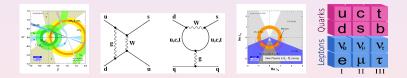
B Decays: Theoretical Overview and Challenges for the LHC

Thorsten Feldmann

SM@LHC 2011, IPPP Durham, 13 April 2011


Outline

- Theory I (QCD and SM)
 - Factorization
 - Inclusive B-meson decays
 - Exclusive Semi-leptonic B-Decays
 - Theory for $B
 ightarrow K^{(*)} \mu^+ \mu^-$ Decays
 - Charmless Non-Leptonic B-Decays
 - Theory II (Phenomenology and NP Models)
 - Right-handed currents
 - B-Meson Mixing
 - Rare Semi-Leptonic B-Decays

Motivation

- Precision Tests of the CKM Mechanism in the SM
- Sharpening the tools for perturbative and non-perturbative calculations
- Indirect search for New Physics in Rare Decays
- Constraints on Flavour Sector of NP Models

1. Theory I (QCD and SM)

1.1 Factorization

Flavour Transitions induced by Weak Gauge Bosons (or potential NP):

- Weak effective Hamiltonian: $H_{\text{eff}} \propto \sum_{i} C_{i}(\mu) O_{i}$
- Wilson Coefficients $C_i(m_b)$ in (RG-improved) Perturbation Theory. Contain all the information about short-distance dynamics !
- Hadronic Matrix Elements $\langle h_1 h_2 \cdots | \mathcal{O}_i | B \rangle \Rightarrow$.

$\ldots \Rightarrow$ Treatment of Hadronic Matrix Elements:

- Reduce to (more) universal quantities, using Factorization Theorems based on the Heavy-Quark Expansion:
 - Heavy-quark effective theory (HQET) for small hadronic recoil energy.
 - Soft-collinear effective theory (SCET) for large recoil energy (\rightarrow jets).
- (irreducible) Hadronic Parameters (approximately) cancel in certain Ratios:
 - time-dependent CP asymmetry in $B \rightarrow J/\psi K_S$
 - isospin-symmetry relations for $B o \pi \pi$ decays
 - form-factor relations in $B o K^* \mu^+ \mu^-$

1.1 Factorization

Flavour Transitions induced by Weak Gauge Bosons (or potential NP):

- Weak effective Hamiltonian: $H_{\text{eff}} \propto \sum_i C_i(\mu) \mathcal{O}_i$
- Wilson Coefficients $C_i(m_b)$ in (RG-improved) Perturbation Theory. Contain all the information about short-distance dynamics !
- Hadronic Matrix Elements $\langle h_1 h_2 \cdots | \mathcal{O}_i | B \rangle \Rightarrow \dots$

$\dots \Rightarrow$ Treatment of Hadronic Matrix Elements:

- Reduce to (more) universal quantities, using Factorization Theorems based on the Heavy-Quark Expansion:
 - Heavy-quark effective theory (HQET) for small hadronic recoil energy.
 - Soft-collinear effective theory (SCET) for large recoil energy (\rightarrow jets).
- (irreducible) Hadronic Parameters (approximately) cancel in certain Ratios:
 - ► time-dependent CP asymmetry in $B \rightarrow J/\psi K_S$
 - isospin-symmetry relations for $B
 ightarrow \pi\pi$ decays
 - form-factor relations in $B o K^* \mu^+ \mu^-$

. . .

Hadronic Matrix Elements in B-Decays

Theoretical input for: partial decay rates; CP-, isospin-, FB-, angular asymmetries, ...

- Leptonic decay constants: f_{B,Bs}
- Meson mixing parameters: B_{B,Bs}
- Exclusive transition form factors: $F^{B \rightarrow M}(q^2)$
- HQET parameters: $m_b, \frac{\lambda_{1,2}}{m_b} \dots$
- Hadronic light-cone distribution amplitudes: $\phi_{\pi}(u)$, $\phi_{B}(\omega)$
- Inclusive shape functions (\equiv PDFs): S(k)

• . . .

