

Example Searches with 2010 data

Dijet Angular Distribution Searches

- Multi-Object Searches
 - Motivated by low scale gravity models

- Gamma gamma + MET Final state
 - UED

Dijet Angular Distribution Search

Observable

$$\chi = \exp(|y1-y2|)$$

$$\chi = \frac{1+\cos\theta^*}{1-\cos\theta^*}$$

- flat for Rutherford scattering
- relatively flat shape in QCD
- small PDF dependence
- enhancement at low χ for new physics
 - quark compositeness
 - ADD large extra dimensions
 - TeV-1 extra dimensions(increased scattering at large angles)

Dijet Angular Distribution Search

Bench Mark Model: Contact Interaction

- Quark compositeness
 - quarks are composed of more fundamental particles
- Four-fermion contact interaction Lagragian

$$\mathcal{L}_{qqqq}(\Lambda) = \frac{\xi g^2}{2\Lambda_q^2} \bar{\Psi}_q^L \gamma^\mu \Psi_q^L \bar{\Psi}_q^L \gamma_\mu \Psi_q^L$$

- A characterize strength of "preon" coupling and physical size of the coupling scale
- If ∧ >> partonic CM energy
 - Contact interactions suppressed by powers of 1/Λ
 - quarks would appear to be point-like

Dijet Angular Distribution

- AIM: Find BSM physics (s-channel processes)
- Analysis Method
 - X studied in bins of mjj
 - $|y_{i1} y_{i2}| < \ln 30$
 - $y_{i1} + y_{i2} < 1.5$
 - pt_{i1} > 60 GeV
 - pt_{i2} > 30 GeV

Advantages: JES and Lumi uncertainties reduce Combined $y_{i1} + y_{i2}$ and $|y_{i1} - y_{i2}|$ cuts give uniform acceptance in χ

Results Phys. Lett. B694 (2011) 327-345

- 3.1 pb⁻¹ in Aug. 2010
- Dominant uncertainties
 - NLO QCD renormalization and factorization scales
 - PDF uncertainties.
 - Jet Energy Scale

- resulting bin-wise uncertainties are for χ
 - 3% for the combined NLO QCD scales
 - 1% for the PDF error
 - 9% Jet Energy Scale

Results

Determination of Exclusion Limits

Expected limit: Λ< 3.5 TeV at the 95% CL

Observed limit: **∧< 3.4 TeV** at the 95% CL.

Previous Tevatron limit: Λ=2.8 – 3.1 TeV

CMS: expected Λ < 2.4 TeV observed Λ < 4 TeV

Extra Dimensions

No theory of first principles

Provide simplified framework with testable results

Can help us to gain insights about the underlying theory

http://www.particleadventure.org/frameless/extra_dim.html

Extra Dimension (ED) Models

- ED may explain complexity of particle physics
- Where are they?

An acrobat can only move in one dimension along a rope..

Gravity is escaping into the extra dimensions.

Extra Dimension (ED) Models

- ED may explain complexity of particle physics
- Where are they?

...but a flea can move in two dimensions.

Gravity is escaping into the extra dimensions.

Extra Dimension (ED) Models

ED may explain complexity of particle physics

Where are they?

http://www.particleadventure.org/frameless/extra_dim.html

...but a flea can move in two dimensions.

Gravity is escaping into the extra dimensions.

Gravity in Extra Dimension

At small distances gravity can be very strong, up to 10³⁸ times stronger:

$$F pprox rac{G_D}{r^{n+2}}$$

$$G_D = GL^n$$

At large distances gravity seems weak

$$F \approx \frac{G_D}{L^n \cdot r^2} \approx \frac{G}{r^2} \qquad M_D^{n+2} = \frac{(2\pi)^n}{8\pi G_D}$$

$$M_D^{n+2} = \frac{(2\pi)^n}{8\pi G_D}$$

G is "diluted" strength of gravity in our 3-dim. space.

 G_D is the (4+n)-dimensional Newton gravity constant.

Other Predictions of Extra Dimension Models

KK particles

http://universe-review.ca/l15-74-KK.jpg

Schwarzschild Black Holes

Rotating Black Holes – Kerr Solution

- rotating massive body
- frame dragging
- ergosphere:
 - particles have to corotate

- Penrose effect
 - BH emits energetic particles → energy loss

http://www.gothosenterprises.com/black_holes/rotating_black_holes.html

The "No-Hair Theorem"

- Black holes are characterized by their
 - Energy,
 - Angular momentum,
 - Electric charge.
- Do **NOT** conserve B, L or flavour

Production of Black Holes

Bring mass closer than its Schwarzschild Radius, R_s,

$$R_s = \frac{2 G M}{c^2}$$

and a black hole will form!

