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Simplicity of scattering amplitudes



• Why are we interested in amplitudes ?

• Amplitudes and Wilson loops in N=4 SYM

‣ iterative structure in N=4 scattering amplitudes 

‣ amplitude / Wilson loop duality

‣ dual (super)conformal symmetry 

‣ form factors of 1/2 BPS operators in N=4 super Yang-Mills 

Plan



• Scattering amplitudes of elementary particles       
(e.g.  gluons, or gravitons) 

‣ collected in a unitary matrix - the S-matrix (Wheeler, 1937; Heisenberg, 1942) 

‣ (maximally) supersymmetric theories

‣ theories with no supersymmetry, e.g. QCD

   What are we interested in: 



• Because they are simple

‣ calculation with Feynman diagrams cumbersome, however 
final results often strikingly simple

• Gluon scattering is an important background for LHC

‣ at tree level, gluon scattering can be equivalently calculated in 
any supersymmetric theory

‣ one loop: 

         Why  amplitudes ? 

Ag = (Ag + 4Af + 3As) − 4(Af +As) + As

N = 4 N = 1

one-loop amplitude in 
pure YM with a gluon 
running in the loop 

gluon
4 Weyl fermions 

6 real scalar fields

N = 0

the most difficult piece, 
but simpler than   Ag



Textbook approach to amplitudes:

Calculate Feynman diagrams !



Gauge-dependent, off-shell internal states

A typical Feynman diagram contains: 

Vertices

Propagators



Number of Feynman diagrams for  gg       n g scattering: (tree level)

systematic analysis of their phenomenological implications. In addition to the development of these
tools for the calculation of exact matrix elements, effort has therefore also been put into finding
proper approximations which reliably simulate the exact solutions in the relevant regions of the
multi-particle phase-space and which are sufficiently simple to be handled analytically and fast to
evaluate numerically.

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 1: The number of Feynman diagrams contributing to the scattering process gg → n g .

In this Report we collect and review these recent developments for the calculation of multi-parton
matrix elements in non-abelian gauge theories. For examples of how these matrix elements can be
used to obtain cross sections for processes in high energy colliders see EHLQ [29] and references
contained within.

In Section 2 we describe the helicity-amplitude technique and introduce explicit parametrizations
of the polarization vectors in terms of massless spinors. To reach a wide an audience as possible we
have chosen not to use the Weyl - van der Waarden formalism preferred by some researchers, see
for example Ref.[10].

In Section 3 we introduce an alternative to the standard Feynman diagram expansion, based
on the equivalence between the massless sector of a string theory and a Yang-Mills theory. This
expansion groups together subsets of Feynman diagrams for a given process in a gauge invariant
way. These subsets are easier to evaluate than the complete set and different gauges can be used for
each subset so as to maximize the simplifications induced by a proper choice of gauge. Furthermore,
different subsets of diagrams are related to one another through symmetry properties or algebraic
relations and can be obtained without further effort from the knowledge of a small number of building
blocks. This expansion can be extended to arbitrary processes involving particles in representations
other than the adjoint, and in this Section we construct this generalization.

Section 4 describes the use of Supersymmetry Ward identities to relate amplitudes with parti-
cles of different statistics. These relations are useful even when dealing with non-supersymmetric
theories because in many cases the additional supersymmetric degrees of freedom decouple from
the processes of interest. In addition, if the energy of the scattering process is large with respect to
the mass splittings within supersymmetry multiplets, these relations can be used to easily calculate
the matrix elements for the production of supersymmetric particles.

In Section 5 we illustrate the use of these tools with the explicit calculation of matrix elements
for processes with four and five partons, and give results for the scattering of six gluons and four
gluons plus a quark-antiquark pair. We hope this Section is useful for the reader who wants to
familiarize himself with the details of how these calculations are performed.

In Section 6 we prove various factorization properties using a string-theoretic approach, which
provides a compact way to represent multi-parton amplitudes. The results contained in this Section
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☞

Unwanted complexity (I)

Gluon 
scattering

	 
→

Result is: ☞ A(1±, 2+, . . . , n+) = 0

Why so simple ? Why zero?