Determination of hadronic matrix elements:

- from Lattice QCD
- from (light-cone) QCD Sum Rules
- from Experiment (on the basis of factorization theorems)

1.2 Inclusive *B*-meson decays:

 $B \to X_c \ell \nu, B \to X_u \ell \nu, B \to X_s \gamma, (B \to X_s \ell^+ \ell^-)$

Operator Product Expansion (OPE)

- Factorization based on expansion in $1/m_{b,c}$ and $\alpha_s(m_b)$
 - $\sim \alpha_s^2$ corrections to partonic rate
 - Tree-level expressions known to order 1/m⁵_b; systematics of "intrinsic charm" and "weak annihilation"

tion"

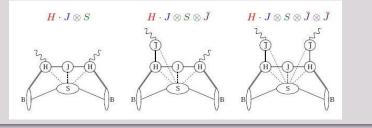
[Melnikov, Czarnecki, Pak]

[Bigi, Breidenbach, TF, Mannel, Turcyzk, Uraltsev, Zwicky,...]

Shape-function region (large recoil energy): ● Factorization theorems in SCET: dΓ = H · J ⊗ S ● hard coefficient functions H NNLO [Asatrian et al. 08; Beneke et al. 08; Bell 08] ● collinear jet function J NNLO [Becher/Neubert 05/06] ● soft shape function S (aka PDF) 2-loop RGE [Becher/Neubert 05/06]

• Determine: $|V_{cb}|_{incl.} = (41.9 \pm 0.42_{exp} \pm 0.59_{th}) \cdot 10^{-3}$ Determine: $|V_{ub}|_{incl.} = (4.25 \pm 0.15_{exp} \pm 0.20_{th}) \cdot 10^{-3}$

[Kowalewski@BEAUTY2011]


[...; Andersen/Gardi 06; Misiak et al. 07; Becher/Neubert 07; ...]

• NP constraints from $B \rightarrow X_s \gamma$

$B \rightarrow X_s \gamma$ and Resolved Photon Effects

New effects at sub-leading order in $1/m_b$ expansion:

- Photon does not couple directly to short-distance $b \rightarrow s$ transition.
- ⇒ New Factorization Theorem:

Features of "resolved" photon contribution:

- New jet function \overline{J} in photon direction
- New soft functions from non-local operators with respect to 2 jet directions
- Leading mechanism for CP Violation in the SM: $-0.5\% < A_{X_c\gamma}^{SM} < 2.8\%$
- Better Null-Tests of the SM: (A_{χ[−]_sγ} − A_{χ⁰_sγ}) or A_{X_{s+d}γ}

1.3 Exclusive Leptonic and Semi-leptonic B-Decays

$|V_{cb}|$ from $B \to D(D^*)\ell\nu$ [Kowalewski@BEAUTY2011] • Decay rate $d\Gamma \propto |F(q^2)|^2 \cdot |V_{cb}|^2$ requires $B \to D^{(*)}$ form factor • $F(q_{max}^2) = (1 + corrections)$ from HQET and lattice/sum rules $|V_{cb}|_{excl} = (38.9 \pm 0.9_{exp} \pm 0.6_{th}) \cdot 10^{-3}$ $|V_{\mu b}|$ from $B \rightarrow \pi \ell \nu$ • $B \rightarrow \pi$ form factor normalization not fixed by HQET symmetries • Extraction of $|V_{ub}|$ relies on lattice/sum rules and appropriate form-factor parameterisations (see below). $|V_{ub}|_{excl} = (3.25 \pm 0.12_{exp} \pm 0.28_{tb}) \cdot 10^{-3}$ [BaBar+Belle+FNAL/MILC]

$$\begin{split} |V_{ub}| \text{ from } B \to \tau\nu \qquad & \text{[Mannel@BEAUTY2011]} \\ \bullet \text{ Requires B-meson decay constant f_B (lattice).} \\ \bullet \text{ Experimental value for $B \to \tau\nu$ compared to $B \to \pi\ell\nu$ factor of 2 larger than theoretical prediction !?} \end{split}$$

Th. Feldmann (IPPP Durham)

Series Expansion for generic form factor $F(t = q^2)$:

[Boyd, Grinstein, Lebed, Savage, Caprini, Lellouch, Neubert, Becher, Hill, ...]

