Searches for Physics Beyond the Standard Model at the Tevatron

Chris Hays, Oxford University

NExT Meeting Rutherford Appleton Laboratory 26 January 2011

Supersymmetry

Supersymmetry

Gravitons and extra dimensions

Supersymmetry

Gravitons and extra dimensions

New gauge bosons

Standard particles

SUSY particles

Where We Search

Einel State Data Bashmanned -

CDF Run II Preliminary (2.0 fb⁻¹) The calculation of σ accounts for the trials factor

				Einel State	Dete	Beelennound		Final State	Data	Баскугоини	0
Final State	Data	Background	σ	Final State	Data	Background		$j\mu^{\pm}\mu^{+}p$	32	32.2 ± 10.9	0
1.1.1	600	0177 00	0.7	2 j p nign- 2 p_T	87	80.9 ± 0.8		$_{j\mu}^{\pm}\mu^{\mp}\gamma$	14	11.5 ± 2.6	0
$be_{\pm}^{De_{\pm}^{-}p}$	690	817.7 ± 9.2	-2.1	$2 \mathbf{j} \mathbf{p}$ low- Σp_T	114	79.5 ± 100.4	8 0	$u^{\pm}u^{\mp}$	4852	4271.2 ± 185.4	0
$\gamma \tau^{\pm}$	1371	1217.6 ± 13.3	+2.2	$2jp \tau^{\pm}$	18	13.2 ± 2.2	0	;±	77690	76097 5 ± 020 2	0
$\mu^{\pm}\tau^{\pm}$	63	35.2 ± 2.8	+1.7	$2i\gamma\tau^{\pm}$	142	144.6 ± 5.7	0	$^{J\mu}$ +	11089	10981.5 ± 930.2	0
$b_{2j} p high - \Sigma p_T$	255	327.2 ± 8.9	-1.7	$2i\gamma p$	908	980.3 ± 63.7	0	$e^{\pm}4_{J}p$	903	830.6 ± 13.2	0
$2i\pi^{\pm}$ low- $\Sigma n\pi$	574	670.3 ± 8.6	-1.5	21~	71364	73021.4 ± 595	a ñ	$e^{\pm}4j\gamma$	25	29.2 ± 3.6	0
$2i = \pm 1$ and $\Sigma = -$	140	100.9 ± 5.9	1.4		16	10.2 ± 2.2		$e^{\pm}4i$	15750	16740.4 ± 390.5	0
$3j\tau - 10w - \Sigma p_T$	146	199.8 ± 0.2	-1.4	$2j\mu$ τ	10	19.5 ± 2.2		e [±] 3ir [∓]	15	21.1 ± 2.2	Ω
$e^{+}p\tau^{+}$	36	17.2 ± 1.7	+1.4	$2_{j}\mu + p$	17927	18340.6 ± 201.9	9 0	. ± 2:4	1051	4077.9 ± 62.6	0
$2j\tau \pm \tau \pm$	33	62.1 ± 4.3	-1.3	$2j\mu^{\pm}\gamma p$	31	27.7 ± 7.7	0	e = 3Jp	4034	4071.2 ± 03.0	0
e [±] i	741710	$764832 \pm 6447.$	2 - 1.3	$2i\mu^{\pm}\gamma$	57	58.2 ± 13	0	$e^{\pm} 3 j\gamma$	108	79.3 ± 5	0
$i2\tau^{\pm}$	105	150.8 ± 6.3	-1.2	$2i\mu^{\pm}\mu^{\mp}\eta$	11	78 ± 27	Ω	$e^{\pm}3j$	60725	60409.3 ± 723.3	0
, ± o:	050040	100.0 ± 0.0	F 1 1 0	$2j\mu$ μ μ	056	001.0 ± 61.0	ő	$e^{\pm}2\gamma$	41	34.2 ± 2.6	0
	200940	249146 ± 2201	0 +1.2	$z_{j\mu}$ μ	930	924.9 ± 01.2		e ± 217 ±	37	47.2 ± 2.2	Ω
$2bj low - \Sigma p_T$	279	352.5 ± 11.9	-1.1	2jµ+	22461	23111.4 ± 366.1	50	- ± o: - Ŧ	100	050 L 2.2	0
$j\tau^{\perp}$ low- Σp_T	1385	1525.8 ± 15	-1.1	$2e^{\pm}$ j	14	13.8 ± 2.3	0	$e^{-2j\tau}$	109	95.9 ± 0.8	0
2b2j low- Σp_T	108	153.5 ± 6.8	-1	$2e^{\pm}e^{\mp}$	20	17.5 ± 1.7	0	$e^{\pm}2jp$	25725	25403.1 ± 209.4	0
bµ±∕p	528	613.5 ± 8.7	-0.9	2e±	32	49.2 ± 3.4	Ω	$e^{\pm}2j\gamma p$	30	31.8 ± 4.8	0