Production of Black Holes

Bring mass closer than its Schwarzschild Radius, R_s,

$$\mathbf{R}_{s} = \frac{\mathbf{2} \, \mathbf{G} \, \mathbf{M}}{\mathbf{c}^{2}}$$

and a black hole will form!

$$R_s^{Earth} = 8.8 mm$$

Production of Black Holes

Bring mass closer than its Schwarzschild Radius, R_s,

$$R_s = \frac{2 G M}{c^2}$$

and a black hole will form!

$$R_S^{Earth} = 8.8$$
mm

Production of Black Holes at the LHC

$$R_s = \frac{2 G^* L^n M}{c^2}$$

$$\mathbf{M} = \sqrt{\mathbf{s}\mathbf{x}_{\mathsf{a}}\mathbf{x}_{\mathsf{b}}} = \sqrt{\hat{\mathbf{s}}}$$

$$R_s^{2quarks} \leq 10^{-18} m$$

BH production @ LHC

Semi Classical Production Cross Section

$$\sigma_{ab\to BH}(\hat{s}) \approx \pi R_h^2$$
 valid for M >> M_D

$$\sigma_{pp\to BH+X}(s) = \sum_{a,b} \int_{M^2}^{1} dx_a \int_{\frac{M^2}{x_a s}}^{1} dx_b f_a(x_a) f_b(x_b) \sigma_{ab\to BH}(\hat{s})$$

parton distribution functions

Black Holes decay!

- Astronomical BH -- COLD Low Evaporation Rate
- Micro BH -- HOTHigh Evaporation Rate

$$T_{H} \approx 10^{-6} \frac{M_{\odot}}{M} [K]$$

emit particles ≈ **black body** thermal spectrum.

- •BH lifetime @ LHC ~ 10⁻²⁷−10⁻²⁵ s
- Decays with equal probability to all particles.

Time Evolution of Black Holes

Footprints of Microscopic Black Holes

- hadron : lepton ≈ 5 : 1
- Theoretical uncertainties large
- high multiplicities10 40 particles/event
- decay product's energies up to TeV

May be it looks like a yeti??

Search for an enhancement of multi--body final states at high masses

- Search motivated by low-scale gravity and/or weakly-couple string theory.
- As model independent as possible in the context of low scale gravity.
 - Due to lack of reliable prediction in strong-gravity regime (general UV-complete quantum gravity).
- Large deviation from SM in a signal that is anticipated to have a high acceptance.

Search Aims

- Search for deviations from SM
 - high multiplicity
 - high invariant mass final-state topologies.

Perform search for a new interaction threshold

- In the absence of a signal,
 - derive an upper limit on such possible final states.

Observables

- N= number of objects (electrons, photons, muons, jets) passing object selections in the final state.
- Σp_{T} = scalar sum of the transverse momentum of the objects selected.

$$\sum_{i=\text{objects}} \mathbf{p}_{\mathsf{T}_i} = \sum_{i=\text{objects}} |\mathbf{p}_{\mathsf{T}_i}|$$

- invariant (effective) mass of the final state
 - electrons, photons, muons, plus MET.

$$\mathbf{m}_{inv} = \sqrt{\mathbf{p^2}}$$
 and $\mathbf{p} = \sum_{i=object} \mathbf{p_i} + (\mathbf{E_T^{miss}, E_x^{miss}, E_y^{miss}, 0})$

Event Selection

- Single jet and muon trigger
- Vertex Quality cuts
 - >5 tracks from at least one primary vertex
 - $|z_{\text{beam}}-z_{\text{rec}}| < 15 \text{ cm}$
- Require good jets
- Object Selection
 - Electrons with pT > 20 GeV
 - Muons with pT > 20 GeV
 - Photons with pT > 20 GeV
 - Jets (antikt,0.4) with pT > 40 GeV
- At least 3 objects pass our selections

Multiplicity Distribution

Scalar Sum P_T

Definition of Signal and Control Region

- Experimental lower limits on
 - $M_D = 940 \text{ GeV for n} = 6$
 - M_D = 800 GeV for n> 6.
- Search for a sharp interaction threshold from M_D .
- Final states produced by such interactions are expected to have large Σp_T for their m_{inv} values.

