Other ATLAS Jet Measurements

April 11, 2011

Jets as Hard Probes

High p_T dijet production provides a powerful probe of the hard scatter

- precision tests of pQCD
- constraints on parton distribution functions
- sensitivity to the presence of new physical phenomena
 - dijet resonances
 - quark compositeness
 - large extra dimensions

Standard Model @ LHC

ATLAS Jet Measurements

Jets as Hard Probes

High p_T dijets are also a key probe for understanding activity in the rest of the event...

- azimuthal angle between leading two jets
- radiation between two leading or two most forward jets
- ... and within the jet

• jet shapes

These measurements test pQCD calculations and constrain phenomenological models.

ATLAS Jet Measurements

Azimuthal Decorrelations

BROOKHAVEN ATIONAL LABORATORY

 $\Delta \phi$ between the leading two jets in an event reflects the activity in the rest of the event

- soft radiation causes small decorrelations
- hard radiation, such as from the presence of additional jets, can cause large decorrelations

 $\Delta \phi$ tests pQCD calculations for multijet final states without requiring the measurement of additional jets

 $\Delta \phi$ [radians]

Measure normalized dijet differential cross section:

 $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Delta\phi}$

- anti- k_T jets with R = 0.6
- jet $p_T > 100 \text{ GeV}$
- leading two jets |y| < 0.8acceptance out to |y| < 2.8
- cross section normalized separately for each p_T^{max} bin

85 events have 5 jets with $p_T > 100 \text{ GeV}$

NLO pQCD Theory Comparison

BROOKHAVEN

Michael Begel

ATLAS Jet Measurements

April 11, 2011

Event Generator Comparison

BROOKHAVEN NATIONAL LABORATORY

Michael Begel

Standard Model @ LHC

Event Generator Comparison

DAUURAAVEN National Laboratory

Michael Begel

Standard Model @ LHC

April 11, 2011

- Measure the hard radiation in the rapidity interval between two jets:
 - sensitive to BFKL dynamics
 - sensitive to wide-angle soft-gluon radiation
 - color-singlet exchange
- This measurement also probes theory predictions and experimental techniques relevant for VBF Higgs searches.

this is different than the traditional "rap gap" measurement focused solely on color-singlet exchange

Boundary Conditions

Event Selection:

- anti- k_T jets with R = 0.6
- boundary jets require $p_T > 20$ GeV and |y| < 4.5
- $\langle p_T \rangle$ of boundary jets > 50 GeV
- veto jet $p_T > 20$ GeV
- single interaction-vertex events

Selection A

boundary jets have highest p_T increased sensitivity to wide-angle soft-gluon radiation

Observables (in $\langle p_T \rangle$ and Δy):

- Mean Jet Multiplicity: between boundary jets
- Gap Fraction: fraction of events without jet in gap

Selection B

boundary jets have most forward y increased sensitivity to BFKL dynamics

Jet Multiplicity

Jet Multiplicity

Michael BegelStandard Model @ LHCATLAS Jet MeasurementsApril 11, 201112

Gap Fraction

Gap Fraction

Michael Begel

Standard Model @ LHC

ATLAS Jet Measurements

April 11, 2011 14

- Parton showers evolve until they hadronize at $Q \approx \Lambda_{\text{QCD}}$
- The shapes of high-p_T jets are dictated more by multi-gluon emission than by the fragmentation process
- Measurements of jet shapes:
 - are sensitive to the mixture of quark & gluon final states and to the running of α_s
 - test parton-shower models
 - are also sensitive to the jet algorithm and to the underlying event

gluons radiate more than quarks so gluon-initiated jets tend to be broader than quark-initiated jets

Event Selection:

- anti- k_T jets with R = 0.6
- jet $p_T > 30$ GeV and |y| < 2.8
- single interaction-vertex events

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N^{\text{jet}}} \sum_{\text{jets}} \frac{p_T(r - \Delta r/2, r + \Delta r/2)}{p_T(0, R)}, \quad \Delta r/2 \le r \le R - \Delta r/2$$

$$\psi(r) = \frac{1}{N^{\text{jet}}} \sum_{\text{jets}} \frac{p_T(0, r)}{p_T(0, R)}, \quad 0 \le r \le R$$

Differential Jet Shapes

Michael Begel

Standard Model @ LHC

ATLAS Jet Measurements

April 11, 2011 17

PRD 83, 052003 (2011)

ATLAS Jet Measurements

Integrated Jet Shapes

BROOKHAVEN

Michael Begel

Standard Model @ LHC

ATLAS Jet Measurements

April 11, 2011 19

Jet Response

- Quark- and gluon-initiated jets have different calorimetric response
 - gluon-initiated jets tend to be broader, with more lower-momentum particles, than quark-initiated jets
 - these effects are being incorporated into the jet energy calibration

Jet

hadrons

Fitting the Jet Response

Event Selection:

- anti- k_T jets with R = 0.6 (and also R = 0.4)
- jet $p_T > 60$ GeV and |y| < 2.8
- single interaction-vertex events

Fitting the Jet Response

Heavy-flavor fraction has been fixed to that of the event generator.

ATLAS-CONF-2011-053

Michael Begel

Standard Model @ LHC

ATLAS Jet Measurements

Fitting the Jet Response

Dijet Azimuthal Decorrelations

- reflects the activity in the rest of the event
- described by NLO pQCD, ME+PS (SHERPA), and tuned event generators

Jets located in the rapidity intervals between boundary jets

- sensitive to BFKL dynamics and wide-angle soft-gluon radiation
- gap fraction and mean jet multiplicity described by PYTHIA and POWHEG+PYTHIA
- HERWIG and ALPGEN+HERWIG predict too much activity between jets
- p_T dependence not described by HEJ (not interfaced with PS)

Jet Shapes

- narrow with increasing p_T and y (quark/gluon mixture & running of α_s)
- described by PYTHIA–Perugia2010 but less so by other tunes or event generators

Jet Response

- systematic uncertainties associated with the jet energy calibration can be reduced by including jet-shape information
- These results test important aspects of pQCD and will benefit global efforts to produce phenomenological tunes for the event generators.

Backup

Michael BegelStandard Model @ LHCATLAS Jet MeasurementsApril 11, 201125

Michael Begel

Standard Model @ LHC

ATLAS Jet Measurements

Michael Begel

Standard Model @ LHC

ATLAS Jet Measurements

s April 11, 2011

Jet Multiplicity

Jet Multiplicity

Michael Begel

Standard Model @ LHC

ATLAS Jet Measurements

April 11, 2011

Gap Fraction

Gap fraction

MC/Data

Gap Fraction

Michael Begel Standard Model @ LHC ATLAS Jet Measurements April 11, 2011 31