•  Three-loop correction to electron g-2

Predrag Cvitanovic - acceptance speech, 1993 NKT Research Prize 
in Physics, Dansk Fysisk Selskab Årsmøde

“One day terror struck;  I was invited to Caltech to give a talk. I could 
go to any other place and say that Kinoshita and I had calculated 
thousands of diagrams and that the answer was, well, the answer is: 

But in front of Feynman? He is going to ask me why + and not - ?  
Why do 100 diagrams give a result of the order of unity, and not 10  
or 100 or any other number? It might be the most precise agreement 
between fundamental theory and experiment in all of physics, but  
what does it mean ? ”

(Cvitanovic & Kinoshita ’74)

(Laporta & Remiddi ’96) 

     Unwanted complexity (II) 

72 diagrams 
like = (1.181241456...) (αe.m./π)

3



Predrag Cvitanovic  again: 

“So in fear of God I went into deep trance and after a month I came 
up with this: if gauge invariance of QED guarantees that all UV and IR 
divergences cancel, why not also the finite parts? 

And indeed; when the diagrams we had computed were grouped into 
gauge-invariant subsets, a rather surprising thing happens: while the 
finite part of each Feynman diagram is of order 10 to 100, every 
subset adds up to approximatively   

...For me, the above is the most intriguing hint that something deeper 
than what we know underlies quantum field theory... ”

±1/2 (αe.m./π)
n



• Partially off-shell quantities

•

                  Form Factors 

F =

�
d4x eiqx �0|O(x)|state� = δ(4)(q − pstate) �0|O(0)|state�
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• Appear in several interesting contexts: 

‣ deep inelastic scattering  (e- + p → e- + hadrons) 

‣ e+e-   → hadrons :                                                     

hadronic electromagnetic currente+e-   → hadrons (X)
all orders in αstrong,  first order in αe.m.

= e v̄(p2)γµu(p1)
ηµν

(p1 + p2)2
(−e)�X| Je.m.
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• Total cross section: 

‣                                              from LHS       (q = p1 + p2)

‣                                                                      from RHS 

- encodes our ignorance of QCD dynamics

- usually evaluated using OPE / models

• Correlation functions appear in the picture 

Lµν = pµ1p
ν
2 + pµ2p

ν
1 − q2

2
ηµν

σ =
e4

2(q2)3
Lµν Wµν

Wµν =
1

π
Im

�
d4x eiqx �0|T

�
Jµ(x) Jν(0)

�
|0�



• Correlation functions (& LSZ reduction)

• Path integral 

• Action

• Off-shell

• Amplitudes                         correlations functions 

Typical “missing words” in an  amplitude seminar:  

Can we bridge the two realms ?

Form factors sit in between...



← 3-point vertex: 171 terms

← 4-point vertex: 2850 terms

☜

Bryce S. DeWitt , Phys. Rev. 162:1239-1256,1967.

Unwanted complexity (III) 
 General Relativity

Einstein-Hilbert Lagrangian 
and Yang-Mills Lagrangian give 
rise to very different-looking 

Feynman rules...



‣ ....however: 

- KLT relations

- hint at further secret similarities between GR and YM 
amplitudes...

‣ three-point amplitudes are the smallest amplitudes

- entirely determined by helicities + Lorentz invariance

- appear only in complexified Minkowski

‣ EH Lagrangian (and Feynman rules) not needed !

AGR(1+2+3−) = [AYM(1+2+3−)]2

AGR(1−2−3+) = [AYM(1−2−3+)]2



...hidden structures in perturbative quantum field 
theory...

...which are not captured by Feynman diagrams

Need new framework to calculate S-matrix 
directly

Unexplained simplicity hints at...



(Cambridge, 1966)



• On-shellness

‣ “The fields themselves are of little interest.  They are                               
merely used to calculate transition amplitudes for interactions.                                     
These amplitudes are the elements of the S-matrix”

‣ “One should try to calculate S-matrix elements directly,                            
without the use of field quantities, by requiring them to have             
some general properties that ought to be valid, whether or not        
some underlying Lagrangian theory exists” 

• Complexify

‣ “One of the most remarkable discoveries in elementary particle      
physics has been that of the complex plane”

            Key ideas in  



• Massless particles

‣ most of the beautiful structure uncovered so far appears in 
theories of massless particles 

• New symmetries/concepts

‣ supersymmetry, conformal symmetry, large-N limit,      
string theory,  AdS/CFT correspondence... 

