

SM@LHC, 11–14 April 2011, IPPP Durham

Top Quark Physics for the LHC

Adrian Signer

IPPP, Durham University

outline

introduction

top mass

forward-backward asymmetry

spin correlations

wrap up

overview

theory status and glossary

• theoretical issues

• "non-standard" measurements

• Tevatron results vs SM predictions

prospects for LHC

• from top-pair production

• from single-top production

why top ?

- top is a window to physics beyond the Standard Model
- in most, if not all, extensions of the SM, top plays a special role (Technicolor, topcolor SUSY, little Higgs)
- Yukawa coupling $y_t \sim \sqrt{2} m_t / v \simeq 1$, as it should
- width $\Gamma_t \sim 1.4 \text{ GeV} \gg \Lambda_{\text{QCD}} \implies$: top behaves like a "free quark"
- spin information of top is transformed to decay products \implies spin correlations
- the top is the white sheep in a herd of black sheep

top mass: important input for other observables

other measurements: make precise and detailed SM investigations and hope for a deviation

The focus in this talk is to understand the SM top

overview

expected / measured approximate SM cross sections in pb

	Tevatron	7 TeV LHC	14 TeV LHC
$tar{t}$	7	150	900
	qar q dom	$g g \operatorname{dom}$	$g g \operatorname{dom}$
t "t"-channel	1.2	40	150
$ar{t}$ "t"-channel	—,,—	22	97
t "s"-channel	0.55	2.5	7
$ar{t}$ "s"-channel	———————————————————————————————————————	1.4	4
$t W^-$	0.15	8	45
tt and/or $ar{t}ar{t}$	~ 0	~ 0	~ 0

overview

SM@LHC 2011 – p. 5/23

SM top quark pair production

• fully exclusive known at \sim one-loop

electroweak corrections known [Bernreuther et.al., Kuhn et.al.] spin correlations included [Bernreuther et.al., Melnikov et.al.] non-factorizable corrections computed [Denner et.al., Bevilacqua et.al.] included in MC@NLO and POWHEG [Frixione, Nason, Webber] two-loop corrections on their way ...

• inclusive cross section(s) known at \sim two-loop

two-loop nearly known [Czakon et.al, Moch et.al, ...] bound-state effects computed [Hagiwara et.al., Kiyo et.al.] non-factorizable corrections computed [Beenakker et.al.] resummation of logs under control [Ahrens et.al, Beneke et.al ...]

SM single top

- NLO QCD corrections, production and hadronic decay for t–, s–channel and Wt known
 [..., Harris et.al; Campbell, Ellis, Tramontano (MCMF)]
- all channels included in MC@NLO and POWHEG [Frixione, Laenen, Motylinski, Alioli, Nason, Re, Webber, White]
- EW corrections known [Beccaria et.al; Macorini et.al]
- non-factorizable corrections known [Falgari et.al.]
- 4-flavour vs. 5-flavour scheme studied [Campbell et.al.]
- resummation of inclusive cross section [Kidonakis, Wang et.al.]
- Note: s and t channel mix (beyond LO) \rightarrow more appropriate to talk about (tJ), (tb) and (tW) cross sections

$t\bar{t}$ total cross section

• total cross section (LHC dominated by $\hat{\sigma}_{gg}$, beyond LO we also need $\hat{\sigma}_{qg}$)

$$\hat{\sigma}_{ij} = \hat{\sigma}_{ij}^{(0)} \left[1 + \frac{\alpha_s}{4\pi} \hat{\sigma}_{ij}^{(1)} + \frac{\alpha_s^2}{(4\pi)^2} \hat{\sigma}_{ij}^{(2)} + \dots \right]$$

 NLO QCD (and EW) corrections known [Dawson et.al.; Beenakker et.al.; Kao, Wackeroth, Bernreuther et.al; Kühn, Scharf, Uwer . . .]

$$\hat{\sigma}_{ij}^{(1)} = \underbrace{\frac{\#}{\beta}}_{\text{Coulomb}} + \underbrace{\frac{\# \log^2 \beta + \# \log \beta}{\text{soft gluon}} + c_{ij}^{(1)}}_{\text{soft gluon}} \right)$$

