Flavour at the TeV scale

Sebastian Jäger
$W_{\text {of Sussex }}^{\text {University }}$

UK HEP forum

"LHC First Results"

Cosener's House, September 20-21, 2010

Contents

- Origins
- Present: CKM
- New physics with flavour at LHCb

Flavour: the story so far...

A very brief history of flavour

1934 Fermi proposes Hamiltonian for beta decay

$$
H_{W}=-G_{F}\left(\bar{p} \gamma^{\mu} n\right)\left(\bar{e} \gamma_{\mu} \nu\right)
$$

1956-57 Lee\&Yang propose parity violation to explain " θ paradox".
Wu et al show parity is violated in β decay Goldhaber et al show that the neutrinos produced in ${ }^{152} \mathrm{Eu}$ K-capture always have negative helicity

1957 Gell-Mann \& Feynman, Marshak \& Sudarshan

$$
H_{W}=-G_{F}\left(\bar{\nu}_{\mu} \gamma^{\mu} P_{L} \mu\right)\left(\bar{e} \gamma_{\mu} P_{L} \nu_{e}\right)-G\left(\bar{p} \gamma^{\mu} P_{L} n\right)\left(\bar{e} \gamma_{\mu} P_{L} \nu_{e}\right)+\ldots
$$

V-A current-current structure of weak interactions.
Conservation of vector current proposed
Experiments give $G=0.96 \mathrm{G}_{\mathrm{F}}$ (for the vector parts)

1960-63 To achieve a universal coupling, Gell-Mann\&Levy and Cabibbo propose that a certain superposition of neutron and \wedge particle enters the weak current.
Flavour physics begins!
1964 Gell-Mann gives hadronic weak current in the quark model

$$
H_{W}=-G_{F} J^{\mu} J_{\mu}^{\dagger}
$$

$$
J^{\mu}=\bar{u} \gamma^{\mu} P_{L}\left(\cos \theta_{c} d+\sin \theta_{c} s\right)+\bar{\nu}_{e} \gamma^{\mu} P_{L} e+\bar{\nu}_{\mu} \gamma^{\mu} P_{L} \mu
$$

1964 CP violation discovered in Kaon decays
1960-1968 J_{μ} part of triplet of weak gauge currents. Neutral current interactions predicted and, later, observed at CERN.

However, the predicted flavour-changing neutral current (FCNC) processes such as $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$are not observed!

1970 To explain the absence of $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$, Glashow, Iliopoulos \& Maiani (GIM) invent the charmed quark and couple it to the formerly "sterile" linear combination $-\sin \theta_{c} d_{L}+\cos \theta_{c} s_{L}$
The doublet structure eliminates the Zsd coupling!
1971 Weak interactions are renormalizable ('t Hooft)
1972 Kobayashi \& Maskawa show that CP violation requires extra particles, for example a third doublet. CKM matrix

1974 Gaillard \& Lee estimate loop contributions to the $\mathrm{K}_{\mathrm{L}}-\mathrm{K}_{\mathrm{s}}$ mass difference
Bound $\mathrm{m}_{\mathrm{c}}<5 \mathrm{GeV}$

1974 Charm quark discovered

1977 т lepton and bottom quark discovered
1983 W and Z bosons produced
1987 ARGUS measures $B_{d}-B_{d}$ mass difference First indication of a heavy top

The diagram depends quadratically on m_{t}

1995 top quark discovered at CDF \& D0

$\binom{u_{L}}{d_{L}}$	u_{R}				
d_{R}	$\binom{c_{L}}{s_{L}}$	c_{R}	s_{R}	$\binom{t_{L}}{b_{L}}$	t_{R}
b_{R}	$Q=+2 / 3$				
$\binom{\nu_{e L}}{e_{L}}$	-	$\left(\begin{array}{c}\nu_{\mu_{L}} \\ e_{R}\end{array}\right.$	-	$\binom{\nu_{\tau}}{\mu_{L}}$	-
μ_{R}	$\left(\begin{array}{c}\tau_{L}\end{array}\right)$	$Q=0$			
τ_{R}	$Q=-1$				

Precision measurements: masses, running coupling, direct CP violation, B factories, determination of CKM elements, neutrino oscillations, search for electric dipole moments, proton decay, ...