‣ simplest S-matrix (in 4D):   N=4 SYM & N=8 supergravity                         
(maximal supersymmetry) 

         What was “missing” in 1966 



m = 0:  spinor helicity formalism      

• Define                        where                        

• Massless particles:                    

• Hence    

- Inner products                      

paȧ = pµσµ
aȧ σµ = (1,�σ)

�12� := εabλa
1λb

2 [12] := εȧḃλ̃ȧ
1λ̃ḃ

2

negative (positive) helicity                                λ (λ̃)· spinors

2(p1 · p2) = �12�[12]

p2 = det p = 0

Key formula !

Allows to expose (not explain!) simplicity 

(Berends, Kleiss, De Causmaecker, Gastmans, Wu; De Causmaecker, Gastmans, Troost, Wu;                                   
Kleiss, Stirling; Xu, Zhang, Chang; Gunion, Kunszt)

paȧ = λaλ̃ȧ



MHV amplitude  
• First non-vanishing amplitude:                          

• Simple geometry in Penrose’s twistor space 
(Witten, 2003)

- localised on a line in twistor space 

- holomorphic (only < > spinor products) 

- generic amplitudes (with more negative helicities) localise on 
unions of lines  

- first example of hidden structure 

 helicities are a 
permutation 
of  −−++....+

AMHV(1+ . . . i− . . . j− . . .n+) =
�i j�4

�12��23� · · ·�n1�

Maximally Helicity Violating 

(Parke & Taylor, 1986; Berends, Giele 1987; Mangano, Parke, Xu 1988)



• Exploit analytic structure of amplitudes

‣ Singularities of tree amplitudes: 

- Factorisation on multi-particle poles                                                  
(simple poles, tree level)  

On-shell (BCF) recursion relations
   (Britto, Cachazo, Feng; BCF + Witten, 2005)

 h = internal 
particles 
helicities 
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i j→ 0

�

h

simple 
pole

‣ idea: physical singularities → poles in a single complex variable z



‣ Shift momenta:                           ,                                                                              
with                    for all z      and                                                                                                                             

- shifted momenta are complex!

‣  

‣                                                                                                                       

- assume                                          (depends on theory)

- residues cP from factorisation 

as z → ∞ 

p̂1(z) = p1 + z η p̂2(z) = p2 − z η

η2 = 0

A(z) =
�

P

cP
z − zP

A(z) := A(p̂1, p̂2, p3, . . . , pn)

A(z) → 0

only simple poles
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Final result:

p̂21 = p̂22 = 0

is the amplitudeA(0)



• Results very simple! 

‣ building blocks are amplitudes,  and                                                        
3-pt amplitudes “seed” the recursion

• Wide applicability: 

‣ General Relativity (Bedford, Brandhuber, Spence, GT ‘05;  Cachazo, Svrcek’05;   
Benincasa, Boucher-Veronneau, Cachazo ‘07; Arkani-Hamed, Kaplan ‘08)

‣ rational part of QCD amplitudes (Bern, Dixon, Kosower; “BLACKHAT” 
collaboration)

‣ particles with masses (Badger, Glover, Khoze, Svrcek)

‣ N=4/N=8 manifestly supersymmetric recursion relations                     
(Brandhuber, Heslop, GT; Arkani-Hamed, Cachazo, Kaplan; Drummond, Henn)



• Key ideas:  

‣ calculate (on-shell) amplitudes 

‣ (off-shell) Green’s functions, Lagrangians, fields...

