

(日) (同) (三) (三)

Review of LHC Results on Onia

SM@LHC - Durham (UK) - April 13, 2011

Andrea Coccaro

University of Genoa / INFN

on behalf of the ALICE, ATLAS, CMS and LHCb collaborations

Outline

Introduction

- J/Ψ measurements
- Υ measurements

Conclusions

Andrea Coccaro April 13, 2011

Timeline

- $\int \mathcal{L} \sim 10 \text{ nb}^{-1}$: understand detector performance
- $\int \mathcal{L} \sim 10 \text{ pb}^{-1}$: first measurements of *B* hadrons, J/Ψ and Υ to test QCD predictions at the TeV scale
- ▶ $\int \mathcal{L} \sim 1 \text{ fb}^{-1}$: limits on rare decay branching ratios and contribution to world averages on several particle properties

Where we are?

- 45 pb⁻¹ collected by LHC experiments in 2010
- wonderful job by machine and experiments
- excellent detector performance and already lot of public results

Di-muon resonances

Iot of information condensed: in this context a nice snapshot of onia production!

Andro	ea C	loccaro	
April	13,	2011	

Onia production at the LHC

Motivations

- 1. constrain QCD quarkonium production models \Rightarrow no theory can simultaneously explain experimental measurements of both cross section and polarization
- 2. ingredient for exclusive decays studies, i.e. $B \rightarrow J/\Psi X$
- 3. suppression mechanism in heavy-ion collisions
- 4. perfect candidate for detector performance studies

With 2010 data

- ▶ J/Ψ inclusive production cross-section (ALICE, ATLAS, CMS and LHCb)
- J/Ψ non-prompt fraction (ATLAS, CMS and LHCb)
- J/Ψ production in Pb-Pb collisions (ATLAS)
- double J/Ψ inclusive production cross-section (LHCb)

Not possible to cover all analyses in detail here!

Inclusive J/Ψ cross-section analysis (ATLAS)

- single muons and minimum bias triggers
- select events with at least 2 muons and at least one of which is MS-ID combined
- di-muon invariant mass using ID tracks associated to a vertex and to muons
- each J/Ψ candidate is weighted by a correction factor w

$$w^{-1} = \mathcal{A} \cdot \mathcal{M} \cdot \epsilon$$

 \mathcal{A} : acceptance which depends on spin alignment \mathcal{M} : factor to take into account bin migrations due to resolution effects ϵ : global efficiency taking into account trigger, track and muon reconstruction

- number of J/Ψ is obtained using a binned minimum- χ^2 fit to the di-muon mass distribution
- measurement presented in momentum and rapidity bins

$$\frac{d^2\sigma(J/\Psi)}{dp_T dy} \cdot \mathcal{B}(J/\Psi \to \mu^+ \mu^-) = \frac{N_{corr}^{J/\Psi}}{\mathcal{L}\Delta p_T \Delta y} \quad ; \quad N_{corr}^{J/\Psi} = N_{J/\Psi} \cdot w$$

Detector acceptance for J/Ψ analysis (ATLAS)

- ➤ A is the acceptance that muons from J/Ψ decays are produced in the fiducial volume of the detector
- ► the muon angular distribution is correlated with the J/Ψ spin alignment, which is not known at the LHC energies and depends on the production mechanism
- five spin-alignment cases are considered to study the different acceptance within the ATLAS detector
- isotropic distribution is the baseline while the other scenarios are considered for systematics studies

Observed J/Ψ signal (ATLAS)

	$0.0 \le y < 0.75$	$0.75 \le y < 1.5$	$1.5 \le y < 2.0$	$2.0 \le y < 2.4$
Signal yield	6710 ± 90	10710 ± 120	9630 ± 130	4130 ± 90
Mass [GeV]	3.096 ± 0.001	3.097 ± 0.001	3.097 ± 0.001	3.109 ± 0.002
Resolution [MeV]	46 ± 1	64 ± 1	84 ± 1	111 ± 2

- gaussian fit for signal and quadratic polynomial for background
- irreducible background: $c/b \rightarrow \mu + X$ and π/K decays in flight

Inclusive J/Ψ cross-section (ATLAS)

CMS result with higher statistics is shown later

Inclusive J/Ψ cross-section (ATLAS)

- main error systematic contribution from muon reconstruction efficiency measurement
- ▶ good agreement with CMS and good complementarity in the p_T spectrum

Observed J/Ψ signal (CMS)

similar analysis

Crystal Ball function plus exponential fit

Detector acceptance for J/Ψ analysis (CMS)

- isotropic distribution corresponding to unpolarized J/Ψ production taken as reference
- other polarization scenarios are considered for systematic studies

Inclusive J/Ψ cross-section (CMS)

