New Phenomena at ATLAS & CMS

NEXT Meeting, RAL

LHC exotica searches offer real possibilities of exciting discoveries in 2011 !

I will:

- 1. Summarize UK interests
- 2. Review *most* the public CMS/ATLAS exotica (but not SUSY) results, emphasising those with UK involvement.

(but not black-holes, as covered in Eram's talk)

3. Illustrate what we can expect in 2011.

The UK has provided both ATLAS & CMS exotica conveners:

ATLAS: Cigdem Issever (Oxford)
CMS: Chris Hill (formally Bristol)

and is pursuing many experimental analyses:

- CMS: Stopped Gluinos (Bristol), Z' → e+e- (Bristol/RAL/Soton), Displaced Fermions (RAL/Soton), Boosted Z from q*... (RAL)
- **ATLAS**: Black holes & Extra Dimensions (Cambridge/Oxford), $Z' \rightarrow e+e-$ (RHUL), $q^* \rightarrow dijets$ (Oxford/Glasgow), $G \rightarrow \gamma \gamma$ (Liverpool), Boosted Top from Z' (Oxford/UCL) ...

+ those I missed !

Public Exotica Results with LHC Data

Areas with UK involvement in pink.

	ATLAS	CMS
$Z' \rightarrow $		\checkmark
Heavy Stable Charged Particles		\checkmark
Stopped Gluinos		\checkmark
q* → dijets	\checkmark	\checkmark
Dijet contact interactions	\checkmark	\checkmark
Black holes	\checkmark	\checkmark
$LQ \rightarrow I + jet$		\checkmark
$W' \rightarrow e v$	\checkmark	\checkmark
UED KK $\gamma^*\gamma^* \rightarrow \gamma\gamma + ET_{miss}$	\checkmark	

Limits obtained by combining electron and muon channels. M(SSM Z') > 1.14 TeV (similar to Tevatron)

Theoretical Models

Gluino in Split-SUSY. (Squarks very heavy, so gluino can only decay via virtual squarks).

Hadronizes to R-hadrons. These are highly ionizing in the Tracker and look like muons in the calorimeters. They can flip charge whilst Traversing CMS !

Selection

Select high Pt track with large dE/dx in Tracker, optionally also requiring muon ID.

- dE/dx was calibrated module to module using relativistic particles.
- dE/dx & Pt agree well in data and MC. As uncorrelated, can use to estimate background from data alone.
- Both variables offer clear separation for gluino signal.

Stopped Gluinos (CMS)

If the `Split SUSY' gluino is very non-relativistic, it will lose so much energy by ionization that it will stop before leaving CMS.

◆ Decay to gluon/quarks + neutralino can take micro-seconds → days. Observe it during beam-gaps or shutdowns !

Trigger using jet-trigger + beam veto (using orbit monitors).

Select requiring calorimeter energy cluster > 50 GeV. N.B. So only sensitive if M(gluino) - M(neutralino) > 100 GeV.

Many cuts to suppress calorimeter noise. Optimised before LHC switched on !

Stopped Gluinos (CMS)

2-5 events pass cuts, compatible with background expectations. This plot compares their time distribution with that expected for gluino with τ = 1 µs.

Stopped Gluinos (CMS)

For gluino mass of
 370 GeV/c²
 exclude gluino
 lifetimes of
 10 μs - 1000 s,
 not previously
 covered by
 Tevatron.

N.B. More stringent limits currently set by HSCP search.

$W' \rightarrow e v$ (ATLAS & CMS)

Get limit at M(W') by 10 ----counting events with <u>දි</u> ලි M_{T} > a fraction of M(W'). Tevatron Exclusion (5.3 fb^{*}) Expected Limit at 95% CL Observed Limit at 95% CL No events pass cuts BR(W'⊥ Theoretical Cross Section in signal region. . b M(W') > 1.36 GeV with 36/pb of CMS data. TU. CMS (ATLAS study used L dt = 36.1 pb⁻¹ much lower luminosity) √s=7 TeV 10<mark>-2</mark>⊾ 0.6 0.8 1.2 1.6 18 14 2 Mass (TeV/c²)

 $W' \rightarrow e v$ (ATLAS & CMS)

From electron + MET, reconstruct transverse mass.

Dijet Mass Resonances (ATLAS & CMS)

Theoretical Models

- Excited quarks: $q^* \rightarrow qg$
- $Z' \rightarrow q q bar$
- RS Gravitons \rightarrow q qbar

Selection

- Use anti-Kt jet algorithm
- Plot dijet mass of 2 leading jets.