‣ not restricted to four dimensions

- recent amplitude calculations in 6D supersymmetric theories                            
(Cheung, O’Connell;  Bern, Carrasco, Dennen, Huang, Ita;  Brandhuber, Korres, Koschade, GT) 

• Advantages:

‣ gauge-invariant, on-shell data at each intermediate step   
of the calculation

‣ ♻ amplitudes with fewer legs/fewer loops   ♻

On-shell methods



Hidden structures in

planar N=4 SYM



•                                          is a “helicity-blind” function 

• All-loop MHV amplitude: 

‣                                                              BDS ansatz 

‣ div = universal infrared-divergent part                                        

‣       is the cusp anomalous dimension   BES equation           integrability 
(Beisert, Eden, Staudacher)  

‣                                 =  finite part of one-loop amplitude

‣ R  is the Remainder Function,        R = 0 for n = 4, 5      R ≠ 0  for n⩾6         

i.   Iterative structure at weak coupling
(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

a ∼ g2N/(8π2)
Mn := 1 +

∞�

L=1

aLM(L)
n ∼ eBDS+R

BDS ∼ div + γKFinite(1)(p1, . . . , pn)

γK

Finite(1)(p1, . . . , pn)

An,MHV = Atree

n,MHV
Mn Mn



• Planar higher-loop amplitudes from lower loops!

‣ Plus a remainder:  BDS conjecture breaks down at two loops and 
n = 6 (Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich)

‣ infrared divergences exponentiate                                                             
(Giele, Glover; Kunszt, Signer, Trocsany;  Sterman, Teyeda-Yeomans;  Catani;  Magnea, Sterman)

‣ exponentiation of finite parts:    new and nontrivial    

• Task:   determine the remainder function 

‣ hard to calculate, even numerically  (one data point takes one week)

‣ will approach from the Wilson loop side......

⚠



• MHV amplitudes in planar N=4 super Yang-Mills 
calculated by a Wilson loop 

- Strong coupling (Alday & Maldacena)

- Weak coupling (Drummond, Korchemsky, Sokatchev+Henn; Brandhuber, Heslop, GT)                   

‣ C determined by the momenta of the scattered particles              

ii.   Wilson loop/amplitude duality             
(Alday, Maldacena; Drummond, Korchemsky, Sokatchev + Henn;  Brandhuber, Heslop, GT)                   

�W [C]� := TrP exp
�
ig

�

C
dτ

�
ẋµ(τ)A

µ
�
x(τ)

� ��



• MHV amplitudes in planar N=4 super Yang-Mills 
calculated by a Wilson loop 

- Strong coupling (Alday & Maldacena)

- Weak coupling (Drummond, Henn, Korchemsky, Sokatchev;  Brandhuber, Heslop, GT)                   

‣ C determined by the momenta of the scattered particles       

‣ Purely gluonic; locally supersymmetric           

ii.   Wilson loop/amplitude duality             
(Alday, Maldacena; Drummond, Korchemsky, Sokatchev + Henn;  Brandhuber, Heslop, GT)                   

ẋ2 = ẏ2 , solved by ẋ2 = 0 ẏ = 0

�W [C]� := TrP exp
�
ig

�

C
dτ

�
ẋµ(τ)Aµ

�
x(τ)

�
+ ẏi(τ)φi

�
x(τ)

���



• The contour of the Wilson loop:  

‣ A particular polygonal contour, made of lightlike segments:    

- colour ordering   

‣               momentum conservation                                                                                                                        

-                                    ,    lightlike

- x  are T-dual (region) momenta

n�

i=1

pi = 0

x1

x2

x3

x4

x5

x6

x7

closed contour

Tr(T a1T a2 · · · T a7)

pi = xi −xi+1



• At strong coupling:     four-point amplitude is the         
same as BDS ! (Alday & Maldacena)

‣ notice: 

-                            replaces 

-                      

-   leading-order AM calculation: 

M4 ∼ exp
�
div + γstrong

K Finite(1)(p1, . . . , p4)
�

γweak
K ∼ 4λ + 4ζ2λ

2 + · · ·

γstrong
K ∼

√
λ + · · ·

γstrong
K →

√
λ



• Compare  < W[C] >  to  n-point MHV amplitude in 
N=4 SYM in perturbation theory

‣  4-point case at one loop (Drummond, Korchemsky, Sokatchev)      

‣  n-point case (Brandhuber, Heslop, GT) 

• Results are in perfect agreement !  