• Conformal Mapping:

$$z = z(t, t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_- - t_0}}{\sqrt{t_+ - t} + \sqrt{t_- - t_0}}, \qquad |z| \ll 1$$

with $t_{\pm} = (m_H \pm m_L)^2$ and $0 \le t_0 < t_-$.

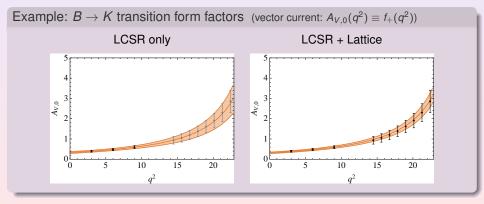
• (truncated) Series Expansion:

$$F(t) = (\text{pre-factor})(t) imes \sum_{i=0}^{N} lpha_i \cdot z^i$$

(pre-factor contains analytic structure from resonances outside the decay region)

• Coefficients α_i constrained by "Dispersive Bounds":

$$\sum_{i=0}^{N} |\alpha_i|^2 \le 1$$


(from calculation of correlation functions with the corresponding decay currents)

(Heavy-to-light) Form Factor Fits with Series Expansion

[Bharucha/TF/Wick 2010]

- FF at small momentum transfer $t = q^2$: from LCSR approach
- FF at large momentum transfer $t = q^2$: Lattice QCD estimates
- Interpolation: Truncated Series Expansion (N = 1)

[QCDSF 0903.1664] [Ball/Zwicky 04]

1.4 Theory for $B
ightarrow {\cal K}^{(*)} \mu^+ \mu^-$ Decays

General amplitude for ${\it B}
ightarrow {\it K}^{(*)} \mu \mu$

- Hadronic amplitude A^{μ}_{10} , multiplying the lepton <u>axial-vector</u> current, entirely from local operator \mathcal{O}_{10} in H_{eff} $\longrightarrow C_{10} \times (form factor)$
- Hadronic amplitude A^µ₉, multiplying the lepton <u>vector</u> current,

$$\begin{split} A_{9}^{\mu} &= C_{9} \langle \bar{K}^{(*)} | \bar{s} \gamma^{\mu} (1 - \gamma_{5}) b | \bar{B} \rangle & \longrightarrow C_{9} \times (\text{form factor}) \\ &+ C_{7} \, \frac{2im_{b} \, q_{\lambda}}{q^{2}} \langle \bar{K}^{(*)} | \bar{s} \sigma^{\lambda \mu} (1 + \gamma_{5}) b | \bar{B} \rangle & \longrightarrow C_{7} \times (\text{form factor}) \\ &+ \langle \bar{K}^{(*)} | \, \mathcal{K}_{H}^{\mu}(q) \, | \bar{B} \rangle & \longrightarrow \begin{cases} q^{2} \ll 4m_{c}^{2} & : & \text{QCD factorization} \\ q^{2} \gg 4m_{c}^{2} & : & \text{OPE} \end{cases} \end{split}$$

- ► $\mathcal{K}^{\mu}_{H}(q)$ from time-ordered product (non-local) between electromagnetic current and non-leptonic part of $H_{\text{eff}}(b \to s)$.
- leading order QCDF/OPE: sufficient to replace $C_9
 ightarrow C_{9}^{
 m eff}(q)$
- sub-leading order in α_s and/or $1/m_b$: "Non-factorizable contributions": require further non-perturbative hadronic input !

Potential Issue: Duality violation from $B \to V(\to \mu^+ \mu^-) K^*$ with $V = J/\psi, \psi', \dots$

Duality Violation in $B \rightarrow K^{(*)} \mu^+ \mu^-$ at high- q^2

[Beylich/Buchalla/TF 11]

see also [Buchalla/Isidori 98, Grinstein/Pirjol 04, Khodjamirian et al. 10]

