ATLAS status & physics overview

Jon Butterworth (UCL

ATLAS and ATLAS UK First look with a new detector First look in a new kinematic regime QCD plus...

ATLAS UK

- ATLAS UK is around 330 people in 12 institutes:
 - Birmingham, Cambridge, Glasgow, Edinburgh, Lancaster, Liverpool, Manchester, Oxford, QMUL, RAL, RHUL, Sheffield, Sussex, UCL.
 - Includes about 50 PhD students.
- Major responsibilities in tracking, trigger, software & computing.

- Many leadership positions over the years (CB chair, project leaderships, coordination of physics groups...).
- Notable recent examples:
 - T. Wengler, run coordinator for first beam data.
 - D. Charlton, physics coordinator and now deputy spokesperson.
 - From 1 Oct, 5/16 physics coordinator positions held by ATLAS UK physicists

ATLAS Operation

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.3%
SCT Silicon Strips	6.3 M	99.2%
TRT Transition Radiation Tracker	350 k	97.1%
LAr EM Calorimeter	170 k	98.1%
Tile calorimeter	9800	96.9%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	98.6%

ATLAS Operation

~95% data taking efficiency

Luminosity

- Monitored by using rates in low-angle detectors & endcaps
- Absolute calibration from van der Meer scans
- Uncertainty ~11%
 - dominant error from knowledge of beam current

First collision results

- Particle multiplicities in 900 GeV collisions *Phys Lett B* 688, 1 (2010) pp.21-4
- Demonstrate

 excellent modeling of
 the detector
 (especially, in this
 case, SCT)

Reconstructed secondary vertices due to hadronic interactions in minimum-bias events in the first layer of the Pixel detector (from F.Gianotti's talk, ICHEP)

□ Vertex mass veto applied against $\gamma \rightarrow ee$, K_s^0 and Λ □ Vertex (R, Z) resolution ~ 250 µm (R <10 cm) to ~1 mm

JMB/ATLAS/Coseners

First collision results

- Particle multiplicities in 900 GeV collisions *Phys Lett B* 688, 1 (2010) pp.21-4
- Demonstrate

 excellent modeling of
 the detector
 (especially, in this
 case, SCT)

First collision results

- Particle multiplicities in 900 GeV collisions *Phys Lett B* 688, 1 (2010) pp.21-4
- Demonstrate excellent modeling of the detector
- and reasonable modeling of the soft QCD physics (of which more later from A Moraes)

First 7 TeV Results

JMB/ATLAS/Coseners

Tracker alignment (Pixel)

Tracker alignment (SCT)

Mass peaks everywhere...

Understanding the environment

- First 'minimum bias' measurements in a welldefined, but limited, phase space
 - all events with > 0 stable charged particles with p_{T} > 500 MeV, $|\eta|$ <2.5.
 - Extending this would be good (lower p_T)
- Sensitive to unknown diffractive component
 - Disrupts tuning, and less relevant for underlying event

- Diffraction contributes strongly to "minimum bias" (and so to pile up) but not much the "underlying event"
- Diffraction in pp is poorly understood even at lower energies.

– However, lower multiplicity is a general property

- Measure "next-to-minimum" bias
 - Apply a higher multiplicity cut to reduce diffractive component
 - Tune to this (AMBT1)

JMB/ATLAS/Coseners

 Not only is the new tune an improvement, but the older tunes seem to do better at the "reduced diffractive" sample.