- unexpected: eikonal approximation usually reproduces IR behaviour only;  
we also get finite parts

Lightlike Wilson loops at weak coupling



• Simplest one-loop amplitude 

Sum of two-mass easy box functions, all with coefficient 1 

n-point, planar MHV amplitudes in N=4 SYM 

Diagrammatic 
interpretation 

·

(Bern, Dixon, Dunbar, Kosower, 1994) 

A1−loop

MHV
= Atree

MHV

�



• MHV Amplitude  “=”  Wilson loop                                  

‣ more precisely:     Wilson loop calculates M

- M is the helicity-blind function in 

- Subtlety in the infrared-divergent part

• Conjecture:     (Log) < W[C] > = (Log) M   to all loops

     

A(L)

MHV
= Atree

MHV
M(L)

All-loop conjecture                                    
(Drummond, Henn, Korchemsky, Sokatchev;  Brandhuber, Heslop, GT)

In terms of the remainders: Rn,WL = Rn



• New duality

• Remainder function is easier to compute 

                  

‣ Wilson loop: one hour.   Amplitude: one week

- (dimensionally regularised) Wilson loop integral functions much simpler 
to evaluate than corresponding amplitude integral functions 

‣ Functional dependence of R  constrained by dual conformal symmetry

Why is this interesting/useful ? 

 < W[C] >  = Exp (   BDS + R  )
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• Natural symmetry from Wilson loop perspective:

‣ it is the standard conformal group acting on dual momenta  x’s

‣ symmetry is anomalous 

- UV divergences from cusps in the contour                                  
(UV for the Wilson loop = IR for the amplitude)

iii.  Dual conformal symmetry              
(Drummond, Henn, Korchemsky, Sokatchev)

pi = xi − xi+1

xn+1 = x1



• BDS Ansatz explained by dual conformal symmetry  

‣ a solution to the associated anomalous Ward identity 

‣ remainder R is a function of cross-ratios

-                  invariant under 

‣ solution is unique at four and  five points (modulo constants)

- lightlike condition forbids nontrivial cross ratios for n < 6

• For n ⩾ 6 points, cross ratios open up and R ≠ 0  

- e.g. at  n = 6: 

-                                         non-vanishing starting at 2 loops   

x2
ijx

2
kl

x2
ikx2

jl

xi →
xi

x2
i

u1 =
x2
13x

2
46

x2
36x

2
41

, u2 =
x2
15x

2
24

x2
14x

2
25

, u3 =
x2
26x

2
35

x2
25x

2
36

R6 = R6(u1, u2, u3)



‣ The hunt for new symmetries to constrain R is open !

- goal: complete “algebraic” determination of amplitudes

‣ Remarkable series of recent strong-coupling calculations                                        
(Alday, Maldacena; Alday, Gaiotto Maldacena; Alday, Maldacena, Sever, Vieira)

- integrability of worldsheet theory, Y-systems...

‣ Weak-coupling side:  

- n-point remainder integrals (Anastasiou, Brandhuber, Heslop, Khoze, Spence, GT)

- evaluated for any n in (1+1)-dim kinematics (Heslop, Khoze)

- 6-point integrals calculated by Del Duca, Duhr, Smirnov.      
17-pages result, contains Goncharov polylogs

- Goncharov, Spradlin, Vergu and Volovich eliminate Goncharov’s 
polylogs. 2-line result, only classical polylogs!                               



  < W[C] >  at two loops,  n points 

• Remainder function for any n known in terms of a 
set of integral functions

‣ # of independent topologies does not grow with n

- n-point Wilson loop under numerical control

• Compare, where possible, to amplitude results

‣ collinear limits of Wilson loops same as amplitude’s

- if it quacks as a duck, it’s a duck!