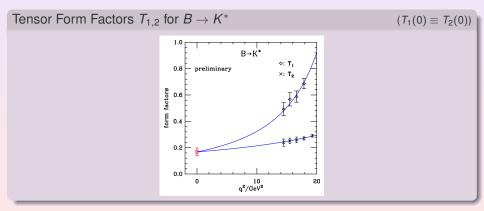
OPE for high- q^2 region: (above $c\bar{c}$ resonances)	
• leading term in OPE from dim-3 operators, $(\rightarrow \text{states})$ $\alpha_s \text{ corrections to } \langle \mathcal{K}^{\mu}_H \rangle_{\dim -3} \text{ known (and important)} $ [Seidel 04, Greub/Pilip	andard form factors) pp/Schüpbach 08]
 contributions from dim-4 operators suppressed 	$lpha_{s}rac{m_{s}}{m_{b}}\sim0.5\%$
• contributions from dim-5 operators $\langle \bar{s}G^{\mu\nu}b \rangle$ estimated	< 1%
• dim-6 operators include weak annihilation effects, negligible at high- q^2	<i>O</i> (0.1%)

Duality-violating effects at high- q^2 :

• Estimated on the basis of a model for an inifinite series of charm resonances, fitted to experimental *R*-ratio [Shifman 2000]

• Uncertainty on partially integrated decay rate $(q^2 \ge 15 \text{ GeV}^2)$

±2%


Duality violation for differential rate (point-by-point) remains model-dependent.

High- q^2 region of $B \to K^{(*)} \mu^+ \mu^-$ under excellent theoretical control

$B ightarrow {\cal K}^{(*)}$ Form Factors from Lattice-QCD

[Liu et al, 1101.2726, 0911.2370, see also Wingate@BEAUTY2011]

- complementary to sum rules (large values of q^2)
- unquenchend gauge field configurations, moving NRQCD (2+1 flavours, $\mathcal{O}(a^2)$ tadpole-improved, staggered fermions, $m_{\pi}^{\text{simul.}} \ge 300 \text{ MeV}$, physical m_b)

1.5 Charmless Non-Leptonic B-Decays

• Generic $B \rightarrow M_1 M_2$ amplitude can be written in terms of Topological Amplitudes:

Colour-allowed and colour-suppressed "Tree" or "Penguin"

• In the SM, the relative weak phase is given by the CKM angle γ

• Different (partially controversial) approaches to estimate strong interaction effects

QCD factorization / SCET, "perturbative QCD"

- systematic calculation of perturbative corrections ?
- size/reliability of 1/mb power corrections ?
- reliable calculation of colour-suppressed amplitudes ?
- size of strong re-scattering phases ?

[Beneke et al. 99; Bauer et al. 04; Keum et al. 00; ...]

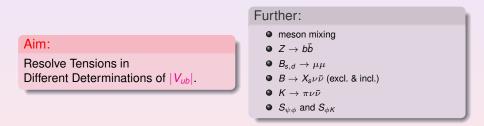
- Phenomenological analyses make use of (approximate) flavour symmetries of QCD:
 - Isospin symmetry
 - SU(3) flavour symmetry \leftarrow hadronic B_s -decays!

[Fleischer/Zupan et al., Zupan@BEAUTY2011]

2. Theory II (Phenomenology and NP Models)

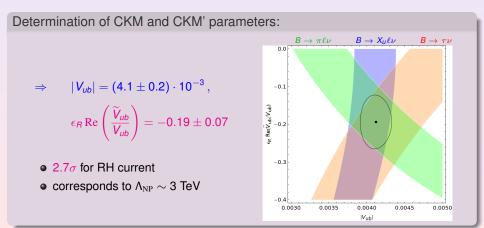
Present "Puzzles" in B-Observables:

- Tensions in $|V_{xb}|$:
 - small mismatch between $|V_{cb}|_{incl.}$ and $|V_{cb}|_{excl.}$
 - mismatch between $|V_{ub}|_{incl.}$, $|V_{ub}|_{excl.}$, $|V_{ub}|_{\tau\nu}$
- Tensions between $B \rightarrow \tau \nu$ and B_d - \overline{B}_d -mixing
- Tensions in $b \rightarrow s$ decays:
 - transverse polarization in $B \rightarrow \phi K^*$
 - A_{FB} in $B \to K^* \mu^+ \mu^-$
 - A_{CP} in b
 ightarrow s penguins
- Tensions in B_s - \overline{B}_s -mixing:
 - CP asymmetry from $B_s \rightarrow J/\psi \phi$
 - CP asymmetry in like-sign di-muon events from D0