 Dijet spectrum fitted with smooth function to describe background.

Dijet Mass Resonances (ATLAS & CMS)

Dijet Mass Resonances (ATLAS & CMS)

- ATLAS excludes excited quarks with 500 < M < 1530 GeV.
- CMS excludes those with M < 1580 GeV using 2.9/pb.
- Both surpass Tevatron limit of 870 GeV.

Dijet Angular Distribution (ATLAS & CMS)

Motivation

- Z' etc. whose mass exceeds the Js of the partons will not be seen as a resonance, but will modify the dijet spectra.
 The effect can be remembrized at a sector be remembrized at a sector.
- The effect can be parametrized as `contact interaction'.
- Changes to the dijet mass spectrum hard to distinguish from systematics.
- Better to study jet angular distributions as a function of dijet mass, e.g. using` dijet centrality ratio' so systematics cancel:

N_dijets($|\eta| < 0.7$) / N_dijets(0.7 < $|\eta| < 1.3$)

Flat for QCD, whereas exotica produced mainly in central η region.

Dijet Angular Distribution (ATLAS & CMS)

- Dijet centrality ratio compared with predictions in low mass region, where no signal expected.
- Very good agreement with QCD.

Dijet Angular Distribution (ATLAS & CMS)

- Limits placed on 4-quark contact interactions Λ > 3.2 TeV. (ATLAS)
- CMS Limit is A > 4.0 TeV from 2.9/pb
- c.f. Current Tevatron limit
 - L = 2.8 TeV

Leptoquarks (CMS)

Theory

solution \rightarrow LQ pair has high cross-section.

Each (1st/2nd generation) LQ decays to electron/muon + jet.

Selection

- Require at least 2 electrons/muons & 2 jets.
- Cut on their Sum |Pt|.
- Require M(I+I-) > 125 GeV/c² to suppress main background (Z + jets) (& measure background by reversing this cut ...)

Leptoquarks (CMS)

- 7 events found in signal region with 33/pb. Compatible with background.
- Limit M(LQ) > 384 GeV for BR(LQ → e j) = 1
- Limit M(LQ) > 394 GeV for BR(LQ → µ j) = 1
- Exceed Tevatron limits.

- For SSM Z', expect limits in each of $e^+e^- \& \mu^+\mu^-$ channels of ~1.7 TeV/c² by end 2011 !
- Both CMS and ATLAS UK working on e⁺e⁻ channel.

Future Prospects: q^{*} → Boosted ZO (James Jackson PhD Thesis)

Interesting limits ($M(q^*) \sim 1.8$ TeV) expected from 2011 data ...

★ LHC already sets the World's best limits for heavy stable charged exotica, stopped gluinos, Z'→ jets/leptons, W'->e v & leptoquarks !

Good chances to make a discovery in 2011 !

We expect ~ 1/fb in 2011. This table shows some of the limits (or discoveries ...) we should get. All surpass Tevatron limits.

	Limit
$b' \rightarrow tW$	M(b') > 450 GeV (for 600 /pb)
$Z' \rightarrow ee \text{ or } \mu\mu$	M(SSM Z') > 1.7 TeV
$q^* \rightarrow boosted ZO$	M(q*) > 1.8 TeV
HSCP (stable gluino)	M(gluino) > 0.6 TeV
RS/ADD KK Graviton $\rightarrow \gamma \gamma$	complicated limits

Future Prospects: $B' \rightarrow tW$

Future Prospects RS Gravition \rightarrow gamma gamma

Future Prospects: HSCP

Future Prospects: $q^* \rightarrow dijet$

Theory

- In ADD models, gravity propagates in additional spatial dimensions, whose size corresponds to an energy scale M_{D.}
- Tevatron says M_D > 800 GeV
- Above this scale, gravity becomes strong, leading to black hole production.
- As gravity couples to energy (not mass !), black holes evaporate democratically to all fermion/boson species. Many body final state.
- Other exotica will also give many body final state ...

- Jets, photons, electrons, muons & MET counted.
- Tricky analysis, since must understand all of these ...

 S.M. multiplicity dominated by jets. (Could reduce by requiring leptons ...)

- Count events in signal region defined as:
 - ≻ N ≥ 3
 - M_{inv} > 800 GeV/c²
 ∑ |Pt| > 700 GeV/c
- For black-holes produced with M_D = 800 GeV (6 extra dimensions) get interesting limit of 0.6/nb

Bethe-Bloch ionization curves for K, p, D clearly visible

