Recent Progress in multi-leg calculations

Daniel Maître

CERN/IPPP

SM@LHC, Durham 12 April 2011

NLO Progress

- Concentrate on QCD
- Concentrate on fixed order
- Concentrate on (just one N)-LO

Outline

- Progress in high multiplicity NLO calculations
- Challenges
 - Conceptual
 - Practical
- Quick aside: W polarisation

Beyond LO

NLO Calculations

- Increased precision compared to LO
 - Absolute normalisation
 - Better shape of observables

 → more confidence in extrapolating
 background to signal region
 - Reduced factorisation and renormalisation scale dependence

Renormalization scale dependence

 Scale dependence increases with number of jets

Renormalization scale dependence

 Scale dependence increases with number of jets

Number of jets	LO	NLO
1	9%	4.5%
2	28%	5.2%
3	47%	7.8%
4	64%	8.4%

[from table I in arXiv:1009.2338]

Theory prediction

 Generate a phase-space configuration with n final state particles

 p_1,\ldots,p_n

• Compute value of the observable and weight $O(p_1, \dots, p_n) = W(p_1, \dots, p_n)$

• Bin

NLO Corrections

Consider (infrared safe) observable and add contributions that have an higher order in perturbation theory

Virtual

Real

NLO Corrections NLO Cross section: $\sigma_n^{NLO} = \int_n + \int_n + \int_n + \int_{n+1} + \int_{n} + \int_{n+1} +$

- Real & virtual corrections have infrared divergences
 - Virtual part has explicit divergences
 - Integral of the real part is divergent when particles become soft or collinear
- Combination is free of infrared divergences
- The cancellation is between objects living in two different phase spaces

NLO Subtraction

Introduce subtraction term σ_{n+1}^{sub}

- Same soft/collinear singularity structure as n+1 MEs $\int_{n+1} \left(\sigma_{n+1}^{real} \sigma_{n+1}^{sub} \right)$ is finite
- Easy enough to be integrated over the singular PS

$$\int_{n+1} \sigma_{n+1}^{sub} = \int_n \int_1 \sigma_{n+1}^{sub} = \int_n \Sigma_n^{sub}$$

Numerical NLO Cross Section

Numerical NLO cross section

Sometimes done by different programs → Binoth Les Houches Accord

Same ingredients enter the POWHEG formula

NLO wish list

Process	Completed
$pp \rightarrow VV + jet$	
$pp \rightarrow H + 2jets$	
$pp \to t\bar{t}b\bar{b}$	
$pp \rightarrow t\bar{t} + 2 \text{ jets}$	
$pp \to VVb\bar{b}$	
$pp \rightarrow VV + 2$ jets	
$pp \rightarrow V + 3 \text{ jets}$	
$pp \rightarrow VVV$	
$pp \rightarrow b\bar{b}b\bar{b}$	

NLO wish list (5 years ago)

Process	Completed
$pp \rightarrow VV + jet$	
$pp \rightarrow H + 2jets$	Campbell, Ellis, Zanderighi (2006);
$pp \to t\bar{t}b\bar{b}$	
$pp \rightarrow t\bar{t} + 2 \text{ jets}$	
$pp \rightarrow VVb\overline{b}$	
$pp \rightarrow VV + 2$ jets	
$pp \rightarrow V + 3 \text{ jets}$	
$pp \rightarrow VVV$	
$pp \rightarrow b\bar{b}b\bar{b}$	

NLO wish list now

Process	Completed
$pp \rightarrow VV + jet$	Dittmaier, Kallweit, Uwer(2008); Campbell, Ellis, Zanderighi (2007)
$pp \rightarrow H + 2jets$	Campbell, Ellis, Zanderighi (2006);Ciccolini, Denner, Dittmaier (2007)
$pp \to t\bar{t}b\bar{b}$	Bredenstein, Denner, Dittmaier, Pozzorini (2009) Bevilacqua, Czakon, Papadopoulos, Pittau, Worek (2009)
$pp \rightarrow t\bar{t} + 2 \text{ jets}$	Bevilacqua, Czakon, Papadopoulos, Worek (2010)
$pp \rightarrow VVb\bar{b}$	$W^+W^-b\bar{b}$ Denner, Dittmaier, Kallweit, Pozzorini (2010)
$pp \rightarrow VV + 2$ jets	VBF: Bozzi, Jäger, Oleari, Zeppenfeld (2007) W^+W^+jj Melia, Melnikov, Röntsch, Zanderighi (2010)
$pp \rightarrow V + 3 \text{ jets}$	Berger, Bern, Dixon, Febres Cordero, Gleisberg, Ita, Kosower, Maître (2009) Ellis, Melnikov, Zanderighi (2009)
$pp \rightarrow VVV$	Lazopoulos, Melnikov, Petriello (2007) Hankele, Zeppenfeld (2007) Binoth, Ossola, Papadopoulos, Pittau (2008)
$pp \rightarrow b\bar{b}b\bar{b}$	qq channel Binoth, Greiner, Guffanti, Reuter, Guillet, Reiter (2009)

$W^+W^-b\overline{b}$

 Denner, Dittmaier, Kallweit, Pozzorini [ArXiv:1012.3975]

W+W- jj

Melia, Melnikov, Röntsch, Zanderighi [ArXiv:1007.5313]