2.1 Right-handed currents (effective theory approach)

[Buras/Gemmler/Isidori 10], see also [Crivellin 09]


- left-right symmetric flavour group,
- $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ global symmetry,
- New CKM'-Matrix in the right-handed sector,

(RH currents in $b \rightarrow c\ell\nu$ can also be studied independently from moment analysis in $B \rightarrow X_c\ell\nu$ [Feger/Mannel et al. 10])

Implications for $|V_{ub}|$ Determinations

$$\begin{split} |V_{ub}|_{B \to X_{u}\ell\nu} &\longrightarrow \sqrt{|V_{ub}|^{2} + \epsilon_{R}^{2} |\widetilde{V}_{ub}|^{2}} ,\\ |V_{ub}|_{B \to \pi\ell\nu} &\longrightarrow |V_{ub} + \epsilon_{R} \, \widetilde{V}_{ub}| ,\\ |V_{ub}|_{B \to \tau\nu} &\longrightarrow |V_{ub} - \epsilon_{R} \, \widetilde{V}_{ub}| . \end{split}$$

2.2 B-Meson Mixing

Mixing parameters:

• Neutral B_q -meson mixing (q = d, s) described by 2 complex 2 \times 2 matrices:

mass matrix: M_{ij}^q , decay matrix: Γ_{ij}^q

Observables:

mass splitting: $\Delta M_q \simeq 2|M_{12}^q|$, decay width difference: $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q| \cos \phi_q$

flavour-specific CP asymmetry: $a_{fs}^q = \frac{|\Gamma_{12}^q|}{|M_{11}^q|} \sin \phi_q$

with mixing phase $\phi_q \equiv \arg(-M_{12}^q/\Gamma_{12}^q)$.

Time-dependent CP asymmetries:

• Consider decays dominated by $b \rightarrow c \bar{c} s$ transition:

$${\cal A}_{
m CP}(t)^{{\cal B}_q
ightarrow f}\simeq\pm {\cal S}_f\,\sin(\Delta M_q t)$$

• For instance, $B_s \rightarrow J/\psi \phi$ in the SM:

$$S_{\psi\phi} = -\sin 2eta_s\,, \qquad 2eta_s = 2\,\mathrm{arg}\left(rac{V_{ts}\,V_{tb}^*}{V_{cs}\,V_{cb}^*}
ight)$$

1 1 1 1 1 1 1

2.2 B-Meson Mixing in the SM

$$\begin{split} \text{SM estimates (focus on B_s system)} & \text{[Lenz/Nierste 11]} \\ & \Delta M_s^{\text{SM}} = (17.3 \pm 2.6) \text{ ps}^{-1}, \qquad \Delta \Gamma_s^{\text{SM}} = (0.087 \pm 0.021) \text{ ps}^{-1}, \\ \text{and} & \\ & \phi_s^{\text{SM}} = 0.22^\circ \pm 0.06^\circ, \qquad S_{\psi\phi}^{\text{SM}} = -0.036 \pm 0.002, \\ \text{and} & \\ & a_{f_s}^{\text{s},\text{SM}} = (1.9 \pm 0.3) \cdot 10^{-5}, \qquad a_{f_s}^{\text{d},\text{SM}} = -(4.1 \pm 0.6) \cdot 10^{-4}, \end{split}$$

New Physics in B_s - \overline{B}_s -Mixing ?

D0 measures

$$\begin{split} \textbf{A}_{\rm SL}^{\rm D0} &= (0.506 \pm 0.043) \, \textbf{a}_{\rm fs}^d + (0.494 \pm 0.043) \, \textbf{a}_{\rm fs}^s \\ &= -0.00957 \pm 0.00251 \pm 0.00146 \end{split}$$

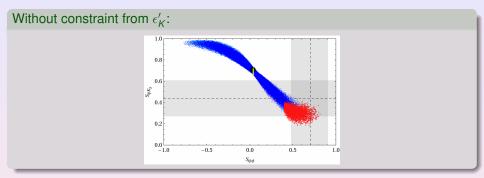
which significantly deviates from the SM estimate

 $A_{\rm SL}^{\rm SM} = -(2.0 \pm 0.3) \cdot 10^{-4}$ [Lenz/Nierste 11]

• LHCb will be measuring [Lambert@BEAUTY2011]

 $2\Delta A_{\rm SL} = a_{\rm fs}^s - a_{\rm fs}^d$

for which the SM prediction reads $(4.3 \pm 0.7) \cdot 10^{-4}$.