- three different rapidity intervals
- unpolarized production scenario

2 < p_T < 3 GeV/c

6 < p_ < 8 GeV/c

Observed J/Ψ signal (ALICE)

April 13, 2011

Inclusive J/Ψ cross-section (ALICE)

Final results coming soon: including $d\sigma/dp_t$ at y=0 down to p_t =0

J/Ψ prompt to non-prompt ratio analysis (LHCb)

- ► J/Ψ from *B*-decays can be separated due to the typical lifetime of *B* hadrons $(\tau \sim 1.6 \text{ ps and } < l >= \beta \gamma c \tau \sim 3 \text{ mm})$
- the J/Ψ pseudo-proper time is a good discriminator:

$$t = \frac{(z_{J/\Psi} - z_{PV}) \cdot M_{J/\Psi}}{p_z}$$

 $z_{J/\Psi}$, z_{PV} : coordinate along the beam axis of the J/Ψ and primary vertex positions p_z : J/Ψ momentum along the beam axis

differential measurement

$$\frac{d^{2}\sigma}{dydp_{T}} = \frac{N(J/\Psi \to \mu^{+}\mu^{-})}{\mathcal{L} \cdot \epsilon_{tot} \cdot \mathcal{B}(J/\Psi \to \mu^{+}\mu^{-}) \cdot \Delta y \cdot \Delta p_{T}}$$

• in each bin the fraction of signal J/Ψ from all sources is estimated from an extended unbinned maximum likelihood fit to the invariant mass distribution of the reconstructed J/Ψ in the invariant mass interval 2.95 $< M_{jj} < 3.30$ GeV

J/Ψ prompt to non-prompt ratio (LHCb)

- delta function to describe the proper-time distribution at $t_z = 0$ for the prompt J/Ψ signal
- exponential decay function for the J/Ψ from the b component
- long tail from events with a wrongly associated primary vertex

J/Ψ prompt to non-prompt ratio (LHCb)

J/Ψ prompt to non-prompt ratio (LHCb)

- assuming unpolarized prompt J/Ψ production
- Fraction of J/Ψ from b increases (decreases) as a function of $p_T(y)$
- ▶ using the average $\mathcal{B}(b \to J/\Psi X) = (1.16 \pm 0.10)\%$ from LEP a total cross section $\sigma(pp \to b\bar{b}X) = 288 \pm 4 \pm 48 \ \mu b$ is estimated

Total J/Ψ cross-section at 7 TeV proton collisions

- ALICE
 - \Rightarrow 2.5 < |y| < 4, p_T > 0 GeV and assuming unpolarized scenario

 $\sigma(\textit{pp} \rightarrow J/\Psi X) \cdot \mathcal{B}(J/\Psi \rightarrow \mu^+\mu^-) = 7.25 \pm 0.29(\textit{stat}) \pm 0.98(\textit{syst}) \pm ^{0.87}_{1.50} \textit{(spin)}\mu\textit{b}$

 \Rightarrow |y| < 0.88, $p_T > 0$ GeV and assuming unpolarized scenario

 $\sigma(pp \rightarrow J/\Psi X) \cdot \mathcal{B}(J/\Psi \rightarrow \mu^+ \mu^-) = 7.36 \pm 1.22(\textit{stat}) \pm 1.32(\textit{syst}) \pm ^{0.88}_{1.84} \textit{(spin)}\mu\textit{b}$

ATLAS

⇒ |y| < 2.4, $p_T > 7$ GeV and assuming unpolarized scenario $\sigma(pp \rightarrow J/\Psi X) \cdot \mathcal{B}(J/\Psi \rightarrow \mu^+ \mu^-) = 81 \pm 1(stat) \pm 10(syst) \pm \frac{25}{20} (spin) \pm 3(lumi)$ nb ⇒ 1.5 < |y| < 2.0, $p_T > 1$ GeV and assuming unpolarized scenario $\sigma(pp \rightarrow J/\Psi X) \cdot \mathcal{B}(J/\Psi \rightarrow \mu^+ \mu^-) = 510 \pm 70(stat) \pm \frac{84}{123} (syst) \pm \frac{919}{134} (spin) \pm 17(lumi)$ nb ► CMS

 \Rightarrow |y| < 2.4, 6.5 < p_T < 30 GeV and assuming unpolarized scenario

 $\sigma(pp \rightarrow J/\Psi X) \cdot \mathcal{B}(J/\Psi \rightarrow \mu^+\mu^-) = 97.5 \pm 1.5(stat) \pm 3.4(syst) \pm 10.7(lumi)$ nb

LHCb

J/Ψ yields in lead collisions (ATLAS)

From most peripheral (40 - 80%) to most central (0 - 10%) lead-lead collision events

J/Ψ centrality dependent suppression (ATLAS)

