

Physics Institute

Rare B decays at LHC

Current results and future prospects Christian Elsasser [on behalf of the LHC*b* Collaboration] SM@LHC 2011, Durham, April 13, 2011

Table of Contents

- Overview of the LHC*b* experiment
- First results for $B_s \rightarrow \mu^+ \mu^-$
- Prospects for $B^0 \rightarrow K^* \mu^+ \mu^-$
- Prospects for radiative rare B decays
- Prospects from CMS and ATLAS

The LHCb Collaboration¹

arXiv:1103.2465

The LHCb detector

The LHCb experiment

σ(pp→bbX) = (284 ± 20_{stat} ± 49_{syst}) μb @ 7 TeV

[Physics Letters B 694 (2010) 209]

- Pseudo-rapidity: $1.9 < \eta < 4.9$
- Max. instantaneous luminosity $2010 L = 1.7 \cdot 10^{32} cm^{-2}s^{-1}$ (Design instantaneous luminosity L = $2 \cdot 10^{32} cm^{-2}s^{-1}$)
- 2010 data: L_{int} = 37 pb⁻¹

Goal:

Measurements of CP violation (see Tobias Brambach's talk) and

rare (B) decays (see this talk)

Results for B_s \rightarrow \mu^+ \mu^-: Predictive Power (I)

Results for B_s \rightarrow \mu^+ \mu^-: Predictive Power (II)

Constrains on tan β and M_A in the NUHM1 model

Regions compatible for different $B_s \rightarrow \mu^+ \mu^-$ branching ratios

Calculation using SuperIso/SoftSUSY [Comput. Phys. Comm. 143, 305 (2008)/180, 1718 (2009)]

Results for B_s \rightarrow \mu^+ \mu^-: Analysis strategy

- 1. Reduce data set by soft selection and blind signal region of $m(B_{(s)}^{0})\pm60 \text{ MeV/c}^{2}$
- 2. Discriminate signal and background by Geometrical Likelihood (GL) and Invariant Mass
- 3. Normalize to channels with known branching ratios to extract BR($B_s \rightarrow \mu^+ \mu^-$)
- Extraction of the limit with binned CL_s method in four equally distributed GL- and six equally distributed invariant mass bins

GL

Results for $B_s \rightarrow \mu^+ \mu^-$: Geometrical likelihood (I)

- Main background combinatorical from two muons bb→µµX
- Select topological and kinematical variables to separate signal from background
- Decorrelate these variables and use them to build up a multi variate classifier: GL
- Train GL with Monte Carlo

Results for B_s \rightarrow \mu^+ \mu^-: Geometrical likelihood (II)

• Normalization for signal with data from $B \rightarrow KK/\pi\pi/K\pi$:

Results for B_s \rightarrow \mu^+ \mu^-: Invariant mass (I)

- Invariant mass distribution for signal described by Crystal Ball function (Gaussian with radiative tail)
 - \rightarrow transition point (α) and exponent (n) from Monte Carlo
 - → mean (µ) and width (σ) of Gaussian from B→KK/ $\pi\pi$ /K π and dimuon resonances

Results for $B_s \rightarrow \mu^+ \mu^-$: Invariant mass (II)

April 13, 2011 Rare decays at LHC, Durham 2011

Results for B_s \rightarrow \mu^+ \mu^-: Normalization

Normalization via:

 $BR(B^+ \to J/\psi(\mu^+\mu^-)K^+) = (5.98 \pm 0.22) \cdot 10^{-5}$ $BR(B^0 \to K^+\pi^-) = (1.94 \pm 0.06) \cdot 10^{-5}$ $BR(B_s \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)) = (3.4 \pm 0.9) \cdot 10^{-5}$

April 13, 2011 Rare decays at LHC, Durham 2011

B⁰ mass window I LHCb

Limit for $B_s \rightarrow \mu^+ \mu^-$

GL

0.9

0.8

0.7

0.6

CDF: 4.3 · 10⁻⁸ @ 95% CL with 3.7 fb⁻¹ [Public CDF note 9892]

DØ: 5.1 · 10⁻⁸ @ 95% CL with 6.1 fb⁻¹ [Phys. Lett B 693, 593 (2010)]

M(μμ)-M_{Bc} [MeV/c²] GL [0.00,0.25] GL [0.25,0.50] GL [0.50,0.75] GL [0.75,1.00]

[-60,-40]	39	2	1	0
[-40,-20]	55	2	0	0
[-20,0]	73	0	0	0
[0,20]	60	0	0	0
[20,40]	53	2	0	0
[40,60]	55	1	0	0
Total	335	7	1	0
Total (Bkg exp)	329.1	7.4	1.53	0.080

8.3

M(μμ)-M_{R0} [MeV/c²] GL [0.00,0.25] GL [0.25,0.50] GL [0.50,0.75] GL [0.75,1.00]

