CPV and **Flavour**

20th September 2010 Mitesh Patel (Imperial College London)

Why Study Flavour Physics?

• BR($B \rightarrow X_s \gamma$)

SM prediction: $E_{\gamma} > 1.6 \text{ GeV}$ M. Misiak et al., hep-ph/0609232 $\mathcal{B}(\bar{B} \to X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$

World average: $B(\bar{B} \to X_s \gamma) = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4}$

Already gives the best lower limit on the charged Higgs mass: M_{H⁺} > 295 GeV@95%CL

- BR(B⁺ $\rightarrow \tau^+ \nu$)
- Not channels well suited to the LHC environment

Ciuchini, CKM 2010

Outline

- B physics at the LHC experiments
- Try and focus on a few representative areas where there have been first validation studies:
 - $B_s \rightarrow \mu \mu$
 - $B_d \rightarrow K^* \mu \mu$
 - $B_s \rightarrow J/\psi \phi$
- Will also mention other CPV observables we will see in 2011 and beyond

B physics at the LHC Experiments

- Central detectors $|\eta|$ < 2.5
- High p_T muon triggers

- B-physics dedicated experiment
- Forward detector $1.9 < \eta < 4.9$
- Low p_T muon triggers, hadron trigger
- Defocus LHC beams

• **bb** pairs are produced correlated and predominately in the forward- or backward-direction

- LHC goal for 2010 to reach $\mathcal{L}\sim 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - Steady running in 2011 \rightarrow 1fb⁻¹
 - ~50% of nominal for LHCb, ~10% for ATLAS/CMS

 $\theta(B)$, rad

The b Production Cross Section

- The production cross section is interesting from a QCD point of view
- Also important for normalising expectations for the future
- $\sigma (pp \rightarrow b\overline{b}X)$ from $b \rightarrow J/\psi X$

[ATLAS,CMS,LHCb]

- $\sigma (pp \rightarrow b\overline{b}X)$ from $b \rightarrow D(K\pi)\mu\nu X$ and $b \rightarrow D^*\mu\nu X$ [LHCb]
 - − Find $D^0 \rightarrow K\pi$ decays and look for muon with right sign for semi-leptonic B decay
 - Use wrong sign decays to understand background

The b Production Cross Section

• Production is measured in bins of pseudorapidity

The LHCb collaboration, arXiv:1009.2731

• Find,

σ(**pp**→**H**_b **X**; **2**<η<6) = 74.9±5.3±12.8 μb

• Pythia extrapolation to the full phase space gives,

– σ(pp→bb) = 292±15±43 μb

(sensitivity studies previously assumed 250µb)

 $B_s \rightarrow \mu \mu$

$B_s \rightarrow \mu \mu - Introduction$

- Sensitive probe for Higgs sector of any New Physics model
- Well predicted in SM:

− BR(B_s→ $\mu\mu$) = (3.35±0.32)×10⁻⁹

A. Buras arXiv:0910.1032.v1

- Current best limit from CDF (3.7fb⁻¹) $- BR(B_s \rightarrow \mu\mu) < 43 \times 10^{-9}$ 90% CL 8fb⁻¹ on tape $\rightarrow 10$ fb⁻¹ summer 2011
- LHC will quickly catch up, should know soon if this is interesting
 - If limit < 5×10⁻⁹, will be hard to identify NP

ATLAS/CMS Selection

Muons :

 $p_{\!\scriptscriptstyle \perp}^{\,\mu} > 4 GeV, \! \left| \eta \right| < 2.4$

Bs - mesons :

 $p_{\perp}^{B_s} > 5GeV, \alpha_{\text{pointing}} > 3.1 \text{ degrees}$

Flight distance significance $\frac{L_{3D}}{\sigma_{3D}} > 17.0$

Global Event Cuts:

$$Iso = \frac{P_{\perp}^{B_{s}}}{P_{\perp}^{B_{s}} + \sum_{i} p_{\perp}^{i} (\Delta R < 1)} > 0.850$$

CMS Coll. CMS PAS BPH-07-001

Muons:

$$p_{\perp}^{\mu} > 6GeV, |\eta| < 2.5$$

Bs - mesons :

$$p_{\perp}^{B_s} > 5GeV, \alpha_{\text{pointing}} > 1.9 \text{ degrees}$$

Transverse flight distance $L_{XY} > 0.5mm$
Global Event Cuts :

$$Iso = \frac{P_{\perp}^{B_{s}}}{P_{\perp}^{B_{s}} + \sum_{i} p_{\perp}^{i} (\Delta R < 1)} > 0.9$$

ATLAS Coll. CERN-OPEN-2008-020 10

ATLAS/CMS Selection Variables

LHCb Analysis Strategy

Low p_T di-muon trigger allows for a loose pre-selection, as common ٠ as possible with the control channels:

 $B^+ \rightarrow J/\psi K^+$, $B_d \rightarrow J/\psi K^*$, $B_{sd} \rightarrow h^+h^-$, $B_s \rightarrow J/\psi \phi$