 NNLO QCD corrections not (yet) fully known [Czakon et.al, Moch et.al, Beneke et.al, Ahrens et.al, Körner et.al. ... (Hathor)]

$$\hat{\sigma}_{ij}^{(2)} = \underbrace{\frac{\#}{\beta^2} + \frac{\# \log^2 \beta + \# \log \beta + \#}{\beta}}_{\text{Coulomb}} + \underbrace{\frac{\# \log^4 \beta + \# \log^3 \beta + \dots}_{\text{soft gluon}} + c_{ij}^{(2)}]}_{\text{soft gluon}}$$

• problematic terms from threshold and soft gluon region $\sqrt{1-4m_t^2/s}\equiveta
ightarrow 0$

 $t\bar{t}$ total cross section, resummation of soft logs

• resummation of soft logs (in threshold region $\sqrt{1-4m_t^2/s}\equiveta
ightarrow 0$)

initially to NLL [Bonciani, Czakon, Catani, Mangano, Mitov, Nason]

now NNLL [Czakon et.al., Beneke et.al., Ahrens et.al., Kidonakis,]

- note: cross section not necessarily dominated by small β , can use different resummation parameter (done at NNLL)
 - standard: $\beta \to 0 \Rightarrow \alpha_s^n \ln^m \beta$ with m < 2n
 - invariant mass: $1 z \equiv 1 M^2/\hat{s} \to 0 \Rightarrow \alpha_s^n \frac{\ln^m (1-z)}{(1-z)}$ with m < 2n 1
 - single-particle inclusive: $s_4 \equiv p_X^2 m_t^2 \rightarrow 0 \Rightarrow \alpha_s^n \ln^m (1 s_4/m_t)/s_4$ with m < 2n 1
- recover total cross section by integration ⇒ formally subleading terms are numerically important
- resummation for "fully exclusive" quantities ??

Resummation of logs: for invariant mass [Ahrens et.al. arXiv:1003.5827]

$t\bar{t}$ bound-state effects

near threshold Coulomb potential is dominating effect:

colour singlet: $V(r) \simeq -\alpha_s \frac{C_F}{r}$ attractive

colour octet: $V(r) \simeq - \alpha_s \frac{C_F - C_A/2}{r}$ repulsive

- for $\Gamma_t \rightarrow 0$ collections of bound states (as for bottom), for $\Gamma_t \simeq 1.4 \text{ GeV}$ a single "bump" in invariant mass remains.
- resummation of $(\alpha/\beta)^n$ (from Coulomb potential \rightarrow "bound-state" effects) [Hagiwara et.al., Kiyo et.al.] results in modification of invariant mass spectrum
- effect small for colour octet, i.e. Tevatron ($q\bar{q}$ is pure octet at LO), but "large" (for a theorist) at the LHC
- "bump" is impossible to be seen, but effect on total cross section should be taken into account.

bound-state effects [Hagiwara et.al. 0804.1014; Kiyo et.al. 0812.0919]

fully "exclusive" top pair production

- NLO corrections to production and decay [Bernreuther et.al, Melnikov et.al.]
- off-shell and off-resonance effects studied at tree level [Kauer, Zeppenfeld]
- non-factorizable corrections computed, [Denner et.al, Bevilacqua et.al.]
- (non-perturbative) colour connection to proton remnants: rough estimate $\Delta m_t \sim 0.5 \text{ GeV}$ [Skands, Wicke]

fully "exclusive" top pair production

- NLO corrections to production and decay [Bernreuther et.al, Melnikov et.al.]
- off-shell and off-resonance effects studied at tree level [Kauer, Zeppenfeld]
- non-factorizable corrections computed, [Denner et.al, Bevilacqua et.al.]
- (non-perturbative) colour connection to proton remnants: rough estimate $\Delta m_t \sim 0.5 \text{ GeV}$ [Skands, Wicke]
- most of these effects are not taken into account in m_t determination ! This is potentially problematic for $\delta m_t \leq \Gamma_t$

There are two (unrelated) problems with current m_t determinations through kinematic of decay products:

Problem 1

- current m_t measurements are basically tree-level determinations
- at tree level, formally all ren. schemes are equivalent, but $m_{\overline{\text{MS}}} m_{\text{pole}} \sim 10 \text{ GeV}$?
- *m_t* extracted using decay products is "something like" the pole mass (small higher-order corrections)
- "something like" means propagator has to be resonant for $p_t^2 \simeq m_t^2 o$ ambiguity of $\mathcal{O}(\Gamma_t)$
- alternative ways to measure m_t desperately needed, even if (apparently) not competitive
- care has to be taken when interpreting $m_{\exp} \stackrel{??}{=} m_{\text{pole}}$ however $m_{\exp} \stackrel{!!}{=} m_{\text{pole}} + \mathcal{O}(\Gamma_t)$ is fine.

top mass

Problem 2: conceptual problem with pole mass

The pole mass has an intrinsic uncertainty of order Λ_{QCD} in perturbation theory (infrared sensitivity, renormalon ambiguity)

consider (fictitious) meson:

There is a principal limitation of the usefulness of the pole mass

 $\delta m_t > \Lambda_{\text{QCD}} \implies$ probably not relevant for LHC, only for linear collider m_t determinations could be solved in principle [Hoang, Stewart]

top mass

determination of $\overline{m}(\overline{m})$ through cross section [Langenfeld, Moch, Uwer]

compare σ_{tot} expressed in terms of pole and \overline{MS} mass (for $\mu_F \in \{0.5, 1, 2\} \times m_t$)

- $\overline{\mathrm{MS}}$ scheme more reliable (bands overlap, smaller uncertainty)
- direct extraction of $\overline{\mathrm{MS}}$ mass $\overline{m}(\overline{m})$ with $\delta m\simeq 3~\mathrm{GeV}$
- PDF uncertainties etc... ??

top mass

determination of $m_{\rm pole}$ through cross section [Biswas, Melnikov, Schulze, 1006.0910]

find observable with large m_t sensitivity and compute beyond LO

e.g. $E_{\ell} + E_{\ell'}$ in lab frame

compare $\delta_{\mathrm{th}}m$ (PDF, higher order) with m_t sensitivity

example here: evaluate $\langle E_{\ell} + E_{\ell'} \rangle$ for {MRST, CTEQ} $\times \mu \in \{0.5, 0.75, 1, 1.25\}m_t$ claimed $\delta_{\rm th}m$: 1.7 (LO) \rightarrow 1 GeV (NLO)

Forward-backward asymmetry at Tevatron

definition: $A_{\text{FB}}^{p\bar{p}} = \frac{\sigma(y_t > 0) - \sigma(y_t < 0)}{\sigma(y_t > 0) + \sigma(y_t < 0)}$ or $A_{\text{FB}}^{t\bar{t}} = \frac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)}$

SM prediction: [Kuhn, Rodrigo; Almeida et.al, Ahrens et.al]

- zero for QCD @ LO, non-zero but very small for EW @ LO
- QCD @ NLO (from $q\bar{q}$ only) $A_{\rm FB}^{p\bar{p}} \sim 5\%$ and $A_{\rm FB}^{t\bar{t}} \sim 8\%$ for Tevatron

• NNLO QCD: not known exactly, but from threshold resummation small corrections expected, a SM value of $A_{\rm FB}^{t\bar{t}} > 0.2$ seems highly unlikely. This would need BSM tree-level contributions (Flavour-changing t-channel exchange, axigluons)

Prospects for LHC

- "eliminate" large denominator, i.e. gg initial state, use $f_q(x) > f_g(x), f_{\overline{q}}(x)$ for x large.
- \overline{t} more central, t more forward
- several possibilities [Antunano et.al, Wang et.al ...]
 - central charge asym: $A = \frac{\sigma_t(|y_t| < y_{\text{cut}}) \sigma_{\bar{t}}(|y_t| < y_{\text{cut}})}{\sigma_t(|y_t| < y_{\text{cut}}) + \sigma_{\bar{t}}(|y_t| < y_{\text{cut}})} \sim 1\%$
 - LHCb: $A = \frac{\sigma_t \sigma_{\bar{t}}}{\sigma_t + \sigma_{\bar{t}}}\Big|_{\eta \in 2-5}$
 - one-side asym: $A = \left. \frac{\sigma(\Delta y > 0) \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)} \right|_{P_{t\bar{t}} > P_{\text{cut}}, M_{t\bar{t}} > M_{\text{cut}}}$