351.5

CDF: 0.76 · 10⁻⁸ @ 95% CL with 3.7 fb⁻¹ [Public CDF note 9892]

[-60,-40]

[-40,-20]

[-20,0]

[0,20]

[20,40]

[40,60]

Total

Total (Bkg exp)

Results for B_s \rightarrow \mu^+ \mu^-: Prospects

Prospect for B⁰ \rightarrow **K**^{*} μ ⁺ μ ⁻: **Predictive Power (I)**

Prospect for B⁰ \rightarrow **K**^{*} $\mu^+\mu^-$: **Predictive Power (II)**

April 13, 2011 Rare decays at LHC, Durham 2011

Prospect for B^0 \rightarrow K^* \mu^+ \mu^-: Analysis strategy

- Blind A_{FB} of $B^0 \rightarrow K^*(K^+\pi^-)\mu^+\mu^-$ and use control channels to calibrate selection
- BDT selection

Prospect for B⁰→K^{*}µ⁺µ⁻: Prospects

Prospect for radiative decays: b→sγ

- Measurement of photon polarization as in SM right-handed is suppressed by $m_s/m_b \approx 10^{-2}$
- Probing via $B_s \rightarrow \phi \gamma$ or $B^0 \rightarrow K^*e^+e^-$
- Measurement of the time dependent CP asymmetries

Rare B decays at CMS and ATLAS

- B_s→μ⁺μ⁻: For 2010 not yet unblinded; Strategy: cut based (at the moment) with grid search (p_T(μ), p_T(B_s), isolation and vertexing), relaying on Monte Carlo for signal calibrating with B_s→J/ψφ (e.g. for invariant mass resolution), normalization via B⁺→J/ψ(μ⁺μ⁻)K⁺(later probably also B_s→J/ψφ); Systematics expected to be dominated by f_d/f_s
- Some work in progress on B⁰→K*μ⁺μ⁻, Λ_b→Λμ⁺μ⁻ (and D⁰→μ⁺μ⁻). Until 2011/12 no trigger problem for these channels expected

[CMS-PAS-BPH-07-001, PoS(HQL 2010)070]

- e verte la figura de la figura
- B_s→μ⁺μ⁻: For 2010 not yet unblinded; Strategy: Similar to the one of CMS, cut based (isolation, pointing angle of dimuon momentum and connecting line PV-SV, transverse decay length), normalization via B⁺→J/ψ(μ⁺μ⁻)K⁺
 - Consideration at ATLAS for for $B^0 \rightarrow K^* \mu^+ \mu^-$, $B_s \rightarrow \phi \mu^+ \mu^-$ and $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ as well as $B^+ \rightarrow K^{+*} \mu^+ \mu^-$ and $B^+ \rightarrow K^+ \mu^+ \mu^-$

[ATLAS-PHYS-PROC-2010-131]

Conclusion

LHC*b* has shown with its first 37 pb⁻¹ a great potential for indirect search of New Physics.

The results for $B_{(s)}{}^{0} \rightarrow \mu^{+}\mu^{-}$ of $BR(B_{s} \rightarrow \mu^{+}\mu^{-}) < 5.6 \cdot 10^{-8} @ 95\% CL$ $BR(B^{0} \rightarrow \mu^{+}\mu^{-}) < 1.5 \cdot 10^{-8} @ 95\% CL$

are already close to the limits set up by the Tevatron experiments. With data collected in 2011 LHC*b* should be able to investigate the region of BR($B_s \rightarrow \mu^+ \mu^-$) ~ 6-10 \cdot 10⁻⁹

First steps toward measurements of the angular structure of $B^0 \to K^* \mu^+ \mu^-$ and toward measurements of $b \to s \gamma$

LHC*b* has in 2010 proven to be ready to make many interesting measurements in rare decay channels.

First results from CMS/ATLAS can be expected for 2011.

Conclusion

LHC*b* has shown with its first 37 pb⁻¹ a great potential for indirect search of New Physics.

The results for B_(s)⁰→μ⁺μ⁻ of BR(B_s→μ⁺μ⁻) < 5.6 · 10⁻⁸ @ 95% CL BR(B⁰→μ⁺μ⁻) < 1.5 · 10⁻⁸ @ 95% CL

are already close to the limits set up by the Tevatron experiments. With data collected in 2011 LHC*b* should be able to investigate the region of BR($B_s \rightarrow \mu^+ \mu^-$) ~ 6-10 \cdot 10⁻⁹

First steps toward measurements of the angular structure of $B^0 \to K^* \mu^+ \mu^-$ and toward measurements of $b \to s \gamma$

LHC*b* has in 2010 proven to be ready to make many interesting measurements in rare decay channels.

First results from CMS/ATLAS can be expected for 2011.