SM flavour: CKM matrix

Unitarity triangle

Unitarity of $V \Rightarrow \begin{array}{ccc}V_{u b}^{*} V_{u d} & +V_{c b}^{*} V_{c d}+ & V_{t b}^{*} V_{t d}\end{array}=0$
Graphically,

suppression of FCNC by loops and CKM hierarchy
This makes them sensitive to new physics!

Unitarity Triangle 2010

apologies to UTfit, who obtain consistent results

The CKM picture of flavour \& CP violation is consistent with observations.

Within the Standard Model, all parameters (except higgs mass) including CKM have been determined, most to at least few percent accuracy.

However, this is unlikely to be the whole story

Flavour at the TeV scale

- Much of present theory activity - and of LHC is motivated by exploring the weak scale and by its sensitivity to radiative corrections
- This derives in part from

hence physics that stabilizes weak scale should contain new flavoured particles. This is what happens in SUSY (stop),
warped extra dimensions (KK modes),
little Higgs (heavy T),
technicolour, etc.
- Such particles will always contribute to FCNC

SUSY flavour

Supersymmetry associates a scalar with every SM fermion
Squark mass matrices are 6×6 with independent flavour structure:
3×3 flavour-violating

$$
\mathcal{M}_{\tilde{d}}^{2}=\left(\begin{array}{cc}
\hat{m}_{\tilde{Q}}^{2}+m_{d}^{2}+D_{d L L} & v_{1}\left(\hat{T}_{D}-\mu^{*} m_{d} \tan \beta\right. \\
v_{1} \hat{T}_{D}^{\dagger}-\mu m_{d} \tan \beta & \hat{m}_{\tilde{d}}^{2}+m_{d}^{2}+D_{d R R}
\end{array}\right) \equiv\left(\begin{array}{cc}
\left(\mathcal{M}_{\tilde{d}}^{2}\right)^{L L} & \left(\mathcal{M}_{\tilde{d}}^{2}\right)^{L R} \\
\left(\mathcal{M}_{\tilde{d}}^{2}\right)^{R L} & \left(\mathcal{M}_{\tilde{d}}^{2}\right)^{R R}
\end{array}\right)
$$ LR mass terms are SU(2)w-breaking related to trilinear scalar couplings similar for up squarks, charged sleptons. 3×3 LL for sneutrinos

$$
\left(\delta_{i j}^{u, d, e, \nu}\right)_{A B} \equiv \frac{\left(\mathcal{M}_{\tilde{u}, \tilde{d}, \tilde{e}, \tilde{\nu}}^{2}\right)_{i j}^{A B}}{m_{\tilde{f}}^{2}}
$$

33 flavour-violating parameters 45 CPV (some flavour-conserving)

SUSY flavour (2)

$K-\bar{K}, B_{d}-\bar{B}_{d}, B_{s}-\bar{B}_{s}$ mixing
$\Delta F=1$ decays

$$
\begin{aligned}
& \mathrm{B} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-} \\
& \mathrm{B} \rightarrow \mathrm{~K}^{*} \mathrm{Y} \\
& \mathrm{~B} \rightarrow \mathrm{~K} \pi \\
& \mathrm{~B}_{\mathrm{s}, \mathrm{~d}} \rightarrow \mu^{+} \mu^{-} \\
& \mathrm{K} \rightarrow \pi \mathrm{VV}
\end{aligned}
$$

