Exploring the Terascale: The CMS Experiment at the LHC and the First Results.

Higgs-Maxwell Workshop

9 Feb. 2011

Brief Physics Introduction The CMS Experiment First Results from CMS Outlook

Acknowledgements G. Landsberg – CERN EP/PP/LPC P. Sphicas: CERN Academic Traini Many CMS Considered

Tejinder S, Virdee, Imperial College/CERN On behalf of CMS Collaboration

CMS

Prologue Lepton-Photon Conference 2009 G. Altarelli

The LHC physics run will soon start, hopefully!

After the incident on Sept.19 '08 we must wait till Nov. '09 [LEP was closed at the end of 2000] Start at 3.5 TeV per beam Top physics priorities at the LHC (ATLAS&CMS):

- Clarify the EW symmetry breaking sector
- Search for new physics at the TeV scale
- Identify the particle(s) that make the Dark Matter in the Universe

Also:

- LHCb: precision B physics (CKM matrix and CP violation)
- ALICE: Heavy ion collisions & QCD phase diagram

 \bigoplus At this point, fresh input from experiment is badly needed

Experimentally at LHC

Find new particles/new symmetries/new forces?

- ⇒ Origin of Mass Higgs boson(s)
- ⇒ Supersymmetric particles a new zoology of particles, dark matter particle? ...
- ⇒ Extra space-time dimensions: gravitons, Z' etc. ?
- ➡ The Unexpected !!

Studies of CP Violation (LHCb) and Quark Gluon Plasma (ALICE)

Summarising 2010 ...

- . The LHC accelerator performed marvelously well running in proton mode at \sqrt{s} =7TeV and heavy-ions mode at \sqrt{s} =2.76TeV/nucleon. Many thanks.
 - During the year the p-p interaction rate increased from 10² to around 10⁷ !
 - The stored energy in the machine reached around 6% of the design value!
 - The transition to heavy-ion running was smooth
 - The machine conditions were "clean" and about 40 pb⁻¹ (10 μ b⁻¹) in pp (PbPb) mode were delivered.

2. CMS (+ other LHC experiments) also performed marvelously well

- The unprecedented and high level of preparation led to quality results streaming out very soon after startup.
- CMS is very well described in the simulation codes
- Much "physics commissioning" has been done. The precision of some measurements is already approaching that of theoretical uncertainties.
- New subtle effects are being seen and in many areas the LHC experiments are exploring territory beyond what has been explored at the Tevatron or RHIC.

" an unprecedented state of readiness"

PS: several years of delay were well spent

CMS Detector

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels 39 Countries, 169 Institutions
 3170 Scientists and Engineers (800 Ph.D Students)
 Bristol, Brunel, Imperial, RAL
 CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO, crystals

PRESHOWER Silicon strips ~16m² ~137k channels

STEEL RETURN YOKE ~13000 tonnes

> SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field : 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels **MUON CHAMBERS**

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

FORWARD CALORIMETER Steel + quartz fibres ~2k channels

CMS Detector

CMS: Surface Site in 2000

CMS: Surface Hall in Feb 2006

Spectacular Operations (Feb. 2007)

Cables, Pipes and Oprical Fibres!

CMS Detector Closed

LHC Incident 19 Sep 2008

Great state of readiness at start of run thanks to extensive studies with ~1G cosmic μ events (2008-09), beam splash events (2009), and detector description in MC.

HiggsMaxwellFeb'11tsv

CRAFT: Publishing 23 Papers in JINST

March 30 2010: Collisions at 7 TeV A Big Step Up in Energy

Collisions at 7 TeV: A Big Step Up in Energy

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST)

Run / Event 139779 / 4994190

Software, Computing and Analysis systems are not as visible as the hardware but are equally important

The Luminosity Evolution in 2010

Proton-proton running

340

Pb-Pb Running

Luminosity increased by 5 orders of magnitude half of integrated luminosity delivered in the last week!