$\mu^{\pm} \gamma \pi$	523	611 ± 12.1	-0.8	2b high-Σnm	666	689 ± 9.4	ň	$e^{\pm}2i\gamma$	398	342.8 ± 15.7	0
$2h\gamma$	108	70.5 ± 7.9	+0.1	$2b \log \Sigma p_T$	303	313.2 ± 10.3	ñ	e [±] 2ju [∓] n	22	148 ± 19	Ο
81	14	13.1 ± 4.4	0	$25 10w - \Delta p_T$	523	E7 4 1 C E	0	$\pm 0.5 \pm$	22	150 10	0
7;	102	10.1 ± 4.4 07.8 ± 12.2	0	$20310W-Zp_T$	710	37.4 ± 0.3	0	$e^{-2j\mu}$	23	15.8 ± 2	U
() e:	103	91.0 ± 12.2	0	$2b2j$ high- Σp_T	718	803.3 ± 12.7	0	$e^{\pm}\tau^{\pm}$	437	387 ± 5.3	0
6]	000	009.1 ± 01.0	0	$2b2jp$ high- Σp_T	15	21.8 ± 2.8	0	$e^{\pm}\tau^{\mp}$	1333	1266 ± 12.3	0
0]	3157	$31/8.7 \pm 67.1$	0	$262_{J\gamma}$	32	39.7 ± 6.2	0	$e^{\pm} \eta_{\tau} \mp$	109	106.1 ± 2.7	0
$4j high-\Sigma p_T$	88546	89096.6 ± 935.2	0	$2b2j\mu^{\pm}p$	14	17.3 ± 1.9	0	a± a	060826	056570 ± 2077 5	7 0
4j low- Σp_T	14872	14809.6 ± 186.3	0	$2b2j\mu^{\pm}$	22	21.8 ± 2	0	e + P	500820	300019 <u>1</u> 3011.1	0
$4j2\gamma$	46	46.4 ± 3.9	0	2bu ± 4	11	144 ± 21	Ω	$e^+\gamma p$	497	496.8 ± 10.3	U
$4j\tau^{\pm}$ high- Σp_T	29	26.6 ± 1.7	0	$2b\mu p$ $2bi high \Sigma nm$	801	14.4 ± 2.1 967.1 ± 13.2	ñ	$e^{\pm}\gamma$	3578	3589.9 ± 24.1	0
$4i\tau^{\pm}$ low- Σp_T	43	63.1 ± 3.3	0	2bj mgn - 2pT	95	21 2 ± 2 1	0	$e^{\pm}\mu^{\pm}p$	31	29.9 ± 1.6	0
$4in$ high- Σn_T	1064	1012 ± 62.9	Ō	20 Jp mgn- $2pT$	20	51.5 ± 5.1	0	$e^{\pm}\mu^{\mp}\phi$	109	99.4 ± 2.4	0
Ain = ±	10	10.8 ± 2	0	$\frac{26j\gamma}{+}$	11	54.5 ± 7.1	0	°±"±"	45	295 1 1 9	0
4J.777 Alional	19	10.0 ± 2	0	2bjµ±∲	12	10.7 ± 1.9	0	e_μ	40	20.0 ± 1.0	0
$4 J \gamma p$	7060	104.2 ± 22.4	0	$2be^{\pm}2jp$	30	27.3 ± 2.2	0	$e^{\pm}\mu^{+}$	350	313 ± 5.4	U
$^{4j\gamma}$	7962	8271.2 ± 245.1	0	$2be^{\pm}2j$	72	66.5 ± 2.9	0	$e^{\pm}j2\gamma$	13	16.1 ± 3.9	0
$4j\mu + p$	574	590.5 ± 13.6	0	$2be^{\pm}n$	22	19.1 ± 2.2	0	e±jτ∓	386	418 ± 18.9	0
$4j\mu^{\pm}\mu^{+}$	38	48.4 ± 6.2	0	2bo [±] in	10	10.4 ± 2.2	0	$e^{\pm}i\tau^{\pm}$	160	162.8 ± 3.5	0
$4i\mu^{\pm}$	1363	1350.1 ± 37.7	0	2be-jp	19	19.4 ± 2.2	0	a±inta∓	18	116±33	ñ
$3i$ high- Σp_T	159926	159143 ± 1061 .	9 0	2be+j	63	63 ± 3.4	0	e^{jp}	40	44.0 1 3.3	0
$3i \log \Sigma n_T$	62681	64213.1 ± 496	0	$2be^{\pm}$	96	92.1 ± 4.1	0	$e^+_{j}p\tau^+_{\tau}$	11	8.3 ± 1.5	0
$3i2\gamma$	151	177.5 ± 7.1	ñ	$\tau^{\pm}\tau^{\mp}$	856	872.5 ± 19	0	$e^{\pm}jp$	121431	121023 ± 747.6	0
2i=± high Sn-	69	76.0 ± 2	0	γp	3793	3770.7 ± 127.4	3 0	e [±] jγp∕	159	192.6 ± 10.9	0
$2j_{1}$ $ng_{1}-2p_{T}$	1706	10.9 ± 3	0	, ± - =	381	440.9 ± 7.3	Ω	$e^{\pm}i\gamma$	1389	1368.9 ± 38.9	0