SUSY flavour puzzle

$\left(\delta_{i j}^{u, d, e, \nu}\right.$	$A B \equiv$	$\frac{(\tilde{e}, \tilde{\nu})_{i j}^{A B}}{\overbrace{\tilde{f}}^{2}}$	Whe	are their effects?	
Quantity	upper bound	Quantity	upper bound		
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{\tilde{d}}\right)_{L L}^{2}\right\|}$	4.0×10^{-2}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L L}^{2}\right\|}$	9.8×10^{-2}		
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{\tilde{d}}\right)_{R R}^{2}\right\|}$	4.0×10^{-2}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{\bar{d}}\right)_{R R}^{2}\right\|}$	9.8×10^{-2}	Quantity	upper bound
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L R}^{2}\right\|}$	4.4×10^{-3}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L R}^{2}\right\|}$	3.3×10^{-2}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{u c}^{\bar{u}}\right)_{L L}^{2}\right\|}$	3.9×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L L}\left(\delta_{d s}^{d}\right)_{R R}\right\|}$	2.8×10^{-3}	$\sqrt{\mid \operatorname{Re}\left(\delta_{d b}^{d}\right)_{L L}(}$	1.8×10^{-2}	$\sqrt{ }\left\|\operatorname{Re}\left(\delta_{u d}^{i}\right)_{R R}^{2}\right\|$	$\begin{aligned} & 3.9 \times 10^{-2} \\ & 1.20 \times 10^{-2} \end{aligned}$
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L L}^{2}\right\|}$	3.2×10^{-3}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{\bar{d}}\right)_{L L}^{2}\right\|}$	4.8×10^{-1}		6.6×10^{-3}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{R R}^{2}\right\|}$	3.2×10^{-3}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{\bar{d}}\right)_{R R}^{2}\right\|}$	4.8×10^{-1}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{u c}\right) L L\left(\delta_{u c}\right) R R\right\|}$	
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L R}^{2}\right\|}$	3.5×10^{-4}	$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{d}\right)_{L R}^{2}\right\|}$	1.62×10^{-2}	[Gabbiani et al 96; Misiak et al 97] these numbers from [SJ, 0808.2044]	
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L L}\left(\delta_{d s}^{\bar{d}}\right)_{R R}\right\|}$	2.2×10^{-4}	$\sqrt{\mid \operatorname{Re}\left(\delta_{s b}^{d}\right)_{L L}\left(\delta^{\prime}\right.}$	8.9×10^{-2}		

- elusiveness of deviations from SM in flavour physics seems to make MSSM look unnatural
- pragmatic point of view: flavour physics highly sensitive to many MSSM parameters

Flavour - warped ED

SM fermions are zero modes of fields present in the bulk

Higgs localized on IR brane
light (heavy) fermions localized
near UV (IR) brane
not so dangerous after taking into account localization of SM fermions ("RS-GIM")

Flavour - warped ED (2)

- dominant contribution to FCNC usually not from brane contact terms but from tree-level KK boson exchange

$$
\begin{aligned}
& \lambda_{k m n}=\int d \phi w(\phi) f^{(m)}(\phi) f^{(n)}(\phi) f_{V}^{(k)}(\phi) \\
& Y_{m n} \propto f^{(m)}(\pi) f^{(n)}(\pi) \\
& \text { non-minimal flavour violations! }
\end{aligned}
$$

- where are their effects?

Other scenarios

- fourth SM generation

CKM matrix becomes 4×4, giving new sources of flavour and $C P$ violation

- little(st) higgs model with T parity
(higgs light because a pseudo-goldstone boson) finite, calculable 1-loop contributions due to new heavy particles with new flavour violating couplings

non-minimal flavour violation!

Unitarity Triangle revisited

Unitarity Triangle revisited

Of all constraints on the unitarity triangle, only the y and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations are robust against new physics as they do not involve loops.

