-UKQCD – arXiV:1002.2999

Let

Ol =
ūγ5u+ d̄γ5d√

2
and Os = s̄γ5s .

We calculate the correlation functions

Xαβ (t) =
1
32

31

∑
t′=0
〈 Oα (t + t′)Oβ (t′) 〉 where α,β = l,s .

Sources are generated for each time slice (T=32).
Xls 6= 0 because of the Dls = Dsl diagrams.

The four correlation functions correspond to the diagrams as follows:
(

Xll Xls
Xsl Xss

)

=

(

Cll−2Dll −
√

2Dls

−
√

2Dsl Css−Dss

)

.

The usual expectation that disconnected diagrams and the resulting mixing are
small does not apply here.
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η and η ′ Mesons

RBC-UKQCD – arXiV:1002.2999
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We diagonalize X(t) at each t:

X(t) = AT
(

e−mη t 0
0 e−mη ′ t

)

A , where A =

(

〈η |Ol |0〉 〈η |Os |0〉
〈η ′ |Ol |0〉 〈η ′ |Os |0〉

)

To be more precise we diagonalize X(t0)−1X(t) . Lüscher and Wolff (1990)
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η – η ′ mixing

In the standard phenomenological treatment of η – η ′ mixing
(

|η〉
|η ′〉

)

=

(

cosθ −sinθ
sinθ cosθ

)(

|8〉sym
|1〉sym

)

In the O8 and O1 basis

A =

(√
Z8 cosθ −√Z1 sinθ√
Z8 sinθ

√
Z1 cosθ

)

where sym〈a|Ob|0〉=
√

Zaδab .

If this model is correct then the columns of A are orthogonal. We find for the dot
product - −0.009(49) for ml = 0.01 and 0.008(24) for ml = 0.02.

The mixing angle can be determined from

Aη1Aη ′8
Aη8Aη ′1

=− tan2θ .
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η – η ′ mixing

RBC-UKQCD – arXiV:1002.2999
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We find mη = 583(15) MeV and mη ′ = 853(123) MeV and θ =−9.2(4.7)◦ .
(Statistical errors only.)

To our accuracy, our calculation demonstrates that QCD can explain the relatively
large mass of the ninth pseudoscalar meson and its small mixing with the SU(3)
octet state.

There is plenty more to do!
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6. Conclusions

At this workshop we have seen lattice contributions to much beautiful
phenomenology, both in improved precision and in the extension of computations
beyond the standard quantities.

Recent years: Quenched⇒ & 500MeV pions⇒ "Almost physical pions"

This improvement has to be continued vigorously if precision flavour physics is to
play a complementary role to large p⊥ discovery experiments at the LHC in
unraveling the next level of fundamental physics

We do not know how to compute some important phenomenological quantities.

At the 1989 Lattice Conference in Capri, Ken Wilson made the seemingly
pessimistic prediction that it will take about 30 years to have precision Lattice
QCD.

We have 9 years left, but are well on our way now.
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7. Long Distance Contributions

We are used to calculating the short distance contributions to physical processes.

For example in neutral-kaon mixing:

d

s

s

d

W W = C(MW/µ)

d

s

s

d

In many cases the short-distance contribution is the dominant term, but
long-distance contributions are not always negligible:

– If GIM suppression is logarithmic.
– CKM enhancement (even if GIM suppression is power like).

As lattice computations of the short-distance contributions become more precise
we should try to learn how to compute these long-distance contributions
effectively. Early thoughts in this direction include:

– Rare Kaon Decays. G.Isidori, G.Martinelli, P.Turchetti, hep-lat/0506026

– Neutral Kaon Mixing. N.Christ, Lattice 2010
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Rare Kaon Decays

Isidori, Martinelli, Turchetti, hep-lat/0506026

K→ πℓ+ℓ− Decays. The main non-perturbative correlators for these decays are:
G.Ecker, A.Pich, E.de Rafael, (1987);

G. D’Ambrosio, G.Ecker, G.Isidori, J.Portolés, hep-ph/9808289

−i
∫

d4xe−iq·x 〈π j(p) |T
{

Jµ
em(x) [Qu

i (0)−Qc
i (0)]

}

|Kj(k)〉 ,

where q = k−p is the momentum transfer and Qi (i=1,2) are four quark operators.

K+→ π+νν̄ Decays. Suppression of long-distance effects is partially
compensated by a large CKM coefficient and the dominant T-product is:

G.Buchalla, A.Buras, hep-ph/9308272, hep-ph/9901288;

A.Falk, A.Lewandowski, A.Petrov, hep-ph/0012099

−i
∫

d4xe−iq·x 〈π+(p) |T
{

Jµ
Z (x) [Qu

i (0)−Qc
i (0)]

}

|K+(k)〉 .

Without the presence of the Qi the calculation is just the by-now standard one of
K→ π form-factors.

With q2 below any physical threshold, IMT avoid considering the corresponding
Minkowski->Euclidean issues.
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Rare Kaon Decays - Cont.

Isidori, Martinelli, Turchetti, hep-lat/0506026

The generic calculation is of the correlation functions

−i
∫

d4xe−iq·x 〈0|φπ (tπ ,~p)Jµ
X (x) [Qu

i (0)−Qc
i (0)]φ†

K(tK ,~k) |0〉 ,

with tπ > 0 and tK < 0.