$3jp nign-\Sigma p_T$	1706	1899.4 ± 11.0	0	$+$ $+$ $+$ \pm	001	75 7 1 9 4	0	a ± i u Ŧ A	49	33 ± 2.0	0
$3_{J}p \lim_{\pm} 2p_{T}$	42	36.2 ± 5.7	U	$\mu^{-} p \tau$	60	15.1 ± 3.4	0	+ $+$ $+$ $/$	10	0.0 1 1.0	0
$3j\gamma\tau^{\pm}$	39	37.8 ± 3.6	0	$\mu \pm p \tau \pm$	15	12 ± 2	0	$e^{+}_{j\mu}p$	10	9.2 ± 1.9	U
3jγ ¢	204	249.8 ± 24.4	0	$\mu^{\pm} p$	734290	734296 ± 4897	.80	e∸jµ+	62	63.8 ± 3.2	0
$3j\gamma$	24639	24899.4 ± 372.4	0	$\mu^{\pm}\gamma$	475	469.8 ± 12.5	0	$e^{\pm} j\mu^{\pm}$	13	8.2 ± 2	0
3jµ±∳	2884	2971.5 ± 52.1	0	$u^{\pm}u^{\mp}\phi$	169	198.5 ± 8.2	Ο	e±e∓4i	148	159.1 ± 7	0
$3i\mu^{\pm}\gamma\pi$	10	3.6 ± 1.9	0	"±"±"	60	60 ± 2.1	ő	e [±] e [∓] 3i	717	743.6 ± 24.4	Ω
2:±	15	7.0 ± 2.0	ő	μ^{μ}		00 ± 3.1	0	. + . ∓ o; /		11.4 1 5.6	ő
$^{3J\mu}$ $^{\gamma}$ $^{\pm}$	10	1.9 ± 2.9	0	$\mu^{\pm}\mu^{\pm}$	25283	25178.5 ± 86.5	0	$e^+e^+_{2jp}$	32	41.4 ± 5.0	0
$3_{J}\mu^{+}\mu^{+}$	175	177.8 ± 16.2	0	$j2\gamma p$	36	30.4 ± 4.2	0	$e^+e^+_2j\gamma$	10	11.4 ± 2.9	0
$3j\mu^{\pm}$	5032	4989.5 ± 108.9	0	$j2\gamma$	1822	1813.2 ± 27.4	0	$e^{\pm}e^{\pm}2j$	3638	3566.8 ± 72	0
3b2j	23	28.9 ± 4.7	0	$j\tau^{\pm}$ high- Σp_T	52	56.2 ± 2.5	0	$e^{\pm}e^{\mp}\tau^{\pm}$	18	16.1 ± 1.7	0
3bj	82	82.6 ± 5.7	0	$i_{\tau} \pm \tau \mp$	203	252.2 ± 8.7	0	e±et d	822	831.8 ± 13.6	0
3b	67	85.6 ± 7.7	0	$in/high-\Sigma n_T$	4432	4431.7 ± 45.2	Ō	. ± . ∓ .	101	001.0 1 5 1	0
$2\tau^{\pm}$	498	512.7 ± 14.2	0	$\frac{1}{1}$	506	476 ± 0.2	ő	$e^+e^+\gamma$	191	221.9 ± 5.1	U
$2 \sim m$	128	107.2 ± 6.9	ñ	JYT	1000	470 ± 9.3	0	$e^{\pm}e^{\pm}jp$	155	170.8 ± 12.4	0
$\frac{2}{2}\gamma p$	5548	5562.8 ± 40.5	ň	$j\gamma p$	1002	1791.9 ± 72.3		e±e∓jγ	48	45 ± 3.9	0
2i high Spe	100772	100849 ± 7919	0	$_{j\gamma}$ + +	103318	$102124 \pm 570.$	5 U	e±e∓i	17903	18258.2 ± 204.4	0
$2j \lim_{z \to z} mgn - z pT$	165004	169520 ± 1501.2	0	$j\mu^{\pm}\tau^{+}$	71	98 ± 3.9	0	e±e∓	98001	99086.9 ± 147.9	0
$z_{\rm J} = 10 \text{w} - z_{\rm J} p_T$	100984	102030 ± 1081	0	$j\mu^{\pm}\tau^{\pm}$	15	12 ± 2	0	bei	20201 E 1	10000.0 ± 141.0	0
$2j2\tau -$	22	40.6 ± 3.2	U	iµ±¢τ∓	26	30.8 ± 2.6	0	50J 1.E:	01	42.0 ± 3.0 109 5 ± 7.1	0
$2j2\gamma p$	11	8 ± 2.4	0	j,,,±,	100081	108323 ± 707	7 0	00] L4: L:_L \-	237	192.0 ± 1.1	0
$2j2\gamma$	580	581 ± 13.7	0	, , , , , , , , , , , , , , , , , , ,	103031	171.1 1 07		p_{4j} nign- $2p_T$	26	23.4 ± 2.6	0
$2j\tau^{\pm}$ high- Σp_T	96	114.6 ± 3.3	0	$J^{\mu} \gamma p$	171	$1(1.1 \pm 31)$	U	D4j 10w- Σp_T	836	521.7 ± 15.9	U
				$j\mu^{\perp}\gamma$	152	190 ± 39.3	0	D3j high- Σp_T	12081	12071 ± 84.1	U
								$b31 low - \Sigma p_T$	2974	2873 ± 31	0