Unitarity Triangle revisited

Of all constraints on the unitarity triangle, only the y and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations are robust against new physics as they do not involve loops.
It is possible that the TRUE $(\bar{\rho}, \bar{\eta})$ lies here (for example)

"Tree" determinations

Only "robust" measurements of y and $\mid \mathrm{Vub\mid}$. Note: the $\mathrm{\gamma}(\alpha)$ constraint depends on assumptions about new physics

"Tree" determinations

Only "robust" measurements of y and $\mid \mathrm{Vub\mid}$. Note: the $\mathrm{\gamma}(\alpha)$ constraint depends on assumptions about new physics

Certainly there is room for $\mathrm{O}(10 \%) \mathrm{NP}$ in b->d transitions

"Tree" determinations

Only "robust" measurements of y and $\mid \mathrm{Vub\mid}$. Note: the $\mathrm{\gamma}(\alpha)$ constraint depends on assumptions about new physics

Certainly there is room for $\mathrm{O}(10 \%) \mathrm{NP}$ in b->d transitions
Moreover, b->s transitions are almost unrelated to (ρ, η). They are the domain of the Tevatron and of LHCb

Where to look

$B_{(s)}-\bar{B}_{(s)}$ mixing

mixinginduced CP violation

- flavour violation: $\mathcal{A}\left(\bar{M}^{0} \rightarrow M^{0}\right) \propto M_{12}-\frac{i}{2} \Gamma_{12} \neq 0$

M_{12}

$$
\begin{aligned}
Q_{1} & =\left(\bar{s}_{L}^{a} \gamma_{\mu} b_{L}^{a}\right)\left(\bar{s}_{L}^{b} \gamma^{\mu} b_{L}^{b}\right), \\
Q_{2} & =\left(\bar{s}_{R}^{a} b_{L}^{a}\right)\left(\bar{s}_{R}^{b} b_{L}^{b}\right), \\
Q_{3} & =\left(\bar{s}_{R}^{a} b_{L}^{b}\right)\left(\bar{s}_{R}^{b} b_{L}^{a}\right), \quad+3 \text { more } \\
Q_{4} & =\left(\bar{s}_{R}^{a} b_{L}^{a}\right)\left(\bar{s}_{L}^{b} b_{R}^{b}\right), \\
Q_{5} & =\left(\bar{s}_{R}^{a} b_{L}^{b}\right)\left(\bar{s}_{L}^{b} b_{R}^{a}\right)
\end{aligned}
$$

OPE $\left(\Lambda_{Q C D} / \mathrm{m}_{\mathrm{B}}\right)$

$B_{(s)}-\bar{B}_{(s)}$ mixing

mixinginduced CP violation

- flavour violation: $\mathcal{A}\left(\bar{M}^{0} \rightarrow M^{0}\right) \propto M_{12}-\frac{i}{2} \Gamma_{12} \neq 0$

$$
\begin{aligned}
Q_{1} & =\left(\bar{s}_{L}^{a} \gamma_{\mu} b_{L}^{a}\right)\left(\bar{s}_{L}^{b} \gamma^{\mu} b_{L}^{b}\right) . \quad \text { only operator present in SM } \quad \Delta M=2\left|M_{12}\right| \\
Q_{2} & =\left(\bar{s}_{R}^{a} b_{L}^{a}\right)\left(\bar{s}_{R}^{b} b_{L}^{b}\right), \\
Q_{3} & =\left(\bar{s}_{R}^{a} b_{L}^{b}\right)\left(\bar{s}_{R}^{b} b_{L}^{a}\right), \quad+3 \text { more } \\
Q_{4} & =\left(\bar{s}_{R}^{a} b_{L}^{a}\right)\left(\bar{s}_{L}^{b} b_{R}^{b}\right), \\
Q_{5} & =\left(\bar{s}_{R}^{a} b_{L}^{b}\right)\left(\bar{s}_{L}^{b} b_{R}^{a}\right)
\end{aligned}
$$

OPE $\left(\Lambda_{Q C D} / \mathrm{m}_{\mathrm{B}}\right)$
no NP contribution unless lighter than m_{B}