‣ check dual conformal symmetry

(Anastasiou, Brandhuber, Heslop, Khoze, Spence, GT)



Wilson loop master integrals

‣ four topologies: hard,  Y (+ self-energy), cross, curtain  



‣ factorised cross (product of two one-loop integrals)



Amplitude master integrals

n=4

n=5

(Bern, Rozowsky, Yan)

(Bern, Czakon, Kosower,Roiban, Smirnov)



Amplitude master integrals (cont’d)

n=6

n=7

(Bern, Dixon, Kosower, 
Roiban, Spradlin, 
Vergu, Volovich)

(Vergu)

all n : Vergu arXiv:0908.2394 [hep-th];   Arkani-Hamed et al arXiv:1008.2958 [hep-th]



‣ Wilson loop: no new integrals after 9 points

- hard diagram with three masses   

‣ Amplitude: no new integrals after 12 points 

‣ Interesting mismatch between these two numbers... 



• Back to four- and five-point Wilson loops:  

- up to O(1) fully determined by the BDS Ansatz

- D = 4 - 2 ϵ  (ϵ <0) regularises divergences in the Wilson loop

- what about O(ϵ) corrections ?  effectively away from four 
dimensions

• Main result:  amplitude and WL are still identical   
up to and including O(ϵ)  terms 

- miraculous agreement that cannot be called a coincidence...

- clearly beyond dual conformal symmetry !  

Amplitude/Wilson loop duality at O(ϵ) 
(Brandhuber, Heslop, Nguyen, Katsaroumpas, Spence, Spradlin, GT) 



• In practice, define an O(ϵ) remainder for amplitude 
and WL.  For example,  

-                             are the same as in the O(1) iteration 

• Main results:  

R
(2)
4 = M

(2)
4 −

�
1
2

�
M

(1)
4 (�)

�2
+ f (2)(�)M(1)

4 (2�) + C(2)
�

+ O(�2)

R
(2)
4,WL = w(2)

4 −

�
1
2

�
w(1)

4 (�)
�2

+ f (2)
WL(�) w(1)

4 (2�) + C(2)
�

+ O(�2)

f (2)(�), f (2)
WL, C(2)

R
(2)
5 −R

(2)
5,WL = − 5

2 ζ5 � + O(�2)

R
(2)
4 −R

(2)
4,WL = 3 ζ5 � + O(�2)

parity-even part



• Four-point remainder at O(ϵ):   

x:= s/t

R(4)(x) = − �

360

�
16π4 log(x)− 15π4 log(1 + x)− 30π2 log2(x) log(1 + x)

−15 log4(x) log(1 + x)− 120π2 log(x)Li2(−x)− 120 log3(x)Li2(−x)
+180π2Li3(−x) + 540 log2(x)Li3(−x)− 1440 log(x)Li4(−x)

+1800Li5(−x) + 690π2ζ3 − 5940ζ5

�
,

- Transcendentality 5  function

- only classical polylogs appear



1. Conjecture: dual (super)conformal symmetry lifted 
from Wilson loops to amplitudes                         
(Drummond, Henn, Korchemsky, Sokatchev) 

‣ new hidden symmetry of planar N=4 amplitudes! 

‣                                         under inversions

- on-shellness, large-N limit, N=4 symmetry 

‣ tree-level S-matrix of N=4 SYM is dual superconformal covariant 
(Brandhuber, Heslop, GT) 

‣ one-loop dual conformal anomaly under control (DHKS, BHT)

‣ at tree/loop level, it restricts considerably the form of amplitudes 
(Brandhuber, Heslop, GT;  Drummond, Henn, Korchemsky, Sokatchev;   Korchemsky, Sokatchev; 
Bargheer, Beisert, Galleas, Loebbert, McLoughlin)

- loops without loops 

AMHV → x2

1
· · ·x2

n AMHV xi →
xi

x2
i

Comments: 



2. Weak coupling:    Yangian symmetry of tree-level 
scattering amplitudes  (Drummond, Henn, Plefka)

‣ from commuting the generators of the two superconformal 
algebras

‣ it is still a matter of debate whether the predictive power of the 
Yangian symmetry exceeds that of the two superconformal 
symmetries

‣ However:   Yangian symmetry might be easier to implement than 
e.g. ordinary conformal symmetry



‣ Studied at weak coupling in a pioneering letter by Willy 
van Neerven (van Neerven 1986)

- simplest (Sudakov) form factor at one and two loops, with 
Feynman diagrams   

- exponentiation of finite parts in N=4 super Yang-Mills !