- Counting in bins based on 3 independent variables : •
 - Invariant mass of the muon pair
 - Power determined by the tracking system resolution and alignment
 - Muon identification likelihood
- Dominated by muon system but also use information from calorimeters and a sector • detectors
 - Geometrical likelihood
 - Quantities where the vertex detector provides the main discrimination: impact parameters, isolation, lifetime

Background Sources

- For all three experiments the main sources of backgrounds are:
 - bb→μμ:

'combinatoric' background due to muons originating from b-hadrons (BR(b→ μ X)≈10%)

- − B→hh with double "misid": e.g. B_d →Kπ, B_d →ππ, B_d →KK
- $B \rightarrow J/\psi(\mu\mu)h$ with h misid as a μ : e.g. $B^+ \rightarrow J/\psi K^+$

(Latter two sources negligible in case of LHCb)

The Road to a Measurement

Muon ID Efficiency, using J/ψ tag and probe

• Trigger and muon identification:

- High efficiency
- Good data/MC agreement
- Pion misidentification
 - Well described by MC

The Road to a Measurement

15

Expected Sensitivity

Experiment	N Signal	N Background	Upper Limit 90% CL
ATLAS (10 fb ⁻¹ 14TeV)	5.6 evts	14^{+13}_{-10} evts (only bb \rightarrow µµ)	
CMS (1fb ⁻¹ 7TeV)	1.4	4.0 (1.25 only bb \rightarrow µµ)	15.8 ·10 ⁻⁹ (private calcn)
LHCb (1fb ⁻¹ 7TeV)	6.3 (most sign. region)	32.4 (most sign. region)	7 ·10 ⁻⁹

- Limits computed using $\sigma(bb)=292\mu b$
- All the experiments plan to normalise to either B⁰→J/ψK^{*} or B⁺→J/ψK⁺
 (B⁰→ dominant syst from f_d/f_s measure using B⁰→D⁻K and B⁺→D_s⁺π⁻)
- Possible to make 5σ discovery of NP down to B(B_s→µµ)<17×10⁻⁹ with 1fb⁻¹

Expected Sensitivity

Experiment	N Signal	N Background	Upper Limit 90% CL
ATLAS (10 fb ⁻¹ 14TeV)	5.6 evts	14^{+13}_{-10} evts (only bb \rightarrow µµ)	
CMS (1fb ⁻¹ 7TeV)	1.4	4.0 (1.25 only bb \rightarrow µµ)	15.8 ·10 ⁻⁹ (private calcn)
LHCb (1fb ⁻¹ 7TeV)	6.3 (most sign. region)	32.4 (most sign. region)	7 ·10 ⁻⁹

 $B_d \rightarrow K^* \mu \mu$

$B_d \rightarrow K^* \mu \mu - Introduction$

- Flavour changing neutral current \rightarrow loop
- Sensitive to interference between

and their primed counterparts

- Exclusive decay → theory uncertainty from form factors
- Multitude of observables in which uncert. cancel to some extent e.g. A_{FB} A_T⁽ⁱ⁾
 - zero-crossing point of A_{FB}

Experimental Status

• Babar, Belle and CDF have all measured angular asymmetry A_{FB} :

 Measurements look consistent with each other but errors too large to give real discrimination between SM and NP models

BABAR: PRL 102, 091803 (2009); CDF: Note 10047 (2010); Belle: PRL 103, 171801 (2009)

The Road to a Measurement

- Don't yet have sufficient data to see the signal channel
- Instead look at proxies:

– $B_d \rightarrow J/\psi K^{*0}$ for selection efficiency and background studies

– When applying $B_d \rightarrow K^* \mu \mu$ selection find a clear $B_d \rightarrow J/\psi K^{*0}$ peak

 Yield as expected when measured B production cross section used for normalisation

The Road to a Measurement

- Don't yet have sufficient data to see the signal channel
- Instead look at proxies:
 - $D^0 \rightarrow K \pi \pi \pi$ for understanding angular analysis

- Use very clean D⁰ signal to form a pseudo lepton angle θ_{L}
- Find a good match to expectation from MC simulation
 - No severe acceptance effect

Expected Sensitivity

- With 0.1fb⁻¹, LHCb will have comparable errors to current B factory ٠ results
- 0.5fb⁻¹ enough to exclude SM at 3.1 σ level if Belle central value • correct
 - 700 events (full q² range)
 - -200 events (1 < q² < 6 GeV)
- Central detectors will also • see substantial numbers of events

$B_d \rightarrow K^* \mu \mu - Outlook$

- A competitive measurement of A_{FB} with early data
- More data will enable a full angular fit to extract complete information from B_d→K*µµ decays
 - \rightarrow host of theoretically well calculable observables
- Correlation between
 measurements also of interest...

 $B_d \rightarrow K^* \mu \mu - Outlook$

- A competitive measurement of A_{FB} with early data
- More data will enable a full angular fit to extract complete information from B_d→K^{*}μμ decays
 - \rightarrow host of theoretically well calculable observables
- Correlation between
 measurements also of interest...