QCD corrections

- apply OPE to hadronic states

(factorization)
$\left.\Delta M=2\left|\sum C_{i}\langle\bar{M}| Q_{i}\right| M\right\rangle \mid \quad$ (similarly for $\Delta \Gamma$)
- hadronic matrix elements $\langle\bar{M}| Q_{i}|M\rangle$ require nonperturbative methods (lattice QCD). Huge progress being made! Big UK participation
- if only one operator (as in SM for B mixing), phase $\arg M_{12} \equiv \phi_{M}$ theoretically clean (matrix element real)

$$
\phi_{B_{d}} \approx \arg \left(V_{t d}^{2}\right)=2 \beta \quad \phi_{B_{s}} \approx \arg \left(V_{t s}^{2}\right)=-2 \beta_{s}=(2.2 \pm 0.6)^{\circ}
$$

QCD corrections

- apply OPE to hadronic states

(factorization)
$\left.\Delta M=2\left|\sum C_{i}\langle\bar{M}| Q_{i}\right| M\right\rangle \mid \quad$ (similarly for $\Delta \Gamma$)
- hadronic matrix elements $\langle\bar{M}| Q_{i}|M\rangle$ require nonperturbative methods (lattice QCD). Huge progress being made! Big UK participation
- if only one operator (as in SM for B mixing), phase $\arg M_{12} \equiv \phi_{M}$ theoretically clean (matrix element real)

$$
\phi_{B_{d}} \approx \arg \left(V_{t d}^{2}\right)=2 \beta
$$

$$
\phi_{B_{s}} \approx \arg \left(V_{t s}^{2}\right)=-2 \beta_{s}=(2.2 \pm 0.6)^{\circ}
$$

close to zero in Standard Model

Time-dependent CP asymmetry

decay into CP eigenstate:

$$
\begin{aligned}
& \qquad \mathcal{A}_{f}^{\mathrm{CP}}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow f\right)}=S_{f} \sin (\Delta M t)-C_{f} \cos (\Delta M t) \\
& \\
& \text { ff only one decay amplitude: }
\end{aligned}
$$

$$
\begin{array}{llc}
& A_{f}=A e^{i \theta} & \bar{A}_{f}=A e^{-i \theta} \quad C_{f}=0 \\
B_{d}^{0} \rightarrow \psi K_{S} & S=\sin \left(\phi_{B_{d}}\right)=\sin (2 \beta) & -\eta_{\mathrm{CP}}(f) S_{f}=\sin \left(\phi_{B_{q}}+2 \theta\right) \\
B_{d}^{0} \rightarrow \pi \pi, \pi \rho, \rho \rho & S=\sin \left(\phi_{B_{d}}+2 \gamma\right)=-\sin (2 \alpha) \\
B_{s}^{0} \rightarrow J / \psi \phi & \pm S=\sin \phi_{B_{s}} \approx 0 & \text { Beyond SM } \phi_{B_{d}} \neq 2 \beta \\
\text { can be generalized to non-CP final states } & \phi_{B_{d, s}}+\gamma \text { from } B_{(s)}^{0} \rightarrow D_{(s)} K
\end{array}
$$

Time-dependent CP asymmetry

decay into CP eigenstate:

$$
\mathcal{A}_{f}^{\mathrm{CP}}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow f\right)}=S_{f} \sin (\Delta M t)-C_{f} \cos (\Delta M t)
$$

if only one decay amplitude:
$S_{f}=\frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}} C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}$