- 4 citations on Spires, all after 2009  (2 last month....)

‣ Recent strong-coupling analysis (Alday, Maldacena; Maldacena, Zhiboedov) 

- independent of the particular operator as  long as anomalous 
dimension is small compared to 

- calculated by a periodic Wilson loop 

‣ Recent series of weak-coupling calculations                            
(Brandhuber, Spence, GT,  Yang;   Bork, Kazakov, Vartanov) 

iv.   Form factors in N=4 SYM                        

√
λ



‣ Perturbative questions on < 0 | O (0) | state > :

- dependence on external state

- dependence on operator 

- which integral functions can appear 

- duality with Wilson lines 

‣ Consider scalar 1/2 BPS operators  

- e.g.   O(x) = Tr (ϕ12 ϕ12)(x)  where 

- Sudakov form factor:  < 0 | O (0) | ϕ12 (p1)  ϕ12 (p2) >                  
Note:  O  is a colour singlet

- MHV:  < 0 | O (0) | g+ (p1)...ϕ12 (pi) ...g+ g+...ϕ12 (pj)... g+ (pn) >
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‣ On-shell methods can be successfully applied to form factors 
(Brandhuber, Spence, GT,  Yang)

- off-shellness limited to part of the diagram

- tree-level form factors derived using BCFW recursion relations 

- unitarity: at one loop,  glue form factors and amplitudes 

‣ Sudakov: 

-

F (q2) := �0|Tr(φ12φ12)(0) |φ12(p1)φ12(p2)�
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Figure 1: In Figure (a) we show the diagram calculating the cut in the q2-channel of
the Sudakov form factor (2.3). The cross denotes a form factor insertion. A second
diagram with legs 1 and 2 swapped has to be added and doubles up the result of the first
diagram. The result of this cut is given by (twice) a cut one-mass triangle function,
depicted in Figure (b).

The q2-cut of the form factor (i.e. its discontinuity in the q2-channel) is obtained
from the diagram on the left-hand side of Figure 1, whose expression is3

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q) F
(0)(l1, l2; q)A

(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

,

(2.5)
where the Lorentz invariant phase space measure is

dLIPS(l1, l2; q) := dDl1 d
Dl2 δ

+(l21)δ
+(l22)δ

D(l1 + l2 + q) , (2.6)

and q is given in (2.4). The tree-level component amplitude appearing in (2.5),
A(0)

(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

, can be extracted from Nair’s superamplitude
[18]

AMHV := gn−2 (2π)4δ(4)
(

n
∑

i=1

λiλ̃i

)

δ(8)
(

n
∑

i=1

λiηi
)

n
∏

i=1

1

〈ii+ 1〉 , (2.7)

where λn+1 ≡ λ1. The result is

A(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

=
〈l1l2〉〈12〉
〈l21〉〈2l1〉

. (2.8)

The other quantity appearing in (2.5), F (0) is the tree-level expression for the form
factor (2.3), which is trivially equal to 1. Thus, we get

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q)
〈12〉〈l1l2〉
〈2l1〉〈l21〉

= −2 q2
∫

dLIPS(l1, l2; q)
1

(l2 + p1)2
.

(2.9)

3In this and the following formulae we omit a power of the ’t Hooft coupling, defined as a :=
(g2N)/(16π2)(4πe−γ)ε. Note that this is 1/2 the ’t Hooft coupling defined in [12].
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A q := p1 + p2F
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• “MHV” form factors:  add arbitrary number of g+’s in external state

‣ structure very similar to that of MHV amplitudes in N=4

- holomorphic function of spinor variables 

- localises on a line in twistor space

- one-loop result proportional to tree level

- sum of finite two-mass easy box functions 
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‣ Hidden structures in scattering amplitudes

- on-shell recursion 

‣ Focused on N=4 amplitudes 

- iteration at higher loops 

- amplitude/Wilson loop duality

- beyond four dimensions

- dual conformal symmetry

‣ Form factors from unitarity 

‣ Plenty of questions to ask!   

Summary


