Physics Beyond the Standard Model

John ELLIS, CERN, Geneva, Switzerland

& King's College London

Open Questions beyond the Standard Model

- What is the origin of particle masses? SUSY due to a Higgs boson?
- Why so many types of matter particles? LHC
- What is the dark matter in the Univers SUSY

SUSY

String

- Unification of fundamental forces?
- Quantum theory of gravity?

At what Energy is the New Physics?

The LHC Roulette Wheel

How Heavy is the Higgs Boson?

- Direct search limit from LEP: $m_{\rm H} > 114.4 \text{ GeV}$
- Electroweak fit sensitive to m_t (Now $m_t = 173.1 \pm 1.3 \text{ GeV}$)
- Best-fit value for Higgs mass: $m_{\rm H} = 89^{+35}_{-26} \text{ GeV}$

• Tevatron exclusion:

 $m_{\rm H} < 158 \; {\rm GeV} \; {\rm or} > 175 \; {\rm GeV}$

Higgs Search @ Tevatron

Expected 95 % CL excluded region is 128 GeV $< M_H < 200+$ GeV with 1/fb of integrated luminosity @ 7 TeV

Interesting Events Candidate for ZZ→μμνν

 $m_{\mu\mu}$ 94 GeV, E_T^{miss} = 161 GeV

Run 167776, Event 129360643 Time 2010-10-28 10:41:18 CET

The LHC Roulette Wheel

Supersymmetry

Loop Corrections to Higgs Mass²

Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$
$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + ...]$$

• Leading divergence cancelled if $\lambda_S = y_f^2 \ge 2$ Supersymmetry!

Dark Matter in the Universe

Astronomers say that most of the matter in the Universe is invisible Dark Matter

'Supersymmetric' particles ?

We shall look for them with the LHC

Minimal Supersymmetric Extension of Standard Model (MSSM)

Particles + spartners

$$\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} e.g., \ \begin{pmatrix} \ell \ (lepton) \\ \tilde{\ell} \ (slepton) \end{pmatrix} or \begin{pmatrix} q \ (quark) \\ \tilde{q} \ (squark) \end{pmatrix} \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} e.g., \ \begin{pmatrix} \gamma \ (photon) \\ \tilde{\gamma} \ (photino) \end{pmatrix} or \begin{pmatrix} g \ (gluon) \\ \tilde{g} \ (gluino) \end{pmatrix}$$

- 2 Higgs doublets, coupling μ , ratio of v.e.v.'s = tan β
- Unknown supersymmetry-breaking parameters: Scalar masses m₀, gaugino masses m_{1/2}, trilinear soft couplings A_λ bilinear soft coupling B_μ
- Often assume universality:

Single m_0 , single $m_{1/2}$, single A_{λ} , B_{μ} : not string?

- Called constrained* MSSM = CMSSM (* at what scale?)
- Minimal supergravity (mSUGRA) predicts gravitino mass: $m_{3/2} = m_0$ and relation: $B_{\mu} = A_{\lambda} - m_0$

Non-Universal Scalar Masses

• Different sfermions with same quantum #s? e.g., d, s squarks? disfavoured by upper limits on flavourchanging neutral interactions • Squarks with different #s, squarks and sleptons? disfavoured in various GUT models e.g., $d_R = e_L$, $d_L = u_L = u_R = e_R$ in SU(5), all in SO(10) Non-universal susy-breaking masses for Higgses? No reason why not! NUHM

Lightest Supersymmetric Particle

• Stable in many models because of conservation of R parity: $R = (-1)^{2S - L + 3B}$ where S = spin, L = lepton #, B = baryon #• Particles have R = +1, sparticles R = -1: Sparticles produced in pairs Heavier sparticles \rightarrow lighter sparticles Lightest supersymmetric particle (LSP) stable

Possible Nature of LSP

 No strong or electromagnetic interactions Otherwise would bind to matter Detectable as anomalous heavy nucleus • Possible weakly-interacting scandidates **Sneutrino** (Excluded by LEP, direct searches) Lightest neutralino χ (partner of Z, H, γ) Gravitino (nightmare for astrophysical detection)

Classic Supersymmetric Signature

Missing transverse energy carried away by dark matter particles

Constraints on Supersymmetry

• Absence of sparticles at LEP, Tevatron selectron, chargino > 100 GeV DEHZ 03 (e⁺e⁻-based 180.9 + 8.0squarks, gluino > 300 GeV DEHZ 03 (r-based) 195.6 ± 6.8 HMNT 03 (e⁺e⁻-based 176.3±7.4 J 03 (e⁺e⁻-based) 179.4±9.3 (preliminary • Indirect constraints TY 04 (e⁺e⁻-based) 3.3σ 180.6±5.9 (preliminary DEHZ ICHEP 2006 (e⁺e⁻-based) 180.5+5.6 (preliminary effect in BNL-E821 04 Higgs > 114 GeV, b \rightarrow s γ 208 + 5.8 $g_{u} - 22$ a., - 11 659 000 Density of dark matter \bullet lightest sparticle χ : $0.094 < \Omega_{\gamma}h^2 < 0.124$