Level-1 and HLT were rapidly changing !

HiggsMaxwellFeb'11tsv

Proton-proton LHC Delivered 47 pb⁻¹, CMS recorded 43 pb⁻¹ Overall data taking efficiency 92% ~85% with all subdetectors fully operational

Heavy (Pb-Pb) lons LHC delivered ~ 10 μ b⁻¹, CMS efficiency > 95%

Selection of Interesting Events

CMS uses a 2-tier "trigger" system to select interesting pp collision events for use in physics analysis.

Data Transfers, CPU, Analysis (jobs, people,..) ...

The whole offline and Computing organization + GRID infrastructure performed very well.

>1000 different individuals submitting jobs

CMS is well-described in computer code e.g. comparison in the Tracker

Monte Carlo events are simulated using GEANT-4 based model of the CMS detector and reconstructed & analysed using the same software used to process collision data

Examples of CMS Performance

Physics "Commissioning" of CMS

2010 run 40 pb⁻¹ collected

(corresponding to ≅ 3 trillion pp collisions examined)

Commissioning of Physics Objects very well advanced

- Charged track reconstruction, electrons, photons, muons and taus
- Jets & MET
 - Refine noise filters, cleaning algo's
 - Optimization of jet algorithms for resolution, scale, lepton and γ fakes, etc.
- Commission higher level algo's
 - B tagging
 - Particle Flow

Also calibrate with known objects

- Study candles for leptons and photons
 - $\Box \pi^{0}, \eta, ..., \Upsilon, \psi, ...$ initially to understand the detector, tracking, object id's
 - Extended to W, $Z \rightarrow leptons$

b-tagging

Analysing Complex Events

Analysing Complex Events Combining Calorimetry and Tracking

 (η, ϕ) view of a particle-flow reconstructed event. Reconstructed particles are represented as circles with a radius proportional to their pT. The direction of the MET computed from all particles is drawn as a solid horizontal straight the. Particle-based jets with pT> 20 GeV/c are shown as thinner circles representing the extension of the jet in the (η, ϕ) coordinates.

Missing E_T Peformance of CMS

Excellent MET resolution and small non-Gaussian tails. Understanding all sources of erratic noise is very important for cleaning the distributions. 27

Muons in CMS

Electrons in CMS

The Physics Reach - Startup

- A number of signals both from the SM and from beyond are visible over a large part of the parameter space with a fraction of a fb⁻¹.
 - SUSY: 500 GeV sparticles: large production cross section, spectacular signatures.
 - Extra dimensions: significant reach for Z' etc
 - Compositeness: reach multi-TeV very fast
 - (Higgs enters a little later with higher integrated luminosities)
- Of course, all these signals can be claimed after understanding Standard Model channels (as backgrounds)
 - QCD jets, prompt γ's, J/ψ, y,
 - b-quark production
 - Drell-Yan, W+Z production (plus jets); multi-IVB (WW,WZ,ZZ)
 - Top quark

- Minimum bias events
 - Non single-diffractive event selection (correction 6%→2.5% systematic error)
- Soft QCD (P_T threshold on tracks: 50 MeV)

- Particle density in data rises faster stronger than in model predictions. Tuning effort of MC generators....
- Marginal impact on high-P_T physics

Two-particle Correlations I

Imperial College

London

Two-particle Correlations II

Imperial College

London

The Hard Scatter

Jet Algorithm Anti-k_T, R=0.5

Typical of hard scatter e, μ , γ : E_T > 20 GeV Jets: E_T > 20 GeV

Isolation $E_T, p_T < thresh in cone$

$$\Delta R \equiv \sqrt{\Delta \eta + \Delta \phi}$$
$$\Delta R \sim 0.3$$

H_T - scalar sum of E_T of all jets with e.g. P_T > 30 GeV/c S_T - scalar sum of E_T of N individual objects (jets, e, μ , γ) with e.g. E_T > 50 GeV/c Transverse Mass, $E_{T2} \rightarrow 0.5$

$$\mathbf{M}_{T} = \sqrt{2E_{T}^{\mu}E_{T}^{miss}(1 - \cos\Delta\phi_{e,miss})}$$

$$\alpha_{\rm T} = \frac{E_{\rm T2}}{M_{\rm Higgs Maxwell Feb'11tsv}} \leq 0.5$$

The Hard Scatter: Inclusive jet production

The measured jet production rate is in good agreement with theoretical predictions (within errors).