 $B_s {\rightarrow} J/\psi \varphi$

$B_s \rightarrow J/\psi \phi$ – Introduction

- $B_s \rightarrow J/\psi \phi$ decay dominated by $b \rightarrow c\bar{c}s$ transition
 - small penguin contribution, δP
- Interference between *decay* or *mixing and then decay* results in CP violating phase:
 - $\phi_{S} = \phi_{M} 2\phi_{D}$
- SM prediction:

 $- \phi_{\rm S} = -2\beta_{\rm s} + \delta \mathsf{P} \sim -2\beta_{\rm s} = 0.04$

J/ψφ is not a CP eigenstate
 → required angular analysis (in transversity base) to statistically separate CP even/odd

Experimental Status

 First measurements of the B_s mixing phase from CDF/D0 together with D0 measurement of semileptonic charge asymmetry A^b_{sl} tantalizing :

 The A^b_{sl} measurement is 3.2σ from the SM expectation [PRL 105, 081801]

- 5250 LHCb has the potential to quickly improve on the measurement from 5200 the Tevatron experiments
- Already see a signal sample in ~600nb⁻¹ $\sim (- \sqrt{50} k / fb^{-1})^{1.5}$

- Time resolution is 78fs
 - About factor 2 above expectation
 - Significant improvement seen with latest alignment

Flavour Tagging

- $B_s \rightarrow J/\psi \phi$ measurement requires flavour of the B_s to be tagged
- Calibration:
 - $B^+ \rightarrow J/\psi K^+$ (flavour of B self-evident)
 - − $B^0 \rightarrow D^{*+}\mu^-\nu$ (fit known osc. pattern)
- Fit the asymmetry as a function of proper time to extract:
 - Tagging efficiency, ϵ
 - Mis-tag rate, w

The stat. uncertainty on the measured CP asymmetries ~ $\epsilon (1-2w)^2$

• With uncalibrated combn procedure, $\epsilon(1-2w)^2 \sim \text{few }\%$, as expected

Expected Sensitivity

Assuming from MC simulations

- Background level
- Time resolution
- Flavour tagging efficiency
- and from data
 - B production cross section
 - \rightarrow sensitivity down to close to SM value with 1fb⁻¹

New physics in a^s_{sl}?

- If New Physics enhances CP-violation in B_s→J/ψφ, it will likely also dominate over the (negligible) SM CP-violation predicted in the semileptonic asymmetry
- Inclusive method with semileptonic decays difficult at LHC:
 - ~10⁻² production asymmetry in pp collisions
 - detector asymmetry
- LHCb proposes to measure $a_{sl}^s a_{sl}^d$, by determining the difference in the asymmetry measured in $B_s \rightarrow D_s(KK\pi)\mu\nu$ and $B^0 \rightarrow D^+(KK\pi)\mu\nu$:
 - difference suppresses production asymmetry
 - same final state suppresses detector biases

This method provides an orthogonal constraint to that from D0

CKM Measurements

CKM Measurements

- $B_s \rightarrow J/\psi \phi$ measurement about looking for NP in B_s mixing
- Still scope for NP in B_d mixing?
 - CKM angle γ determined indirectly (68 ± 4)°
 - Loop processes $\rightarrow sin (2\beta + \phi_{bd}^{NP})$
 - cf. direct measurement of γ from tree processes (currently (70 + 14 -21)°)

CKM Measurements

Time independent strategies: Efficiency LHCb $K^+ \rightarrow K^+$: (95.95 ± 0.27)% Preliminary $- B^+ \rightarrow D(hh)K^+$ $\pi^+ \rightarrow K^+$: (7.16 ± 0.02)% √s = 7 TeV Data − $B^0 \rightarrow D(hh)K\pi^+$ $- B^+ \rightarrow D(K_S \pi \pi)K^+$ - σ, ~10° with 1fb⁻¹ 0.8 - B⁺→D(Kπππ)K⁺ 0.6 $- B_s \rightarrow D_s \phi$ 0.4 0.2 Time dependent strategies: HHH Ħ×10³ 20 40 60 80 100 $- B_s \rightarrow D_s K^+$ Momentum (MeV/c) – B→hh [loops] LHCb $B^+ \rightarrow D$ (K π) π^+ [300nb⁻¹] Preliminary √s = 7 TeV Data $N_{signal} = 117 \pm 12$ Events / m = (5269.2 ± 12.0) MeV Particle identification crucial to these 35 $\sigma_{m} = (23 \pm 3) \text{ MeV}$ measurements – increasingly well

20

10E

5150

5200

5250

5300

5350

measurements – increasingly established

•

٠

• Signal being seen in many channels

5450

m_B (MeV)

Conclusions

- Even with the 2011 data, B decays can extend the search for NP:
 - $B_s \rightarrow \mu \mu$ - $B_d \rightarrow K^* \mu \mu$ - $B_s \rightarrow J/\psi \phi$ New scalar particles New Lorentz structure New phases in B_s mixing
- Beyond this, refining these measurements, looking at correlations between measurements, will help characterise the NP model
- Host of other measurements will probe the CKM picture in unprecedented detail, look at charm decays, exotics ...