

Status and Results from LHCb

Andrey Golutvin (Imperial College / CERN) on behalf of the LHCb Collaboration

LHCb is General Purpose Detector in the forward direction (2 < η < 6) (designed to take data @ 2 × 10³² cm⁻²s⁻¹)

LHCb is fully instrumented to provide:

- Vertexing
- Tracking
- PID (hadron, muon, electron, photon)
 &

Flexible Trigger to low P_t particles

Higgs-Maxwell Particle Physics Workshop

The LHCb Detector

Forward spectrometer very well suited for *flavour physics in particular*

Primary Vertex (PV) & Impact Parameter (IP) resolution

PV resolution evaluated in data using random splitting of the tracks in two halves and comparing vertices of equal multiplicity

Workshop

IP resolution ~15 μ m for the highest p, bins

- slope determined by multiple scattering, not an alignment effect
- improvement of material description is ongoing

Resolution for PV with 25 tracks

Data: 16 μm for X & Y and 76 μm for Z MC: 11 µm for X & Y and 60 µm for Z

Tracking: excellent mass resolution demonstrated

Workshop

PID: RICH

Higgs-Maxwell Particle Physics Workshop

PID with Calorimeter

(Identification of electrons and photons)

LHCb Trigger

Level-0

'High-pt' signals in calorimeter & muon systems

HLT1

Associate L0 signals with tracks, especially those in VELO displaced from PV

HLT2

Full detector information available Continue to look for inclusive signatures, augmented by exclusive selections in certain key channels.

At LHCb design luminosity $(2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1})$ all thresholds must be optimised for Bphysics, and consequently trigger efficiency for D decays from prompt-production is as low as ~ 10%. Boost trigger efficiencies for prompt D's by factor 3-4 w.r.t. nominal settings by reducing P_t threshold when running at low LHC rate Higgs-Maxwell Particle Physics

LHCb Operation

6.8 μ b⁻¹ at \sqrt{s} = 0.9 TeV in 2009 0.31 nb⁻¹ at \sqrt{s} = 0.9 TeV in 2010 37.7 pb⁻¹ at \sqrt{s} = 7 TeV in 2010 (~90% of delivered lumi)

2010 run

From 30th March to 29th October

Last month

LHCb Operation

Advantages of b physics at hadron colliders

□ Advantages of beauty physics at hadron colliders:

■ High value of bb cross section at LHC:

 $\sigma_{bb} \sim 300$ - 500 μb at 7 - 14 TeV

(e+e- cross section at Y(4s) is 1 nb)

Access to all quasi-stable b-flavoured hadrons

□ The challenge

Multiplicity of tracks (~30 tracks per rapidity unit)

Rate of background events: $\sigma_{inel} \sim 60 \text{ mb at } \sqrt{s} = 7 \text{ TeV}$

□ Nominal LHCb running conditions:

■ Luminosity limited to ~2×10³² cm⁻² s⁻¹ by not focusing the beam as much as ATLAS and CMS (currently all experiments are at the same conditions)

Maximize the probability of a single interaction per bunch crossing At LHC design luminosity pile-up of >20 pp interactions/bunch crossing while at LHCb μ ~ 0.5 pp interaction/bunch

LHCb reached nominal luminosity but with µ~2 !!!

Expect ~2fb⁻¹ in 2011/2012 Run (~10¹² bb pairs produced)

LHCb Physics Programme

- Main LHCb objective is to search for the effects induced by New Physics in CP violation and Rare decays using the FCNC processes mediated by loop (box and penguin) diagrams
- *NP effects could be different in boxes and penguins → study different topologies separately !*

Sensitivity to masses, couplings, spins and phases of New Particles

Higgs-Maxwell Particle Physics Workshop **Phases**

New Physics Search Strategy

CPV processes are the only measurements sensitive to the phases of New Physics e.g. measurements of β , β_s & γ

□ Masses and magnitude of the couplings of new particles Inclusive $BR(b \rightarrow s\gamma)$ indirectly constrains the scale of NP masses $\Lambda > 10^3$ TeV for generic coupling (flavour problem)

Look at specific cases with enhanced sensitivity e.g. helicity suppression in $Bs \rightarrow \mu\mu$ decay gives increased sensitivity to SUSY with extended Higgs sector

U Helicity structure of the couplings

Use the correlation between photon polarization and b flavour in $b \rightarrow s\gamma$

 $b \rightarrow \gamma_L + (m_s/m_b) \times \gamma_R$ $\phi \gamma$ produced in B_s and \overline{B}_s decays do not interfere \rightarrow corresponding CP asymmetry vanishes Significantly non-zero A_{CP} indicates a presence of right-handed current in the penguin loop

Similar study tids ingo $B \rightarrow K^* \mu^+ \mu^- \& K^* e^+ e^-$ Workshop

Main LHCb Physics Objectives

Search for New Physics in CP violation and Rare Decays

CPV:

Rare Decays

Leptonic:

Semileptonic:

 B_s oscillation phase Φ_s

CKM angle γ in trees and loops

CPV asymmetries in charm decays

Very non-SM ideas: Examples of FCNC in trees

 $B_{d.s} \rightarrow 4\mu, 4e$

_ В_{d.s} → К*µµ, фµµ

Correlation between photon helicity and b-flavour

Higgs-Maxwell Particle Physics Workshop

b cross section @ $\sqrt{s} = 7 \text{ TeV}$

Using J/ ψ produced in B decays: $\sigma(J/\psi \text{ from } b, 2 \le 4.5) = 1.16 \pm 0.01 \pm 0.17 \ \mu b \rightarrow \sigma(pp \rightarrow bbX) = 295 \pm 4 \pm 48 \ \mu b$

Using semileptonic B decays: $\sigma(pp \rightarrow bbX \text{ in } 2 < \eta < 6) = 75.3 \pm 5.4 \pm 13.0 \ \mu b$ $\rightarrow \sigma(pp \rightarrow bbX) = 282 \pm 20 \pm 48 \ \mu b$

First observation of new semileptonic B_s decay: $B_s \rightarrow D_{s2} X \mu v, D_{s2} \rightarrow D^0 K^+$

Prompt J/ ψ and open charm cross-sections @ \sqrt{s} = 7 TeV

Open charm cross-sections (D^* , D^0 , D^+ , D_s and Λ_c) have been measured as well

As expected huge charm production in the forward direction: ~20 × b

> Higgs-Maxwell P Works

Comparison with CMS in the overlapping region

Production of W and Z in the forward direction

Unique η coverage of LHCb allows for very interesting W,Z production studies such as switch-over in W⁺ / W⁻ ratio in acceptance

Very important to improve valence and sea quark distributions inside proton !!!

Z: 2 μ , each with P_t > 20 GeV/c

- $sin^2(\theta_W)$ can be extracted from A_{FB} . In LHCb acceptance *Z* production occurs predominantly through collision of valence and sea quark, so axis of A_{FB} measurement is well defined, and dilution low.
- Knowledge of PDF is very important to improve accuracy on A_{FB} and M_{W} . LHCb is complementary to GPDs and may provide vital input with high statistics data samples

Workshop

W: single isolated μ with P_t > 20 GeV/c & small P_t opposite

Charm of beauty experiment

- Excellent prospects for CPV studies; sensitivity < 0.1% is feasible at LHCb with first 100 pb⁻¹ !!! Expect several million tagged D⁰ → KK (BELLE 540 fb⁻¹ analysis uses ~10⁵ tagged D⁰→KK giving stat. precision on y_{CP}=0.32% and on A_Γ=0.30%)
- Search for direct CPV using D⁺→K⁺K⁻π⁺ with significant contribution from gluonic penguins.

What is left for the Unitarity Triangle test ???

- Precision test of the Unitarity Triangle is limited by accuracy of its sides, $|V_{ub}|$ and $(f_{Bd}\sqrt{B_d})/(f_{Bs}\sqrt{B_s})$ in particular
- Several possible hints for NP effects $(A_{SL}, V_{ub} \text{ from } B \rightarrow \tau v)$
- Large contribution from NP not excluded
- Precision measurement of γ in trees is important !!!

Two strategies at LHCb

- Interference between tree amplitudes gives CP violation effects that depend on their weak phase difference (γ)
- Amplitudes with weak phase diff. (γ) Different final states interfering via mixing $B_s^0 = \frac{1}{2\beta_s}$ gives sensitivity to ($\gamma - 2\beta_s$) Higgs-Maxwell Particle Physics

LHCb yields in $B^+ \rightarrow D\pi^+ \& B^+ \rightarrow DK^+$ (LHCb takes shape !)

Prospects for γ measurement in $B_s \rightarrow D_s K$

Large signals for $B_s \rightarrow D_s \pi$ useful for Δm_s measurement

- D_sK final state under study
- Expect world's first time-dependent CPV analysis for B_s→D_sK analysis in 2011

Combined estimated sensitivity for *γ* **in 2011/2012 Run is ~7°**

Higgs-Maxwell Particle Physics Workshop

Prospects for γ measurement in $B_s \rightarrow K^+K^- \& B_d \rightarrow \pi^+\pi^-$

Large penguin contribution in both $B_s \rightarrow KK \& B_d \rightarrow \pi\pi$ \rightarrow Sensitive to NP effects in time-dependent CP asymmetries (exploit U-spin symmetry)

- LHCb yiels in ~35 pb⁻¹: 254±20 $B_s \rightarrow K^+K^-$ & 229±23 $\pi^+\pi^-$ c.f. CDF in 1 fb⁻¹ 1307±64 $B_s \rightarrow K^+K^-$ & 1121±63 $B_d \rightarrow \pi^+\pi^-$
- Expect first time-dependent measurements in 2011/2012 (including measurement of B_s lifetime in CP-even K⁺K⁻ final state

B_{d(s)}

B_{d(s)},

d(s)

Prospects for direct CP violation in $B_{d/s} \rightarrow K\pi$

- Raw asymmetries clearly visible in data: direct CPV > 3σ
- Central values consistent with expectations and previous measurements
- Evaluation of systematic uncertainties is ongoing

And a fair comparison...