CMS

Prompt Photon Production

W[±], Z^o production: Confronting Predictions

arXiv:1012.2466

Top quark production: Confronting Predictions

Central Heavy Ion Event

CMS Experiment at the LHC, CERN Mon 2010-Nov-08 11:22:07 CET Run 150431 Event 541464 C.O.M. Energy 7Z TeV

Quarks and Gluons in a Dense Medium

- Fragmentation of quarks and gluons into jets is strongly modified as they traverse the quark-gluon medium created in head-on (central) high energy Pb-Pb collisions labeled "jet quenching".
- Such effects were observed in at RHIC for single particle spectra and particle correlations.
- At the LHC one can fully reconstruct the jets!

Quarks and Gluons in a Dense Medium

Start Exploring the Unknown!

Numerous possibilities (examples below)

Sub-structure

Exotica:

Leptoquarks New gauge bosons (W', Z') New resonances (W-Z-like) Fourth generation (b') Large Extra Dimensions Microscopic Evaporating Black Holes

Supersymmetry

Squarks and gluinos Decays into jets and MET Decays into photons (GMSB)

SUSY-based exotica:

Long-lived particles

- As name implies, they are both "leptons" and "quarks": i.e. carry baryon and lepton number – & color (large σ!)
 - GUT-inspired models, with (hypothetical) proton decay acting as one of the main motivations
 - Decay: into ℓq (branching ratio β) and vq (BR=1- β)
 - Easier searches (e/μ) : first two generations, LQ1 and LQ2
- Pair-produced (gluon fusion) final state: () final state: (

Use variable $S_T = \text{Sum } E_T \text{ of all objects}$ (including ME_T) with $E_T > 50 \text{ GeV}$

Leptoquarks (II)

- Main irreducible bkg: DY+jets; 2nd: top production
 - In situ Z+jets measurement + measured top cross section in the dilepton channel to estimate both bkgs

Compositeness: do quarks have sub-structure?

How many space-time dimensions are there?

Law of Gravity In 3-D(∞ large dim):

$$F = \frac{GMm}{r^2}$$

e.g. in 2-D (∞ large dim): $F \propto \frac{1}{2}$

Number of space-time dimensions determines form of force observed

Gravity may propagate in 4+n dimensions, would see effects only at very small distances, perhaps reachable in pp LHC Collisions e.g. New particles – Z-like

Search for Heavy Vector Bosons: $Z' \rightarrow e+e-$

Heavy vector bosons could arise from spin 1: predicted by grand unified theories, Kaluza-Klein (KK) models spin 2: graviton excitations GKK arising in the Randall-Sundrum (RS) model of extra dimensions

Channel	μμ	ee	Combined
Z _{SSM}	1027 GeV	958 GeV	1140 GeV
Ζ _ψ	792 GeV	731 GeV	887 GeV
G _{KK} , k/M _{Pl} = 0.05	778 GeV	729 GeV	855 GeV
G _{KK} , k/M _{Pl} = 0.10	987 GeV	931 GeV	1079 GeV

Tevatron update on Jan 24 (!)

TABLE I: Mass limits on specific spin-1 Z' models [12] in data with 4.6 fb⁻¹ of integrated luminosity at 95% confidence level.