200

210

Quo Vadis 2? g_{μ}

- Strong discrepancy between BNL experiment and e⁺e⁻ data:
 - now $\sim 3.6 \sigma$
- Decent agreement between e⁺e⁻ experiments
- Increased discrepancy between BNL experiment and τ decay data
 - now $\sim 2.4 \sigma$
- Convergence between e⁺e⁻ experiments and τ decay data?
- More credibility?

Current Constraints on CMSSM $\tan \beta = 10$, $\mu > 0$, $M_{in} = 10^{12.5} \text{ GeV}$ 2000 Assuming the lightest sparticle is a neutralino 6 Excluded because stau LSP 1000-Excluded by $b \rightarrow s$ gamma WMAP constraint on relic density Preferred (?) by latest g - 2 1000 100 2000

JE + Olive + Sandick

m_{1/2} (GeV)

Global Supersymmetric Fit

- Frequentist approach
- Data used:
 - Precision electroweak data
 - Higgs mass limit
 - cold dark matter density
 - B decay data (b \rightarrow s γ , B_s $\rightarrow \mu^+\mu^-$)
 - $-g_{\mu} 2$ (optional)
- Combine likelihood functions
- Analyze CMSSM, NUHM1 (VCMSSM, mSUGRA)

O.Buchmueller, JE et al: arXiv:0808.4128, 0907.5568, 0912.1036

How Soon Might the CMSSM be Detected?

How Soon Might the NUHM1 be Detected?

Frequentist Fits to VCMSSM & mSUGRA

	Best-fit parameters in different models						
Model	Minimum χ^2	Probability	$m_{1/2}~({ m GeV})$	$m_0 \; (\text{GeV})$	A_0 (GeV)	$\tan\beta$	M_h (GeV)
mSUGRA	29.3	6.0%	550	230	430	28	122.1
	33.2	2.2%	130	2110	980	7	116.9
VCMSSM	20.9	40%	370	70	-15	6	114.2
CMSSM	21.5	31%	320	60	-110	10	114.2
NUHM1	19.6	30%	260	100	930	7	120.7

O.Buchmueller, JE et al: arXiv:1011.6118

Best-Fit Spectra

CMSSM

O.Buchmueller. JE et al: arXiv:0808.4128

Spectra with Ranges: CMSSM & NUHM1

O.Buchmueller, JE et al: arXiv:0907.5568

Likelihood Function for $B_s \rightarrow \mu^+ \mu^-$

Likelihood Functions for Sparticle Masses

O.Buchmueller, JE et al: arXiv:1011.6118

Likelihood Function for Higgs Mass

O.Buchmueller, JE et al: arXiv:0907.5568

Likelihood Function for Higgs Mass

O.Buchmueller, JE et al: arXiv:1011.6118

Nov. 20th 2009: Jubilation

Supersymmetry Search in CMS

LHC Sensitivity @ 7 TeV

O.Buchmueller, JE et al: arXiv:0808.4128

The LHC Sensitivity Starts to Extend Beyond the Tevatron

Excited quark mass > 1.53 TeV (ATLAS), 1.58 TeV (CMS) cf 0.87 TeV (CDF)

String Effects in 2-2 Scattering @ LHC?

Search for String Resonances

String resonance mass > 2.50 TeV (CMS)

And if gravity becomes strong at the TeV scale ...

Black Hole Production at LHC?

Black Hole Decay Spectrum

No Black Holes yet

Black holes excluded for masses up to 3.5 to 4.5 TeV

Collide heavy nuclei at high energies to create ...

Hot and Dense Hadronic Matter

Viscosity of Quark-Gluon Matter

- Shear viscosity/entropy ratio [η/s] can be calculated in N=4 SUSY QCD: ^η/_s
- Lower limit from AdS/CFT correspondence: $\eta/s \ge 1/4\pi$
- Intense experimental interest

Viscosity of Quark-Gluon Matter

 η/s can be measured via elliptic flow of produced particles:

Viscosity of Quark-Gluon Matter

• The most perfect fluid known?

Elliptic Flow @ LHC

• In agreement with hydrodynamics with viscous corrections

• How far from a perfect fluid?

- The LHC has the world's attention
- Communicate the excitement
- Be ready when the big discoveries come
- Talk to your local newspapers
- Talk to engineering students
- Go back to your old school(s)
 - Help them get cosmic-ray detectors

- Secure public and political support
- Lay basis for the future
- LHC upgrades
- New accelerator projects