	$A_{f}=A e^{i \theta}$	$\bar{A}_{f}=A e^{-i \theta} \quad C_{f}=0$
$B_{d}^{0} \rightarrow \psi K_{S}$	$S=\sin \left(\phi_{B_{d}}\right)=\sin (2 \beta)$	
$B_{d}^{0} \rightarrow \pi \pi, \pi \rho, \rho \rho$	$S=\sin \left(\phi_{B_{d}}+2 \gamma\right)=-\sin (2 \alpha) S_{f}=\sin \left(\phi_{B_{q}}+2 \theta\right)$	
$B_{s}^{0} \rightarrow J / \psi \phi$	$\pm S=\sin \phi_{B_{s}} \approx 0$	Beyond SM $\phi_{B_{d}} \neq 2 \beta$
can be generalized to non-CP final states		
ceyond SM $\phi_{B_{s}} \neq 0$		
$\phi_{B_{d, s}}+\gamma$ from $B_{(s)}^{0} \rightarrow D_{(s)} K$		

$\sin \left(2 \phi_{\text {Bs }}\right)$ measurement

- CDF, D0 measured mixing-induced CPV in $B_{s} \rightarrow J / \psi \phi$

- low significance at present (previously higher)
- LHCb expects few ${ }^{\circ}$ sensitivity with $1 \mathrm{fb}^{-1}$

CP violation in B_{s} mixing?

- in general, three parameters $\left|M_{12}^{s}\right|,\left|\Gamma_{12}^{s}\right|, \phi_{s}=\arg \frac{-M_{12}^{s}}{\Gamma_{12}^{s}}$
- CP is violated in mixing if $\phi_{s} \neq 0 \quad \phi_{s}^{\mathrm{SM}} \approx \phi_{B_{s}}^{\mathrm{SM}} \approx 0$
- three observables:
$\underset{s \text { difference }}{\Delta M_{s} \approx 2\left|M_{12}^{s}\right|, \underset{\text { width difference }}{\Delta \Gamma_{s}} 2\left|\Gamma_{12}^{s}\right| \cos \phi_{s}, a_{\mathrm{fs}}^{s}=\frac{\Delta \Gamma_{s}}{\Delta M_{s}} \tan \phi_{s}}$
- $a_{\mathrm{fs}}^{s} \mathrm{CP}$ asymmetry in (any) flavour-specific B-decay, e.g.
$B_{s} \longrightarrow \bar{B}_{s} \longrightarrow X l^{+} \nu \quad$ (semileptonic CP asymmetry)

Semileptonic CP asymmetries

- D0 and B factories measured (combinations of) semileptonic CP asymmetries

These are functions of the same mixing phases as enter the time-dependent CPV, so a consistent picture must eventually emerge LHCb will give complementary info in the above plane

Exclusive decays at LHCb

final state strong dynamics \#obs NP enters through

Leptonic

$$
\begin{equation*}
B \rightarrow 1^{+} I^{-} \tag{1}
\end{equation*}
$$

decay constant $\langle 0| j^{\mu}|B\rangle \propto f_{B}$

semileptonic, radiative

$$
\mathrm{B} \rightarrow \mathrm{~K}^{*} \mathrm{I}^{+} \mathrm{I}, \mathrm{~K}^{*} \mathrm{Y}
$$

form factors
$\langle\pi| j^{\mu}|B\rangle \propto f^{B \pi}\left(q^{2}\right)$
charmless hadronic matrix element $B \rightarrow \pi \pi, \pi K, \rho \rho, \ldots \quad\langle\pi \pi| Q_{i}|B\rangle$

All non-radiative modes are also sensitive to NP via
 four-fermion operators
Decay constants and form factors are essential. Accessible by QCD sum rules and in more and more cases by lattice QCD!