Stay tuned to future LHC(b) results

April 13, 2011 Rare decays at LHC, Durham 2011

The end

Backup: Detector performance

Backup: Trigger at LHCb

Backup: Geometrical likelihood

- Handling of correlations among the topological and kinematical variables
- 1. Transformation to Gaussian by cumulative, inverse error function
- 2. Application of inverse correlation matrix (rotation in parameter space)

Efficiency/rejection plot

Backup: Normalization uncertainties

Channel	BR (·10 ⁻⁵)	$\frac{\varepsilon_{\rm cal}^{\rm REC} \varepsilon_{\rm cal}^{\rm SEL \rm REC}}{\varepsilon_{\rm sig}^{\rm REC} \varepsilon_{\rm sig}^{\rm SEL \rm REC}}$	$\frac{\varepsilon_{\rm cal}^{\rm TRIG \rm SEL}}{\varepsilon_{\rm sig}^{\rm TRIG \rm SEL}}$	N _{norm}	α _{Bs→µ+µ-} (·10 ⁻⁹)	α _{B0→µ+µ-} (·10 ⁻⁹)
$B^+{\rightarrow}J/\psi(\mu^+\mu^{})K^+$	5.98±0.22	0.49±0.22	0.96 ±0.05	12'366±403	8.4±1.3	2.27±0.18
B ⁰ →K ⁺ π ⁻	1.94±0.06	0.82±0.06	0.072±0.010	578± 74	7.3±1.8	1.99±0.40
$B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	3.4 ±0.9	0.25±0.02	0.96 ±0.05	760± 71	10.5±2.9	2.83±0.86

B⁺→J/ψ(μ⁺μ⁻)K⁺	15%	dominated by f _u /f _s (13%)
$B^0 \rightarrow K^+ \pi^-$	23%	dominated by f _d /f _s (13%)
$B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	28%	dominated by error on BR (26%)

Backup: Normalization channels

- $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$:
- B⁰→K⁺π⁻:
- $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$:

similar trigger, different reconstruction (3 tracks), f_u/f_s different trigger, similar reconstruction (2 tracks), f_d/f_s similar trigger, different reconstruction (4 tracks)

Backup: f_d/f_s at LHCb

Preliminary results for f_s/f_d from LHC*b* [Moriond 2011 QCD, LHCb-CONF-2011-013] Using ratio of yields of $B_s \rightarrow D_s \pi$ to $B^0 \rightarrow D\pi$ and $B^0 \rightarrow DK$

 $f_s/f_d = 0.242 \pm 0.024_{stat} \pm 0.018_{syst} \pm 0.016_{theo}$ with $B^0 \rightarrow DK$

 $f_s/f_d = 0.249 \pm 0.013_{stat} \pm 0.020_{syst} \pm 0.022_{theo}$ with $B^0 \rightarrow D\pi$

April 13, 2011 Rare decays at LHC, Durham 2011

Backup: Binned CL_s method

Modified frequentist approach

 $b_i = exp.$ number of background events $s_i = exp.$ number of signal events $d_i = observed$ number of events

$$CL_{s+b} = P(X \le X_{obs}|s+b)$$
$$CL_b = P(X \le X_{obs}|b)$$

 $CL_s = CL_{s+b}/CL_b$

Backup: Why are we already so close to Tevatron?

Although LHC*b* has collected 100 times less data than CDF, the result for $B_s \rightarrow \mu^+ \mu^-$ is already compatible.

The reasons are:

- Combined acceptance and trigger efficiency is 10 times higher.
- $\sigma(pp \rightarrow bbX)$ is 3 times higher at 7 TeV compared to 1.96 TeV
- B mesons fly at LHCb approx. 1 cm → handeling of trigger and background gets easier

Backup: Theoretical models and $B^0 \rightarrow K^* \mu^+ \mu^-$

- Different NP models predict some shifts in s₀.
- or an absence of s₀ if there is a sign change in the C₇ coefficient of the effective Hamiltonian

Backup: B⁺→K⁺µ⁺µ⁻

- Decay $B^+ \rightarrow K^+ \mu^+ \mu^-$ as reference for $B^0 \rightarrow K^* \mu^+ \mu^-$ with no A_{FB} expected
- Rarest decay seen so far at LHCb (BR ≈ 5 · 10⁻⁷)
- Interesting as SM prediction BR(B⁰→ K*e⁺e⁻)/ BR(B⁰→K*µ⁺µ⁻) = 1

Backup: More about CMS ...

Discriminating variables for $B_s \rightarrow \mu^+ \mu^-$ (Isolation, pointing angle, flight length significance [l.t.r.]) from Monte Carlo

Backup: ... and about ATLAS

Discriminating variables for $B_s \rightarrow \mu^+ \mu^-$ (Isolation, pointing angle, Decay length [I.t.r.]) from Monte Carlo

Expect 5.7 signal and 14 background events for 10 fb⁻¹ April 13, 2011 Rare decays at LHC, Durham 2011