Centrality	Yield	$\epsilon/\epsilon_{40-80}$	Syst error
0 - 10%	190 ± 20	0.93 ± 0.01	8.6%
10-20%	152 ± 16	0.91 ± 0.02	8.4%
20 - 40%	180 ± 16	0.97 ± 0.01	7.5%
40 - 80%	91 ± 10	1	6.1%

- significant decrease from peripheral to central collisions
- same trend highlighted in the jet quenching ATLAS paper

Double J/Ψ cross section (LHCb)

• integrated cross section $\sigma^{J/\Psi J/\Psi} = 5.6 \pm 1.1 \pm 1.2$ nb

• theoretical prediction $\sigma^{J/\Psi J/\Psi} \sim 4.34$ nb

Inclusive Υ cross-section analysis (CMS)

- di-muon event selection with invariant mass between 8 and 12 GeV
- fit with a vertex constraint requiring a χ^2 probability larger than 0.1%
- ▶ muons are required to have $p_T > 3.5$ GeV if $|\eta| < 1.6$ and $p_T > 2.5$ GeV if $|\eta| < 2.4$ to ensure high acceptance in the phase space used by the analysis
- each Υ candidate is weighted by a correction factor w

$$w^{-1} = \mathcal{A} \cdot \epsilon$$

 \mathcal{A} : acceptance which again depends on spin alignment

 ϵ : global efficiency taking into account trigger, track and muon reconstruction

acceptance is studied with a dedicated MC Υ sample using the unpolarized scenario:

$$\mathcal{A}(\Delta p_{T}, \Delta y) = \frac{N_{rec}^{Y}(\Delta p_{T}, \Delta y)}{N_{gen}^{Y}(\Delta p_{T}, \Delta y)}$$

• measurement presented in momentum bins and |y| < 2

$$\frac{d\sigma(pp \to Y(nS))}{dp_{T}} \cdot \mathcal{B}(Y(nS) \to \mu^{+}\mu^{-}) = \frac{N_{corr}^{\uparrow}}{\mathcal{L}\Delta p_{T}} \quad ; \quad N_{corr}^{\uparrow} = N_{\Upsilon} \cdot w$$

Detector acceptance for Υ analysis (CMS)

- A is the acceptance that muons from Y decays are produced in the fiducial volume of the detector
- > same arguments described for the J/Ψ analysis apply here
- isotropic distribution consequence of the unpolarized scenario is the baseline while the other scenarios are considered for systematics studies

Observed Υ signal and cross section (CMS)

Observed Υ signal (ATLAS)

• similar selection described in J/Ψ analysis

• different mass resolution depending on η regions

Inclusive Υ cross section (LHCb)

complementarity in CMS and LHCb in terms of explored phase space

Andr	ea C	loccaro	
April	13,	2011	

Total Υ cross-section at 7 TeV proton collisions

CMS

 \Rightarrow |y| < 2, p_T < 30 GeV and assuming unpolarized scenario

$$\begin{split} &\sigma(pp \to \Upsilon(1S)X) \cdot \mathcal{B}(\Upsilon(1S) \to \mu^+\mu^-) = 7.37 \pm 0.13(\textit{stat}) \pm 0.61_{0.42}^{0.61}(\textit{syst}) \pm 0.81(\textit{lumi})\textit{nb} \\ &\sigma(pp \to \Upsilon(2S)X) \cdot \mathcal{B}(\Upsilon(2S) \to \mu^+\mu^-) = 1.90 \pm 0.09(\textit{stat}) \pm 0.24_{0.14}^{0.20}(\textit{syst}) \pm 0.24(\textit{lumi})\textit{nb} \\ &\sigma(pp \to \Upsilon(3S)X) \cdot \mathcal{B}(\Upsilon(3S) \to \mu^+\mu^-) = 1.02 \pm 0.07(\textit{stat}) \pm 0.01_{0.08}^{0.11}(\textit{syst}) \pm 0.11(\textit{lumi})\textit{nb} \end{split}$$

LHCb

 $\Rightarrow 2 < |y| < 4.5, \ 0 < p_T < 15 \text{ GeV and assuming unpolarized scenario}$ $\sigma(pp \rightarrow \Upsilon(1S)X) \cdot \mathcal{B}(\Upsilon(1S) \rightarrow \mu^+\mu^-) = 108.3 \pm 0.7 \pm \frac{30.9}{25.8} \text{ nb}$

- all results for the unpolarized scenario
- extreme scenario yield variations by 20% in the final cross section

Conclusions

- mechanism for quarkonia production and spin alignment to be understood.
 LHC data is crucial for deeper understanding
- more than ~ 10⁶ J/Ψ and ~ 10⁵ Υ in the data analyzed by LHC experiments so far and more precise cross-section and polarization measurements are expected in 2011
- nice agreement between various experiments but also different phase-space analyzed by the different collaborations
- quarkonia production also actively explored in heavy ion collisions