Leptonic decay, NP and LHC

$\propto \frac{m_{\mu}^{2}}{M_{W}^{2}} \quad \begin{aligned} & \text { loop and helicity } \\ & \text { suppressed in SM }\end{aligned}$

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.2 \pm 0.2) \times 10^{-9}
$$

Buras et al 2010

$$
\propto \frac{m_{b}^{2} m_{\mu}^{2}}{M_{W}^{4}} \tan ^{6} \beta
$$

Yukawa suppressed in SM
in 2HDM (or MSSM) Yukawas can be very large
Loop suppression and possible removal of helicity/Yukawa suppression imply strong sensitivity to new physics

$B_{s} \rightarrow \mu^{+} \mu^{-:}$Standard Model

- Mediated by short-distance Z penguin and box - long distance strongly CKM / GIM suppressed

- including QCD corrections, matches onto single relevant effective operator $\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} \frac{\alpha}{\pi \sin ^{2} \theta_{W}} V_{t b}^{*} V_{t q} Y Q_{A}$
$Y\left(\bar{m}_{t}\left(m_{t}\right)\right)=0.9636\left[\frac{80.4 \mathrm{GeV}}{M_{W}} \frac{\bar{m}_{t}}{164 \mathrm{GeV}}\right]^{1.52}$

higher orders negligible
- branching fraction
$B\left(B_{s} \rightarrow l^{+} l^{-}\right)=\tau\left(B_{s} \frac{G_{F}^{2}}{\pi}\left(\frac{\alpha}{4 \pi \sin ^{2} \Theta_{W}}\right)^{2} F_{B_{s}}^{2} m_{l}^{2} m_{B_{s} s} \sqrt{1-4 \frac{m_{l}^{2}}{m_{B_{s}}^{2}}}\left|V_{t b}^{*} V_{t s}\right|^{2} Y^{2}\right.$
main uncertainties: decay constant, CKM
for D or K decays long-distance contributions are important

$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}:$Standard Model

- $\mathrm{F}_{\mathrm{Bs}}=(238.8 \pm 9.5) \mathrm{MeV}$

Lunghi, Laiho, van de Water 2009
lattice QCD average

- error can be reduced by normalizing to $B_{s}-\bar{B}_{s}$ mixing

$$
B\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right)=C \frac{\tau_{B_{q}}}{\hat{B}_{q}} \frac{Y^{2}\left(\bar{m}_{t}^{2} / M_{W}^{2}\right)}{S\left(\bar{m}_{t}^{2} / M_{W}^{2}\right)} \Delta M_{q}
$$

where S is the $\Delta \mathrm{F}=2$ box function and C a numerical const and in the bag factor $\hat{B}_{B_{s}}=1.33 \pm 0.06$, some systematic uncertainties cancel. Then

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.2 \pm 0.2) \times 10^{-9}
$$

- Very precise test of SM from hadronic observables at LHC!
- same trick for $\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{e}^{+} \mu^{-}$, etc
- not for $\mathrm{D} \rightarrow \mu^{+} \mu^{-}$or $\mathrm{K} \rightarrow \mu^{+} \mu^{-}$as mixing is not calculable

Experiment

- present upper bounds

	CDF	D0	SM theory
$B_{s} \rightarrow \mu^{+} \mu^{-}$	$4.310^{-8} 95 \% \mathrm{CL}$	$5.210^{-8} 95 \% \mathrm{CL}$	$(3.2 \pm 0.2) 10^{-9}$
$\mathrm{~B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}$	$7.610^{-9} 95 \% \mathrm{CL}$		$(1.0 \pm 0.1) 10^{-10}$
$D \rightarrow \mu^{+} \mu^{-}$	$3.010^{-7} 95 \% \mathrm{CL}$		$\sim 10^{-13}$

CDF public note 9892 D0 arXiv:1006.3469 D0 arXiv:1008.5077
Kreps arXiv:1008.0247 Buras et al arXiv:1007.1993

- early LHCb prospects

Beyond the SM

- New physics can modify the Z penguin
... induce a Higgs penguin ...