 $\mu = 150 \,\mathrm{GeV}$

Scale variation $50 \,\mathrm{GeV} < \mu < 400 \,\mathrm{GeV}$

$2 \rightarrow 5$ processes

- e+e → 5 jets
 Frederix, Frixione, Melnikov, Zanderighi
 [ArXiv:1008.5313]
- W+4 jets

 [Berger,Bern,Dixon,Febres
 Cordero,Forde,Gleisberg,Ita,Kosower,DM]
 [ArXiv:1009.2338]
 [Marxiv:1009.2338]

Challenges

- Conceptual challenges
 - Uncertainties estimation
 - Scale variation
 - PDF dependence
- Technical challenges
 - NLO computations are CPU expensive
- Technical and conceptual challenge
 - Merge NLO samples with different multiplicities

- Theory predictions depend on two unphysical scales
 - Renormalisation scale
 - Factorisation scale
- Due to the truncation of the perturbation series
- Want to choose a scale "typical" for the process
- Complicated processes have many scales

 $m_W^2 + p_T^2(W)$

 $|E_T^W|$

Differential cross section becomes negative

Large K factor and large dependence of the K factor

Large growth of the scale dependence of the NLO

$$M_{ij}^2 = (p_i^{\text{jet}} + p_j^{\text{jet}})^2$$

- Does not work for all distributions!
- Distributions that are specifically sensitive to the W
- Choice of scale has more effect at LHC, but visible at Tevatron

 $\Delta R_{12} = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$

- What dynamic scale shape?
 - CKKW, Average jet pt, H_T, ...
- Pitfalls at NLO
 - Scale choice should not introduce a bias for the observable considered
 - Scale choice should be "infrared safe" to insure cancellation of divergences in the real matrix elements
 - Different scale choice in subtraction and integrated subtraction might introduce finite terms

Technical challenges

- Automation
- Numerical accuracy of the virtual ME
- NLO is CPU intensive
- Phase space integration (especially for the real part)
 - n+1 phase space
 - Potentially many subtraction terms

Prospects

- Rapid progress for NLO computations
 - Automation of virtual matrix elements computation
 - Improvement of the efficiency of real part
 - Combination with Parton shower
 - Herwig++
 - MC@NLO
 - POWHEG Box
 - Sherpa
 - ...

Progress

W+jets NLO cross section calculation

W polarisation @ LHC

Left polarised Ws

Polarisation in the W flight direction

W polarisation @ LHC [arXiv:1103.5445]

- Large transverse momentum W bosons the LHC are predominantly left-handed at the LHC (not the same as low W pT polarisation)
- Can be used to distinguish prompt W+jets from Ws produced in top pair decay, Higgs production or NP.
- Polarisation fractions are quite robust wit respect to radiative corrections.

W decay in W rest frame

 Define θ^{*} as the angle of the charged lepton wrt the W flight direction in the W rest frame

W

 ν_e

Cos Theta* distribution

Left polarisation clearly visible

W+1 jet, MSTW08, pT *W* > 50 GeV

W polarisation

Conclusions

- NLO predictions are becoming available for many high multiplicity processes
- New frontier $2 \rightarrow 5$
- There are still effects to be discovered

Backup

"Discovery"

• Ratio of the charged lepton Et distributions e^+/e^-

Prompt Ws vs Ws from top decay

$$\frac{\frac{d}{dp_T^{\nu}p_T^{h}}(tt \to W^{\pm} + 3jets)}{\frac{d^2\sigma}{dp_T^{\nu}p_T^{h}}(W^{\pm} + 3jets)} \qquad Prompt \qquad to$$

.0

Small pT polarisation

At lowest order largest contribution

W mostly in the direction of the *u* quark because $u(x) > \overline{d}(x) \rightarrow W$ left-polarised

Large pT Ws

- Three production processes at lowest order $ug \rightarrow W^+d > u\bar{d} \rightarrow W^+g > \bar{d}g \rightarrow W^+\bar{u}$
- Consider only diminant $ug \rightarrow W^+d$
- Two channels

Large Wpt

NN W+

• s-channel yields 100% left polarized (in partonic CMS)

• t-channel

 u^*

- *u* is left-handed
- If *q* left-handed t-channel can be 0 \rightarrow left polarisation

 d_{I}

8 99999 If g right-handed mixed polarisations but ME smaller (1/4) at large W pT

Polarisation fractions

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{8} \left(1 - \cos\theta^*\right)^2 f_L + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 f_R + \frac{3}{4} \sin^2\theta^* f_0$$

 Polarisation is not much affected by the number of jets and increases as the W pT increases

Automated implementations

- Different automated implementations
 - TevJet [Seymour,Tevlin]
 - Sherpa [Gleisberg,Krauss]
 - MadDipole [Frederix,Gehrmann,Greiner]
 - AutoDipole [Hasegawa,Moch,Uwer]
 - Dipoles [Czakon, Papadopoulos, Worek]

• POWEG BOX

- MadFKS [Frederix, Frixione, Maltoni, Stelzer]
 - [Alioli,Oleari,Nason,Re]

Real Corrections

- Different techniques
 - Catani-Seymour
 - Frixione-Kunszt-Signer
 - Phase-space slicing
 - Antenna subtraction
 - •