Combined D0/CDF results on S_{ψφ} yield

$$S_{\psi\phi} = 0.74^{+0.19}_{-0.23}$$

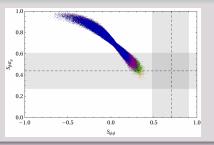
which are significantly larger than the SM result.

• LHCb catches up quickly: $-2\beta_s^{\mathrm{J}/\psi\phi} \in [-2.7, -0.5]$ @68% CL [Lambert@BEAUTY2011]

Example: $S_{\phi K_S}$ vs. $S_{\psi \phi}$ in a Model with 4th Quark Generation

Colour Coding (*B*- and *K*-observables):

• $S_{\psi\phi} = 0.04 \pm 0.01$ and ${
m Br}(B_{
m S} o \mu^+ \mu^-) = (2 \pm 0.2) \cdot 10^{-9}$


•
$$S_{\psi\phi} > 0.4$$
 and ${
m Br}(B_S o \mu^+ \mu^-) > 6 \cdot 10^{-1}$

•
$$Br(K_L \to \pi^0 \bar{\nu} \nu) > 2 \cdot 10^{-10}$$
 • $Br(K_L \to \pi^0 \bar{\nu} \nu) < 2 \cdot 10^{-10}$

[Buras et al., arXiv:1002.2126 [hep-ph], arXiv:1004.4565 [hep-ph]]

Example: $S_{\phi K_S}$ vs. $S_{\psi \phi}$ in a Model with 4th Quark Generation

Including constraint from ϵ'_{κ} :

• Very large $S_{\psi\phi}$ not possible, if ϵ'_{κ} constraint taken into account.

Colour Coding (hadronic matrix elements):

- $R_6 = 1.0, R_8 = 1.0$ $R_6 = 1.5, R_8 = 0.8$
- $R_6 = 2.0, R_8 = 1.0$ $R_6 = 1.5, R_8 = 0.5$

[Buras et al., arXiv:1002.2126 [hep-ph], arXiv:1004.4565 [hep-ph]]

Th. Feldmann	((P	P	Ρ	Dur	ham)	
--------------	----	---	---	---	-----	------	--

2.3 Rare Semi-Leptonic B-Decays

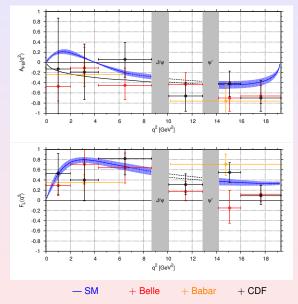
- Based on rare $b \rightarrow s$ or $b \rightarrow d$ FCNCs \Rightarrow NP Sensitivity
 - New sources of Flavour/CP-Violation beyond the SM

$$\mathcal{L} \stackrel{\boldsymbol{?}}{=} \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{C_{i}^{d}}{\Lambda_{\mathrm{NP}}^{4-d}} \mathcal{O}_{i}^{(d)}$$

- HQET/SCET symmetries reduce # of independent form factors.
- Variety of (theoretically controlable) Observables:
 - FB asymmetry in $B o K^* \mu^+ \mu^-$
 - Isospin asymmetry in $B o K^* \mu^+ \mu^-$
 - Angular asymmetries in $B o K^*(K\pi) \mu^+ \mu^-$
 - Decay rates for $B
 ightarrow K^{(*)}
 u ar{
 u}$
 - Decay rates for $B_q
 ightarrow \mu^+ \mu^-$

[...Bobeth/Hiller et al., Beneke/TF/Seidel, Egede/Hurth/Krüger/Matias et al., Altmannshofer/Ball/Bharucha/Buras/Straub et al. ...] [for a recent analysis, see also [Alok et al, 1103.5344]

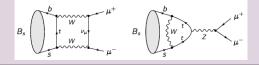
. . .