... or induce (or comprise) four-fermion contact interactions directly
- most general effective hamiltonian

$$
\frac{G_{F}}{\sqrt{2}} \frac{\alpha}{\pi \sin ^{2} \theta_{W}} V_{t b}^{*} V_{t q}\left[C_{S} Q_{S}+C_{P} Q_{P}+C_{A} Q_{A}\right]+\text { parity reflections }
$$

$$
\begin{aligned}
& \quad B\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right)= \\
& \text {could violate } \\
& \text { lepton flavour ! } \\
& \\
& \\
& \\
&
\end{aligned}{\frac{G}{F} \pi^{3} \alpha^{2}}_{\sin ^{4} \theta_{W}}\left|V_{t b}^{*} V_{t q}\right|^{2} \tau_{B_{q}} M_{B_{q}}^{3} f_{B_{q}}^{2} \sqrt{1-\frac{4 m_{\ell}^{2}}{M_{B_{q}}^{2}}}
$$

BSM model comparison

Semileptonic decay

- kinematics described by dilepton invariant mass q^{2} and two angles
- Systematic theoretical description based on heavy-quark expansion ($\wedge / \mathrm{m}_{\mathrm{b}}$) for $\mathrm{q}^{2} \ll \mathrm{~m}^{2}(\mathrm{~J} / \Psi)$ (SCET) Beneke, Feldmann, Seidel 01 also for $q^{2} \gg \mathrm{~m}^{2}(\mathrm{~J} / \Psi)$ (HQET) Grinstein et al Theoretical uncertainties on form factors, power corrections

$\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-}$

Ali et al ; Beneke et al; ..

- Most well-known observable: forward-backward asymmetry

- Many more observables to consider Krueger, Matias; .

see also Bobeth et al 2008,10; Egede et al 2009,2010; Alok et al 2010 for recent analyses

Right-handed currents?

Altmannshofer et al 0811.1214v3
D Straub @ CKM 2010

$B_{d} \rightarrow \mathrm{~K}^{*} \gamma, \mathrm{~B}_{\mathrm{s}} \rightarrow \phi \mathrm{Y}$

$S\left(B \rightarrow K^{*} Y\right)=-0.16 \pm 0.22$
HFAG average of B factory data
(SM: ≈ 0)

$B_{d} \rightarrow \mathrm{~K}^{*} \gamma, \mathrm{~B}_{\mathrm{s}} \rightarrow \phi \mathrm{Y}$

$S\left(B \rightarrow K^{*} Y\right)=-0.16 \pm 0.22$
HFAG average of B factory data
(SM: ≈ 0)

$B_{d} \rightarrow \mathrm{~K}^{*} \gamma, \mathrm{~B}_{\mathrm{s}} \rightarrow \phi \mathrm{Y}$

new physics might induce coupling to right-handed photon; this will produce left-handed photons in antiparticle decay
$S\left(B \rightarrow K^{*} Y\right)=-0.16 \pm 0.22$
HFAG average of B factory data (SM: ≈ 0)
mixing-decay interference \& time-dependent CP asymmetry
LHCb has sensitivity for $S\left(B_{s} \rightarrow \phi \gamma\right)$

$B_{d} \rightarrow \mathrm{~K}^{*} \mathrm{Y}, \mathrm{B}_{\mathrm{s}} \rightarrow \phi \mathrm{Y}$

new physics might induce coupling to right-handed photon; this will produce left-handed photons in antiparticle decay

$$
S\left(B \rightarrow K^{*} Y\right)=-0.16 \pm 0.22
$$

HFAG average of B factory data
(SM: ≈ 0)
mixing-decay interference \& time-dependent CP asymmetry
LHCb has sensitivity for $S\left(B_{s} \rightarrow \phi \gamma\right)$

- Theoretical description based on heavy-quark expansion, similar to semileptonic case

Conclusion

- Theories of the electroweak scale bring in new particle that contribute to flavour-violating observables
- Some interesting results on CP violation in B_{s} mixing
- LHCb should give a clear picture on mixing, and would see large NP effects in a number of observables soon
- Many important topics not covered, in particular
- improved determination of "true" CKM angle y from tree decays
- charmless hadronic B decays
both of which have impact on the new-physics search