399 "standard" CDF final states +180 "standard" D0 leptonic final states +many additional standard and non-standard

final states

Tools of Discovery

Tevatron: 1.96 TeV pp collisions
 – World's highest energy pp collider

Tools of Discovery

Tevatron: 1.96 TeV pp collisions
 – World's highest energy pp collider

26 January, 2011

Tools of Discovery

Tevatron: 1.96 TeV pp collisions
 – World's highest energy pp collider

26 January, 2011

Tevatron Luminosity

• World's highest intensity hadron collider

- Peak luminosity: 1.5 pb⁻¹ / hour
- Integrated delivered luminosity: 10 fb⁻¹ / experiment

The End of the Line

- Tevatron Run II: Mar 2001 Sep 2011
 - 12 fb⁻¹ of delivered luminosity/experiment
 - About 9 fb⁻¹ available for analysis
- Tevatron "Run III"
 - Increases delivered luminosity per experiment to 18 fb⁻¹
 - Guarantees 3σ SM Higgs evidence
 - Confirms evidence for new physics
 - Requires additional \$35 million/yr x 3 yrs
 - Department of energy: insufficient funds

Tevatron Legacy

- First evidence of new physics (?)
 - Dimuon charge asymmetry
 - $-\sin 2\beta_s$
 - $-t\bar{t}$ forward-backward asymmetry
 - SM Higgs + m_t + m_W
- Benchmarks for the LHC
 - Supersymmetry
 - New gauge bosons
- Unique sensitivity (?)

- Corners of SUSY phase space

First Evidence of New Physics?