The main issue discussed in IMT is that of renormalization and the subtraction of
power divergences.

Mixing of operators Qi with lower dimensional operators.
√

Contact terms between the Qi and the interpolating operators - spectral
analysis needed.

√

Contact terms between the Qi and currents depend on the currents.

For K→ πℓ+ℓ− decays, gauge invariance⇒ no power divergences. GIM
mechanism not necessary

For K+→ π+νν̄ decays, GIM used to cancel power divergences and the
linear divergence is absent in regularizations which preserve chiral
symmetry .

General arguments checked by one-loop perturbative calculations.

IMT believe that their results open a new field of interesting physical applications
to the lattice community.
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Long-distance contribution to the KL-KS mass difference

N.Christ - Lattice 2010

Start with the correlation function:

C(t3, tb, ta, t0) =
1
2

tb

∑
t1,t2=ta

〈0|φK(t3)T{H(t2)H(t1)}φK(t0) |0〉

where
H(t) = ∑

~x

H
∆S=1(t,~x) ,

and t3≫ tb > ta≫ t0 .

By calculating C for sufficiently large tb− ta we obtain ∆M:

C(t3, tb, ta, t0)≃−Z2
K ∆M (tb− ta)e−mK(t3−t0) .

Subtraction of short-distance contribution.

Finite-volume corrections included à la Lellouch-Luscher.

“With sufficient computing power a calculation of mKS −mKL is possible".
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8. Nonleptonic B-Decays

A huge amount of information has been obtained about decay rates and
CP-asymmetries for B→M1M2 decays (over 100 channels).

With just a few exceptions (e.g. CP-asymmetry in B→ J/ΨKs) our ability to
deduce fundamental information about CKM matrix elements is limited by our
inability to quantify the non-perturbative strong interaction effects.

Most approaches were based on Naive Factorization:

B̄d

π−

π+

b u

d̄

〈π+π− |(ūb)V−A (d̄u)V−A | B̄d 〉 → 〈π− |(d̄u)V−A |0〉 〈π+ |(ūb)V−A | B̄d 〉

〈π− |(d̄u)V−A |0〉 is known (fπ ).

〈π+ |(ūb)V−A | B̄d 〉 is known in principle (FB→π
0 (m2

π )).

No rescattering in the final state. No strong phase-shifts.

µ dependence does not match on the two sides.
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Nonleptonic B-Decays

In 1999 we realized that in the limit mb→ ∞, the long distance effects factorise
into simpler universal quantities:

M.Beneke, G.Buchalla, M.Neubert, CTS (BBNS)

F

Φ

T

B M1

M2

Φ

Φ

Φ

TB

M1

M2

〈M1,M2 |Oi |B〉 = ∑
j

FB→M1
j (m2

2)
∫ 1

0
duT I

ij(u)ΦM2(u)+ (M1 ↔ M2)

+
∫ 1

0
dξ dudvT II

i (ξ ,u,v)ΦB(ξ )ΦM1(v)ΦM2(u)
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Implications of Factorization

The significance and usefulness of the factorization formula stems from the fact
that the non-perturbative quantities which appear on the RHS are much simpler
than the original matrix elements which appear on the LHS.
They either reflect universal properties of a single meson state (the light-cone
distribution amplitudes) or refer to a B→ meson transition matrix element of a
local current (form-factor).

Conventional (naive) factorization is recovered as a rigorous prediction in the
infinite quark-mass limit (i.e. neglecting O(αs) and O(ΛQCD/mb) corrections).

Perturbative corrections to naive factorization can be computed systematically.
The results are, in general, non-universal (i.e. process dependent).

All strong interaction phases are generated perturbatively in the heavy quark limit.

The factorization formulae are valid up to O(ΛQCD/mb) corrections.

Many observables of interest for CP-violation become accessible. The precision
of the calculations is limited by our knowledge of the wave-functions and of the
power corrections.

For a comprehensive study of 96 PP and PV decay modes see
Beneke and Neubert, hep-ph/0308039.
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B→M1M2 and Lattice Simulations

The main limitation of the factorization framework is due to the fact that mb is not
so large, so that CKM and chiral enhancements to non-factorizable O(ΛQCD/mb)
terms are important.

At present we do not know how to begin computing B→M1M2 matrix elements!

Many intermediate states contribute.

What can lattice simulations contribute to the factorization formula:

Parton distribution amplitudes of light mesons (at least the low moments)
√

.
B→M form-factors

√
.

Parton distribution amplitudes of B-meson X.

I now briefly explain why we have not been able to compute φB or its moments.
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φB and Lattice Simulations

φB
αβ (k̃+) =

∫

dz− eik̃+z− 〈0| ūβ (z)[z,0]bα (0) |B〉
∣

∣

z+,z⊥=0

φB is convoluted with the perturbative hard-scattering amplitude T II
i ⇒ we need

√
2

λb
=

∫ ∞

0

dk̃+

k̃+
φB

+(k̃+) .

(In higher orders of perturbation theory factors containing log(k̃+) appear.)

At large k̃+, φB(k̃+)∼ 1/k̃+, but the convolution is finite.

Positive moments of φB(k̃+), which can be written in terms of local operators,
diverge as powers of 1/a⇒ need a technique to subtract these divergences with
sufficient precision.

We need new theoretical ideas for the lattice to contribute to B→M1M2 decays.
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