Underlying event

 Comparison to underlying event measurement ATLAS-CONF-2010-081

JMB/ATLAS/Coseners

...and also 2.36 TeV

And extended to lower p_T

Hard QCD : Jet Shapes

ATLAS-CONF-2010-050

Jet Energy Scale

- Current strategy
 - Electromagnetic scale from test beam measurements (electrons & muons)
 - Correction for
 - Difference in hadronic/electromagnetic response
 - Losses in material in front of Calorimeter
 - Leakage from back of the calorimeter
 - Magnetic field
 - Cluster and jet algorithmic inefficiency

are all dealt with by simulation

Jet Energy Scale

- Evaluate the transfer function
 - (true E)->(EM
 scale E)
- Invert it
- Refit in bins of EM-scale p_T
- Apply

Jet Energy Scale Uncertainty

- Dominant systematic in ~all measurements involving jets or missing energy.
- Uncertainties from
 - Translating test beam EM scale to in situ (3-4%)
 - Material knowledge/simulation ~2%
 - Noise <3%</p>
 - Beamspot position <1%</p>
 - "closure test" <2%</p>
 - Hadronic (GEANT) shower model ~4%
 - Hadronic (generator) show model <4%
 - Pile up: variable. (<1% for cross section mesurement)
 - Intercalibration in y (from in situ dijet balance) <3%
 - For dijet measurements, decorrelated error ~3%

Jet Energy Scale Uncertainty

- < 9% everywhere. ~6% for high p_T
- ~40% error on jet cross section
- Checked with extensive single-particle studies in collision data and soon by photon-jet balance

Hard QCD : Jet Cross Sections

ATLAS-CONF-2010-050

Inclusive Jet cross sections

Dijet cross sections

Jet cross sections vs MC

Multijets

p_T > 30 GeV |y| < 2.8

ATLAS-CONF-2010-084

Multijets

p_T > 30 GeV |y| < 2.8

ATLAS-CONF-2010-084

Azimuthal Jet Decorrelations

Minijet Veto

- Select dijet events; jet p_T > 30 GeV, average jet pT > 60 GeV. Two selections:
 - A:boundary jets are the highest pT jets
 - B:boundary jets are the most forward/backward satisfying the above
- Veto on any extra jets between the boundary jets with $p_T > 30 \text{ GeV}$

Minijet Veto

- Select dijet events; jet p_T > 30 GeV, average jet pT > 60 GeV. Two selections:
 - A:boundary jets are the highest pT jets
 - B:boundary jets are the most forward/backward satisfying the above
- Veto on any extra jets between the boundary jets with $p_T > 30 \text{ GeV}$

Cross sections and charged lepton asymmetry (W)

QCD plus: Top

- Jet p_T > 20 GeV (anti-k₊)
- At least one b-tagged jet

JMB/ATLAS/Coseners

43

One of the top candidates

QCD plus: Searches

• Seach for resonances in dijet mass distribution.

Searches

- Background determinations for SUSY (lepton, jets, missing E_T
- Jet angular distributions
- W', multilepton final states...
- Advancing into (or towards) new territory...

Summary

- Detector, trigger, software & computing performing well, and generally well understood (for this early stage)
 - Tracking detectors well aligned
- Detailed studies of the soft QCD environment, and MC tuning, well underway
- Jet energy scale determined to ~6-10%
 - 6% for high p_T central
- Luminosity uncertainty 11%
- Jet cross sections measured
 - agree with NLO QCD at the ~40% level.
- W & Z cross sections and asymmetries measured
- Studies of jet+W,Z well advanced, t+jets underway
- New physics searches exploiting the understanding of QCD and of the detectors already going beyond previous experiments

20/9/2010

Extra info: E_T^{miss}

The E_T^{miss} distribution for minbias events, and the resolution See ATLAS-CONF-2010-057

• See ATLAS-CONF-2010-086 for tau performance.. Status

END

Particle correlations

• Plot the ϕ distribution of all tracks relative to the highest p_T track.

Particle correlations

• Plot the ϕ distribution of tracks relative to the highest p_{T} track separately with same sign and opposite sign η , and substract.

Focus on diffraction

- Compare sample with exactly one side hit in the MBTS against those with any/both hit
 - Enhances single diffractive in the one-side sample

Hard QCD : Jet Shapes

ATLAS-CONF-2010-049

Extend to lower p_T