1) Dimuon Charge Asymmetry

- Measure asymmetry between + and muon pairs $\mathcal{A} = (N^{++} N^{--}) / (N^{++} + N^{--})$
- Only SM source of asymmetry: semileptonic b decay
- Due to CP violation in B_d and B_s decays ($B^0 \leftrightarrow \overline{B}^0$)

 $\mathcal{A}_{b} = (-2.3^{+0.5}, -0.6) \times 10^{-4}$

Derived from individual asymmetries:

$$a_q = (\Delta \Gamma_q / \Delta M_q) \tan \phi_q$$

 $a_d = -4.8^{+1.0} - 1.2 \times 10^{-4}$

 $a_s = (2.1 \pm 0.6) \times 10^{-5}$

Dimuon Charge Asymmetry

- Measurement procedure
 - Reverse magnet polarities to reduce efficiency asymmetry
 - Measure background asymmetries with data

 Measure inclusive muon asymmetry to exploit common background systematic uncertainties

 $a = (N^{+} - N^{-}) / (N^{+} + N^{-})$

Dimuon Charge Asymmetry

- Individual results
 - Inclusive asymmetry: $A_6 = 0.0094 \pm 0.0112 \pm 0.0214$
 - Dimuon asymmetry: $A_6 = -0.00736 \pm 0.00266 \pm 0.00305$
- Improve precision by combining uncorrected results

- Combined asymmetry: $A_6 = -0.00957 \pm 0.00251 \pm 0.00146$

• 3.2σ from SM expectation

Dimuon Charge Asymmetry

 Assuming discrepancy is due to B decays, can compare to existing measurements of a_d and a_s

 $-\mathcal{A}_{b} = (0.506 \pm 0.043)a_{d} + (0.494 \pm 0.043)a_{s}$

- Can further constrain B_d contribution using combined experimental value 0.01 $a_d = -0.0047 \pm 0.0046$
 - Then $a_s = -0.0146 \pm 0.0075$
 - Can use this to extract CPviolating phase ϕ_s (= -2 β_s)

First Evidence of New Physics?

2) sin $2\beta_s$

 CP-violating phase comes from unitarity triangle built from 2nd and 3rd columns of CKM matrix

SM

$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

$$\begin{bmatrix} 1 - \lambda^2/2 \\ -\lambda \\ A\lambda^3(1 - \rho - i\eta) \end{bmatrix} \xrightarrow{\lambda} \begin{bmatrix} \lambda \\ 1 - \lambda^2/2 \\ -A\lambda^2 \end{bmatrix} \xrightarrow{A\lambda^3(\rho - i\eta)} \begin{bmatrix} \lambda \\ A\lambda^2 \\ 1 \end{bmatrix}$$

 $B_{S}^{0} \rightarrow J/\Psi \phi$ \overline{B}_{S}^{0} $\Rightarrow \sin(2\beta)$

Measure using decays to $J/\psi\phi$

- CP violation due to interference between decays with and without mixing
- J/ψφ not a CP eigenstate
- Separate polarizations using angular distributions

- 2008: CDF & D0 observe nearly 2σ discrepancy with respect to SM
 - UTfit Collaboration combined with other data: "This is a first evidence of physics beyond the Standard Model"

C. Hays, Oxford University

13

- D0 combined the dimuon asymmetry and the $B_s \to J/\psi \phi$ measurements of ϕ_s
 - Results are consistent & deviate by > 2σ from SM

Updated D0 measurement with 6.1 fb⁻¹ uses 3435
 B_s → J/ψφ candidates

Improved consistency with SM

 Updated CDF measurement with 5.2 fb⁻¹ uses 6500 B_s → J/ψφ candidates

Improved consistency with SM

First Evidence of New Physics?

3) *tt* Forward-Backward Asymmetry

- Measure asymmetry between top quarks produced toward and opposite to the proton direction ϱ_{l}

$$\mathcal{A}_{fb} = (\mathbf{N}_{f} - \mathbf{N}_{b}) / (\mathbf{N}_{f} + \mathbf{N}_{b})^{A^{t\bar{t}}}$$

$$= \frac{N(\Delta y > 0) + N(\Delta y < 0)}{N(y_t^{t\bar{t}} > 0) - N(y_t^{t\bar{t}} < 0)}$$
$$= \frac{N(y_t^{t\bar{t}} > 0) - N(y_t^{t\bar{t}} < 0)}{N(y_t^{t\bar{t}} > 0) + N(y_t^{t\bar{t}} < 0)}$$

 $N(\Delta y > 0) - N(\Delta y < 0)$

SM source of asymmetry: higher order interference

- Interference between LO and box diagram (+)
- Interference between ISR & FSR (-)

had

- D0 presents observed Δy distribution and A_{fb}
 - Solve for neutrino rapidity using *m_W* and *m_t*
 - Using 1137
 candidate events,
 D0 measures:

 $A_{fb} = 0.08 \pm 0.04 \pm 0.01$

Nearly 2σ
 deviation from SM

 CDF measures the asymmetry in Δy and unfolds to parton level

• CDF measures asymmetry as a function of $m_{t\bar{t}}$ – For m_{tt} > 450 GeV, measured \mathcal{A}^{tt} 3 σ larger than SM

- Possible theoretical issues
 - Mass dependence underestimated?
 - LO + box interference effect underestimated?