Definition of the Control and Signal Region

- The MC samples are normalised to the data in a control region, where we do not expect a signal.
- Predictions are extrapolated to the signal region.
- Control region kinematically close to the signal.
- Control region:
 - Σp_{T} > 300 GeV and 300 < m_{inv} < 800 GeV
- Signal region:
 - \blacksquare $\Sigma p_{\rm T}$ > 700 GeV and $m_{\rm inv}$ > 800 GeV.

Mass Distribution

Signal Region

total background prediction is 254 ±18 (stat) ±84 (syst)

Total uncertainty, systematic dominated

Σ*p*T> 700 GeV and *m*inv> 800 GeV

Summary of the Systematics

	-	
Systematic Uncertainties		
Background (QCD)	± 66.5	26%
PDF (choice)		$\pm 12\%$
PDF (error set)		+6.8%
PDF (error set)		-5.2%
Control region		$\pm 10\%$
Un-simulated backgrounds		$\pm 0.6\%$
Including e, γ, μ		$\pm 0.2\%$
Missing transverse energy		$\pm 0.02\%$
JES		$\pm 11.0\%$
JES (MET)		$\pm 0.5\%$
JER		$\pm 0.6\%$
Systematic uncertainty	+84	+33%

Multi-Object Results

- No deviation from the SM expectation is observed.
- (295 +-32) nb-1of data yields **193 data** events.
- Consistent with QCD expectation of 254 ±18 ±84.

Upper limit on the cross-section ×acceptance of 0.34 nb@ 95% C.L. for final states with at lease 3 objects, ΣpT> 700 GeVand minv> 800 GeV.

Can we exclude Black Holes? -- NO

- For benchmark, we consider multi-body final states generated by BlackMax and Charybdis, for which we obtain an acceptance of 58%.
 - Predictions are semi-classical
 - Not valid in the regime close to M_{D!}
- For this acceptance, upper limit on the production cross-section would be 0.6 nb.
- New physics cross section < 0.6 nb @ 95 C.L.</p>
 - Conservative since acceptance is rising for higher M_{min}

CMS performed similar analysis with 35pb-1

Diphoton + MET Search

Introduction/theory

Consider model with a single Universal Extra Dimension

"Universal" == ALL SM particles propagate into the extra dim n=1,2,3,... Kaluza Klein (KK) excitations for each SM particle (n=0) R: compactification scale, with 1/R~1TeV

 \rightarrow strong production of pairs of KK quarks and/or gluons, which cascade decay down to LKP (γ^*)

If embed UED model in a larger space with N large dim (of size⁻¹ ~ eV) where only gravitons propagate, then gravity mediated decays become possible

 $\gamma^* \rightarrow \gamma + Graviton$

→ High pT diphoton + MET

UED Signal

2 hard, central photons

- Cascade Decay → Jets
 - High-P_T Jets: e.g. for 1/R = 700 GeV
 - ■mean ~ 100 GeV
 - ■Tails up to 400 GeV
 - Presence or absence of jets is NOT used
- Large MET (Key distribution for this analysis)

UED Signal

hep-ex > arXiv:1012.4272

Analysis Strategy

- Use data to predict background
- Define signal region such that expected background < 1</p>
 - This is done BEFORE one looks into data

- Aimed for high efficiency to have good sensitivity
- Compare number of observed events to SM background expectation in signal region
 - MET > 75 GeV

Event Selection

- 2 "loose" photons with $E_T > 25$ GeV
- $|\eta|$ < 1.37 OR 1.52 < $|\eta|$ < 1.81
- Isolation cut on both photons (Etcone20 < 35 GeV)</p>
- For BKG: one photon fails loose requirement
- MET cut to define signal region
 - MET > 75 GeV

Systematics

Analysis is not systematics dominated

Source of uncertainty	Uncertainty
Integrated luminosity	11%
Photon reconstruction and identification	4%
Effect of pileup	2%
$E_{\rm T}^{\rm miss}$ reconstruction and scale	1%
Signal MC statistics	1%
Total	12%