• use (large) $A_{\rm FB}$ in $t \, \overline{t} \, j$ as cross-check for new-physics scenarios

spin correlations

- decay of top not (much) affected by hadronisation → information of spin in decay products
 → desperate hope for non-SM top decay
- needs decay of top implemented, preferably with NLO corrections
- can be done for top-pair production and single-top production
- direct measurement of F_L , F_0 , F_R (W helicity in its rest frame) is difficult
- better (?) way: find observable (angle) that is sensitive to spin correlations
- compare true correlated top decay to uncorrelated top decay (spherically in rest frame) or to SM+BSM with anomalous top couplings
 - anomalous W t b vertex [Aguilar-Saavedra et.al.]

$$-\frac{g}{\sqrt{2}}\,\bar{b}\gamma^{\mu}\left(V_{L}P_{L}+V_{R}P_{R}\right)t\,W_{\mu}^{-}-\frac{g}{\sqrt{2}}\,\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}\left(g_{L}P_{L}+g_{R}P_{R}\right)t\,W_{\mu}^{-}+\mathsf{h.c.}$$

- effective dimension 6 (and higher) operators [Willenbrock et.al.], affect production and decay e.g: $O_{\phi q} = i(\phi^+ \tau D_\mu \phi)(\bar{q}\gamma^\mu \tau q)$ or $O_{tW} = (\bar{q} \sigma^{\mu\nu} \tau t \tilde{\phi}) W_{\mu\nu}$
- similar to anomalous triple-gauge couplings, with similar problems (form factors), but might be useful to check possible link between different effects.

$t\bar{t}$ spin correlations

top pair production [Mahlon, Parke; Melnikov, Schulze]

- at LHC, mostly $gg \rightarrow t\bar{t}$, this has more complicated helicity structure than $q\bar{q} \rightarrow t\bar{t}$.
- for low (high) $M_{t\bar{t}}$ like (opposite) helicity gluons dominate [Mahlon, Parke]
- make cut $M_{t\bar{t}} < 400 \text{ GeV}$ (~ 10% of cross section survives) and investigate $\Delta \phi_{\ell \ell'}$, angle between leptons \Rightarrow correlations $\pm 40\%$ [Mahlon, Parke, arXiv:1001.3422]

cannot get true $M_{t\bar{t}} < 400 \text{ GeV}$ due to ambiguity from ν in leptonic decay \rightarrow cut on average of reconstructed $M_{t\bar{t}} < 400 \text{ GeV}$ (right) or: use semi-leptonic decay (\rightarrow ambiguity on which jet is *d* jet)

single top production [Cao et.al; Motylinski, Falgari et.al.]

compare $\cos \theta$ distributions with and without (dashed) spin correlations

$$\cos \theta_S = \frac{\vec{p}_s^* \cdot \vec{p}_\ell^*}{|\vec{p}_s^*| |\vec{p}_\ell^*|} \quad \text{and} \quad \cos \theta_B = \frac{\vec{p}_p^* \cdot \vec{p}_\ell^*}{|\vec{p}_p^*| |\vec{p}_\ell^*|}$$

 \vec{p}_s^* : momentum of spectator jet in top-quark rest frame \vec{p}_b^* : momentum of proton (beam) jet in top-quark rest frame

[Falgari et.al: arXiv 1102.5267]

家 、

cross sections

- don't be fooled by "NNLO", "NNLL" etc labels! A one-loop (two-loop) calculation does not describe every quantity at NLO (NNLO)!
- actually measured cross sections (rather than only interpolated total cross sections) would be very useful

• top mass

- m_t measurement at LHC: don't compete with Tevatron by enforcing a smaller error, compete by making us believe your result
- for a precise determination of the top mass, $m_{
 m pole}{
 eq}m_{
 m MC}$
- need many different ways to measure top mass to get better (i.e. some) control on non-perturbative effects, even if some measurements are "not competitive"

SM varia

- y_t : direct test of Higgs mechanism \rightarrow extremely important (note $pp \rightarrow t\bar{t}H$ known at NLO [Beenakker et.al])
- Γ_t : well known (computed) in SM, sensitive to BSM \rightarrow important
- CKM: direct measurement of V_{tb} , indirect constraints on other matrix elements (?)
- Q, T_3 : very unlikely to differ from SM \rightarrow less important
- for BSM smoking guns
 - compare to an endless list of BSM models and effective vertices / operators