Model	Z'_l	Z'_{sec}	Z'_N	Z'_{ψ}	Z'_{χ}	Z'_{η}	Z'_{SM}
Mass Limit (GeV/c^2)	817	858	900	917	930	938	1071

Search for Virtual Graviton Effects

e.g. Probe models with Large Extra Dimensions where gravity alone is allowed to propagate

-Offer a solution to the heirarchy problem by "lowering" the apparent Planck scale MPI ~ 10^{16} TeV to MD ~ 1 TeV

-Signature studied: non-resonant enhancement of di-photon cross-section due to virtual graviton effects

							ιιι _{γγ} (ς	
GRW	Hewett		HLZ (limits in TeV)					
	λ > 0	λ < 0	n=2	n=3	n=4	n=5	n=6	n=7
1.93	1.72	1.70	1.88	2.29	1.93	1.74	1.62	1.53
1.82			1.79	2.22	1.82	1.61	1.45	1.29

Figures-highlighted in green are the highest to date

THE signature of low-scale quantum gravity ($M_D << M_{Pl}$)

BH formation when the two colliding partons have distance smaller than R_S , the Schwarzschild radius corresponding to their invariant mass Cross section from geometry: $\sigma = \pi R_S^2 \sim \text{TeV}^{-2}$ (up to ~100 pb!)

Microscopic BHs decay instantaneously via Hawking evaporation

emitting "democratically" a large number of energetic quarks, gluons, leptons, photons, W/Z, h, etc.

Expect lots of activity in the event, so Use $S_T = Sum E_T$ of all objects (including ME_T) with $E_T > 50 \text{ GeV}$ (good for avoiding pileup – also in the future)

Search for Microscopic BHs

Supersymmetry: a New Zoology of Particles?

Imperial College

SUSY: jets+ME_T

- Strongly-produced squarks and gluinos with M>400 GeV
 - Decaying into SM particles (e.g. quarks) plus LSP; either directly or after a long chain
 - Huge background from QCD (several orders of magnitude).
 - Strategy: use kinematics (α_T) to reduced it to negligible level, then tackle next bkg
 - Veto leptons to avoid EWK backgrounds with MET arising from neutrinos
 - Largest remaining bkgs: $Z(\rightarrow vv)$ +jets, W($\rightarrow \ell v$)+jets, t-tbar

$$\alpha_T \text{ for 2}$$
 $\alpha_T = \frac{E_{T2}}{M_T} \le 0.5$

Expectation for QCD: $\alpha_T = 0.5$ Jet mismeasurements: $\alpha_T < 0.5$

$$\alpha_T \text{ for n} \\ \textbf{jets:} \quad \alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{M_T}$$

(form two pseudo-jets – defined by balance in "pseudojet" $H_T = \oint E_T$)

SUSY: jets+ME_T

13 events observed but consistent with background estimates, so set limits Already with 35 pb⁻¹: significant extension of previous reach

Outlook 2011-2012

by mid-2011 1 fb⁻¹? 2-3 fb⁻¹ at 7 TeV by end 2011? 10 fb⁻¹ at \geq 7 TeV by end 2012 ?

Make more precise SM measurements & confront theory Search for the Higgs Boson Search for Supersymmetry Search for Exotica Look for the unexpected

LHC Reach 2011-2012

Higgs Seen in CMS

An Interesting 4-muon Event I

An Interesting 4-muon Event II

Invariant Masses

 $\mu_0 + \mu_1$: 92.15 GeV (total(Z) p_T 26.5 GeV, ϕ -3.03), $\mu_2 + \mu_3$: 92.24 GeV (total(Z) p_T 29.4 GeV, ϕ +.06), $\mu_0 + \mu_2$: 70.12 GeV (total p_T 27 GeV), $\mu_3 + \mu_1$: 83.1 GeV (total p_T 26.1 GeV).