Background Sources

- QCD Background
 - Dominant background
 - SM γγ, γ+jet, multijet events with jets faking photons
 - Modeled with data
- W→(enu) + jets/γ
 - Small background
 - e misidentified as γ,
 - 2nd γ either real photon from W + γ or W+jets, jets faking γ
 - Modeled with data
- W/Z+ γ γ
 - Irreducible background
 - Negligle for current data set

Modelling the QCD background

- Use Z -> ee to model MET response to SM γγ
 - MET response dominated by CAL response to 2 EM objects
 - Confirmed with MC that this works reasonably well
- Model MET response to jets faking γ
 - Sample where at least one photon *fails* photon ID cuts

- Model QCD background by weighted mean of
 - Z→ee and misidentified jets sample
 - Fix overall normalization to MET<20 GeV region</p>
 - Determine relative contributions by fit to this region
 - Fit returns (35 +- 22) % for Z→ ee contribution

Components of the QCD Background modelling

Expected QCD Background

Signal region

Expected BKG 0.32+-0.16^{+0.37}_{-0.1}

Results

- Excellent agreement between data and expected backgrounc
- Observe 0 events in signal region
- 1/R < 728 GeV 95% (excluded
 - Tevatron: 1/R<477 Ge</p>

Concluding Remarks

- Searches are NOT measurements
- Needs are different
 - Need to be fast
 - Not miss the signal
 - New machine....can not do blind analyses
 - BUT need to avaid positive or negative biasing
- Need to understand your background and systematic
- Unfolding usually not desirable in searches
 - Introduces biases
- Model independent search strategies and presentation of results

Searches in 2011

- LHC will run most likely at 8 TeV
 - Good news for searches
 - Push further into new energy regimes
 - Higher cross sections for massive new particles
- Aims for 1 2 fb-1 of integrated luminosity
 - Should see SUSY if it is there
 - Explore semi-classical black holes
 - Signatures we will be looking at will become more complex
 - Trileptons
 - Boosted top, W, b signatures
 - Hidden Valley
 - Lepton jets....
- It will be very exciting.

Elements of Discovery Process

Theoretical Insight
Interplay of theory and
experiment is essential

Accelerator Advances

At the LHC we can create and study new interactions

New Physics:
Our Understanding
of the World

Data Analysis:

Not missing the signal is key

New Detectors, Computing Tools

With new developments come new capabilities

Experimental Limits

Table top

Particle accelerators

Astrophysical observations

- Cosmic-ray measurements
- Cosmological considerations

Table Top Experiments

1/r²-law valid for R=44 µm at 95%

Ann.Rev.Nucl.Part.Sci.53:77-121,2003, hep-ph/0307284

Particle Accelerators

hep-ph/0201029, hep-ex/0605101, hep-ph/9909294, hep-ex/0710.3338, hep-ex/0707.2524

- LEP:
 - \blacksquare M_D =1.5 TeV for n = 2 \Leftrightarrow R = 0.2 μ m
 - $M_D = 0.75$ TeV for $n = 5 \Leftrightarrow R = 400$ fm
- CDF:
 - $^{\blacksquare}M_{D}$ = 1.33 TeV, n = 2 ⇔R = 0.27 µm
 - $M_D = 0.88$ TeV for $n = 6 \Leftrightarrow R = 31$ fm
- D0 (II, gg):
 - ■M_D = 1.23 TeV lower limit

Astrophysical and Cosmological Constraints

hep-ph/0304029, hep-ph/0309173, hep-ph/0307228

- Most stringent lower limits on M_D in ADD
- Supernova cooling due to KK G emission
 - SN 1987A did not emit more KK G than compatible with neutrino signal durations observed by Kamiokande and IMB places the limits: M_D > 22 (2) TeV for n = 2 (3).
- Energetic Gamma Ray Experiment Telescope (EGRET)
 - Cosmic γ-ray-bkg:
 - $M_D > 70 (5) \text{ TeV for } n = 2 (3)$
 - Neutron star halo of 100 MeV γ-rays:
 - $M_D > 97, 8, 1.5 \text{ TeV for n} = 2, 3, 4$
 - All neutron stars in the galactic bulge:
 - $M_D > 1130, 57, 7, 1.8 \text{ TeV for n} = 2, 3, 4, 5$
- Neutron star heating:
 - $M_D>1760, 77, 9, 2 \text{ TeV for n} = 2, 3, 4, 5$
- Ultra high-energy cosmic-ray neutrinos:
 - lower bound $M_D = 1$ to 1.4 TeV, n = 4 to 7