B_s mixing phase $2\beta_s$

analogous to measurement in B_d system, with which BaBar/BELLE validated CKM model, but uses B_s mesons and can only be performed at hadron colliders

After trigger and selection the signal events for $B^{0,+} \rightarrow J/\psi K^{*,+}$ at LHCb are almost as clean as in e⁺e⁻ - collisions at BELLE and BaBar

And LHCb observe clear signal for B_d oscillation with just 2 pb⁻¹ \rightarrow very useful to study tagging efficiency for CP Violation measurements !

Uncalibrated tagging algorithms applied to $B^0 \rightarrow D^{*-}(D^0\pi)\mu^+\nu$ evts :

~60% of expected performance Calibration & tuning ongoing

Very clean $B_s \rightarrow J/\psi\phi$ signal

30

First observation of $B_s \rightarrow J/\psi f_0(980)$ decays

- $B_s \rightarrow J/\psi f_0$, $f_0 \rightarrow \pi^+\pi^-$ is CP-eigenstate
- Looks promising for ϕ_s measurement since BR is large:

Higgs-Maxwell Particle Physics Workshop

Search for CP violation in mixing

If New Physics enhances CP-violation in $B^0{}_S \rightarrow J/\psi \phi$, it will likely also dominate over the (negligible) SM CP-violation predicted in the like-sign lepton asymmetry.

- Inclusive like-sign dileptons sensitive to combination of effects from B_d and B_s mixing
- Alternative approach: study difference of effects in $B_d \rightarrow D^+ \mu v X$ and $B_s \rightarrow D_s^+ \mu v X$
- Use common final state D,D_s → KKπ so that most systematics cancel

Search for $B_s \rightarrow \mu\mu$ decay

□ Super rare decay in SM with well predicted $BR(B_s \rightarrow \mu\mu) = (3.2\pm0.2)\times10^{-9}$ $BR(B_d \rightarrow \mu\mu) = (1.1\pm0.1)\times10^{-10}$

□ Sensitive to NP, in particular new scalars In MSSM: BR $\propto \tan^6\beta / M_A^4$

Main control channels: $B \rightarrow \pi\pi, B_s \rightarrow KK$

Observed yields:

5.3

5.4

5.6

5.7

Invariant mass (GeV/c²)

Prospects for $B_s \rightarrow \mu\mu$

For the SM prediction LHCb expects 10 signal events in 1 fb⁻¹

Background expected from MC is in good agreement with data

Very interesting sensitivity possible even with 40 pb⁻¹ !!!

With L ~ 1 fb⁻¹ exclusion of SM enhancement up to $BR(B_s \rightarrow \mu\mu)$ ~ 7×10⁻⁹

Test of NP helicity structure: $B \rightarrow K^* \mu \mu$, $K^* ee$, $B_s \rightarrow \phi \gamma$

Forward backward asymmetry, A_{FB}, is extremely powerful observable for testing SM vs NP Intriguing hint is emerging !!!

Forward-backward asymmetry

- BELLE, BaBar and CDF consistent with each other and SM
- Flipped C₇ scenario looks however more favoured from A_{FB} data
- Signal region blinded but background level low as expected
- With 1 fb⁻¹ LHCb expects ~1400 events, and should clarify existing situation. Expected accuracy in A_{FB} zero crossing point is ~0.8 GeV² in 1 fb⁻¹

 $B \rightarrow K \mu \mu$ is seen !!! $(BR \sim 5 \times 10^{-7})$

Cuts trained on $B \rightarrow J/\psi K$ signal

Observe 35 $B^+ \rightarrow \mu \mu K^+$ events in 37 pb⁻¹

Workshop

"Standard" physics: Excellent spectroscopy possible with LHCb

Conclusion

- □ First data are being used for calibration of the detector and trigger in particular. LHCb may be called GPD in the forward direction
 - LHCb trigger concept has been proven with data
 - Heavy flavour resonances and mesons have been reconstructed (Z & W candidates as well)
 - First measurements of production cross-sections at \sqrt{s} = 7 TeV for open charm, J/ ψ and b, and W / Z
- High class measurements in the charm sector should be possible with 40 pb⁻¹
- □ $B_s \rightarrow \mu\mu$ and $B_s \rightarrow J/\psi\phi$ will reach interesting sensitivity regime with ~ 40 pb⁻¹. Exciting prospects of discovery with full 1 fb⁻¹ sample
- Expect 25-50 times more data in next year(s) Run. This will allow for high discovery potential in these two measurements, and in many more ...