HiggsM_ Invariant Mass of 4µ: 201 GeV

Standard Model (like) Higgs: LHC at 7/8 TeV

ATLAS / CMS: Supersymmetry @ 14 TeV

Summary

- LHC and CMS (and the other LHC experiments) have made a truly impressive start after twenty years spent on the design, R&D, prototyping, construction, assembly and commissioning
- The thorough preparation of CMS detector, the offline and computing systems, and physics analysis work-flows has allowed very rapid extraction of physics results.
- CMS is already approaching design performance in many areas! CMS has become a physics producing engine!
- With ~ 40pb⁻¹ the CMS has observed all particles of the standard model (save for neutrinos directly). Solid basis for understanding the "background" to searches at higher mass and transverse energy scales CMS is already exploring new territory in many areas.
- Much to look forward to in 2011/20112 and beyond.
- But we are just at the beginning the expectations still are that we shall find at the LHC will alter the way we view the universe at the fundamental level.

Dijet searches: summary

Particle	CMS, 2.9 pb ⁻¹ PRL 105 , 211801 (2010)		ATLAS, 0.32 pb ⁻¹ PRL 105 , 161801 (2010)	CDF, 1130 pb ⁻¹ PRD 79 , 112002 (2009)
q*	M > 1.58 (1.32) TeV		M > 1.26 (1.06) TeV	M > 0.87 TeV
s	M > 2.50 (2.40) TeV			M > 1.4 TeV (our estimate)
Axigluon/ Coloron	M > 1.17 TeV (M > 1.23 Te and not (1.42 < M < 1.53)	∨)		M > 1.25 TeV
E6 diquark	Exclude 0.50-0.58 & 0.97- 1.45-1.60 TeV (M > 1.05 Te	1.08 & ∋V)		M > 0.63 TeV
Quark Compositeness (left-handed quarks)				
CMS Cer PRL 105,	ntrality , 262001 (2010)	2.9 pb ⁻	$^{-1}$ $\Lambda > 4.0$ (2.9) TeV actual (observed)	
CMS Ang (to be sul	ular Distributions bmitted soon)	36 pb ⁻¹	Λ > 5.6 (5.0) TeV	
ATLAS (A (Centralit	Angular Distributions) y) PLB 694 , 327 (2011)	3.1 pb	⁻¹ Λ > 3.4 (3.5) TeV Λ > 2.0 (2.6) TeV	
D0 (Angu PRL 103	ilar Distriburions) , 191803 (2009)	700 pb	o ⁻¹ Λ > 2.84-3.06 (2.76-2.91) TeV	

Search for Stopped Gluinos

• Predicted in many extensions of the SM: SUSY, hidden-valley models,...

• Search for slow-moving (β <0.4) long-lived gluinos that stop in CMS and then decay μ sec, sec or days later producing a signal (in HCAL) when there is no beam passing through CMS. Designed a special trigger.

Most stringent limits to date.

Exploring new territory

Search for narrow resonances in di-jet final states.

We have measured, in 0.84pb⁻¹ of data, the dijet mass differential cross section for $|\eta_1,\eta_2|<2.5$ and $|\Delta\eta_2|<1.3$. The distribution is sensitive to the coupling of any new massive object to quarks and gluons.

95% CL mass limits for String resonances >2.1TeV; Excited quarks >1.14TeV; Axigluons/Colorons >1.06TeV; E₆ Diquarks >0.58

The Hard Scatter: Jet angular correlations

- Difference in azimuth: $\Delta \phi = \left| \phi_{jet1} - \phi_{jet2} \right|$
- Probe of QCD higher-order processes
 - Mostly sensitive to ISR (sentivitity to FSR low)
- Advantages
 - Very slight dependence on JES (main source of systematic uncertainty in jet measurements)
 - No dependence on luminosity

HiggsMaxwellFeb'11tsv

SUSY: jets+MET

• Apply a cut at α_T >0.55, QCD is negligible

- For remaining bkgs (estimate): two data-driven methods
 - Direct estimate of EWK bkg using W+jets and g+jet events
 - Inclusive estimate using extrapolation from lower-HT

SUSY: jets+MET