$$\begin{aligned} \mathscr{H}_{\text{eff}}^{\Delta F=1} &= -\frac{4G_{\text{F}}}{\sqrt{2}} V_{tb} V_{ts}^* \sum (C_i Q_i + C_i' Q_i') \\ \end{aligned}$$

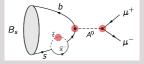
$$\begin{aligned} & \text{which operators are relevant in} & \overset{\downarrow}{\underset{K}} & \overset{\iota}{\underset{K}} &$$

[Straub@BEAUTY2011]

Example: FB-Asymmetry and Longitudinal Fraction in $B \to K^* \mu^+ \mu^-$

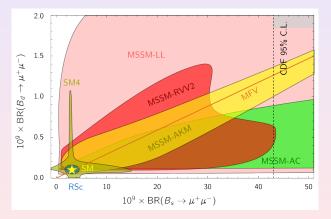

[Bobeth/Hiller/van Dyk 10]

Phenomenology for $B_q \rightarrow \mu^+ \mu^-$


- Hadronic uncertainty from decay constants f_{B_q} only.
- Helicity suppression in the SM:

 ${\cal B}(B_s o \mu^+ \mu^-)_{SM} \sim 3 \cdot 10^{-9}\,, \qquad {\cal B}(B_d o \mu^+ \mu^-)_{SM} \sim 0.1 \cdot 10^{-9}$

Sizeable NP contributions possible, in particular for large tan β :
 ⇒ B(B_s → μ⁺μ⁻)_{exp} < 10⁻⁸ would already rule out a number of NP models


• Correlations between $B_s \to \mu^+ \mu^-$ and $B_d \to \mu^+ \mu^$ as a test of Minimal Flavour Violation hypothesis (see below).

Correlation $B_s \rightarrow \mu \mu$ vs. $B_d \rightarrow \mu \mu$

- Minimal Flavour Violation (MFV): $\frac{\mathcal{B}(B_s \to \mu^+ \mu^-)}{\mathcal{B}(B_d \to \mu^+ \mu^-)} \simeq \frac{|V_{ts}|^2}{|V_{tr}|^2}$
- 4th Generation Model [Buras et al. 10]
- SUSY Flavour Scenarios

[Altmannshofer et al. 10]

[Straub@BEAUTY2011]

Outlook: Challenges for the LHC

LHCb is already performing extremely well ...

The next year will be very exciting

Theory is trying to catch up ...

- Control on factorization and perturbative uncertainties.
- Hadronic parameters (combining lattice/LCSR/exp. data).
- *SU*(3) amplitude relations, including *B_s* decay modes.
- Identification of NP-sensitive observables.
- Constraints on parameter space of concrete NP models.
- Correlations between NP observables.

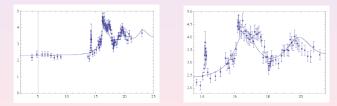
Challenge: Interpretation of combined data on flavour and high- p_{\perp} observables !

(ATLAS and CMS to follow)

[Uwer@BEAUTY2011]

Backup Slides

Modelling duality violation from charm-loop in $B \to K^{(*)} \mu^+ \mu^-$


- Assume trajectory of charmonium resonances: $M_n^2 = n\lambda^2 + M_n^2$. (narrow resonances to be considered separately)
- \rightarrow Ansatz for *R*-ratio in the $c\bar{c}$ -region:

$$R = R_{\text{light}} - rac{4}{3} \, rac{1}{(1 - b/\pi) \, \pi} \, ext{Im} \, \psi(3 + z) \, ,$$

$$=\left(-rac{q^2-4m_c^2+i\epsilon}{\lambda^2}
ight)^{1-b/ au}$$

- (crude) Fit to BES data :
 - $R_{\text{light}} = 2.31$, from below charm threshold.

 - $m_c^{=} = 1.33 \text{ GeV}.$ $\lambda^2 = 3.08 \text{ GeV}^2$, from average distance of (broad) resonances.
 - \blacktriangleright b = 0.082, from average width of (broad) resonances.

Z =

• Use same parameters to describe charm-contribution to $\langle \mathcal{K}^{\mu}_{\mu} \rangle$ (assuming pessimistic scenario where all resonances contribute coherently)