First Evidence of New Physics?

4) SM Higgs + m_t + m_W

First evidence might come from an exclusion

- D0 & CDF will directly exclude the SM Higgs for $m_H < 180$ GeV if it does not exist
- Measurements of m_W and m_t (and other electroweak data) exclude $m_H > 158$ GeV

The LHC Era

- Expect most (all?) new physics searches to be superseded by the LHC
 - Limits provide benchmarks by which to measure LHC progress
 - Strong production:

Search	Tevatron	LHC
Dijets	m _{q*} > 0.87 TeV (CDF)	m _{q*} > 1.58 TeV (CMS)
Jets + p _⊺	m _{g̃} > 0.42 TeV (CDF/D0)	m _{g̃} > 0.65 TeV (CMS)
Leptons + jets	m _{LQ1} > 0.30 TeV (D0)	m _{LQ1} > 0.39 TeV (CMS)
Leptons + jets + p∕⊤	m _{b'} > 0.34 TeV (CDF)	m _{b'} > 0.36 TeV (CMS)
c-jets + p∕⊤	m _{stop} > 0.18 TeV (CDF)	-
b-jets + p⊤	m _{sbottom} > 0.25 TeV (D0)	-
Long-lived particles	m _{stop} > 0.25 TeV (CDF)	m _{stop} > 0.20 TeV (CMS)

The LHC Era

- LHC also superseding Tevatron in weak production
 - Will overtake in all standard searches by long shutdown
 - Weak production:

Search	Tevatron	LHC		
Lepton + p∕⊤	m _{W'} > 1.12 TeV (CDF)	m _{W'} > 1.36 TeV (CMS)		
Dileptons	m _{z'} > 1.07 TeV (CDF)	m _{z'} > 1.14 TeV (CMS)		
Diphotons + p _T	R ⁻¹ > 0.48 TeV (D0)	R ⁻¹ > 0.73 TeV (ATLAS)		
Ditau	m _{z'} > 0.40 TeV (CDF)	-		
Trileptons + p/⊤	m _{X[±]} > 0.13 TeV (D0)	-		
Four leptons	m _G > 0.49 TeV (CDF)	-		

LHC still to demonstrate sensitivity with jet tagging & taus

Unique Sensitivity?

- Are there analyses where the Tevatron still has sensitivity and the LHC might not?
 - LHC might have difficulty identifying soft leptons or jets
 - Experiments have demonstrated ability to identify soft electrons and muons in clean environment
 - Can recover sensitivity with boosted events
 - May motivate Tevatron searches in parameter space of small mass differences between new particles
 - e.g., small difference in stau & neutralino masses resulting in soft tau leptons
 - Still opportunity for discovery?
 - Other processes at low Q^2 and $q\bar{q}$ initial state?

Unique Sensitivity?

- Squark to chargino / NLSP + quark
 - Chargino / NLSP decays dominantly to stau at high tanβ
 - Final state of 2 jets + tau + p_T
- Gluino to sbottom + bottom
 - Optimize for large and small mass differences between gluino and sbottom
- Chargino + Neutralino production
 - Include final states with two taus to allow for decay through staus
 - Gap in sensitivity when leptons are too soft

Summary

Tevatron search legacy will include a sizable chunk of probed parameter space (+ first evidence of new physics?)

Lack of "Run III" a loss for the field

Need Tevatron to work harder to recover sensitivity and fill in the cracks

Need LHC to work harder to maximize overlap with the Tevatron

Eventually: the work will pay off!

Summary

Tevatron search legacy will include a sizable chunk of probed parameter space (+ first evidence of new physics?)

Lack of "Run III" a loss for the field

Need Tevatron to work harder to recover sensitivity and fill in the cracks

Need LHC to work harder to maximize overlap with the Tevatron

Eventually: the work will pay off!