Recent Developments in Sherpa

Frank Siegert¹

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

¹For the Sherpa collaboration: J. Archibald, S. Höche, H. Hoeth, F. Krauss, M. Schönherr, S. Schumann, FS, J. Winter, K. Zapp

Table of Contents

Introduction

NLO accuracy in the Monte-Carlo: POWHEG

Basic ingredients Results

NLO meets ME+PS: MENLOPS

What is MENLOPS? Results

Non-perturbative updates

MPI tuning to LHC data Hadronisation update

Conclusions

Introduction

Sherpa features

- Automated tree-level ME generators
- Parton shower based on Catani-Seymour dipole terms
- CKKW-like merging between high-multiplicity MEs and parton shower
- POWHEG matching for NLO + parton shower
- MENLOPS for POWHEG + CKKW
- Cluster hadronisation model
- Hadron and τ decays
- ▶ QED radiation from hard leptons and hadron decays in the YFS approach
- Multiple parton interactions

Introduction

Sherpa features

- POWHEG matching for NLO + parton shower
- MENLOPS for POWHEG + CKKW
- Cluster hadronisation model

Multiple parton interactions

Introduction	

Current versions

Sherpa 1.2.3

- Released Dec 2010
- First POWHEG implementation in Sherpa
- First public MENLOPS code

Sherpa 1.3.0

- To be released this(?) week
- More processes in POWHEG and MENLOPS approach
- Minor updates of hadronisation model + new tune

Sherpa 2.0

- New model for soft inclusive QCD
 - \Rightarrow Minimum Bias
 - \Rightarrow Underlying Event
- Inclusive hard decays
- ► No definite time scale yet, O(months)

Basic ingredients

Catani-Seymour dipole subtraction for NLO calculations

- Real emission and virtual MEs separately divergent
- ► Divergences cancel ⇒ Subtraction using Catani-Seymour dipoles
- Automated implementation of real and integrated subtraction terms in Sherpa Gleisberg, Krauss (2007)

 \downarrow

ME level NLO calculations

- Only interface to the virtual matrix element is necessary (e.g. via Binoth Les Houches accord)
- Born, real emission, real/integrated subtraction, phase space done by Sherpa
- → Daniel's talk about state-of-the-art application in "Blackhat+Sherpa"

NLO matched with parton shower

 Automated POWHEG implementation (again: "only" virtual ME needed) Höche, Krauss, Schönherr, FS (2010)

↓

• MENLOPS on top of POWHEG:

Höche, Krauss, Schönherr, FS (2010) Tree-level ME accuracy for final state multiplicities beyond NLO (instead of shower approximation)

POWHEG: Features

Höche, Krauss, Schönherr, FS (2010)

Cross section at NLO accuracy in α_s

- ► Each event weighted with $\overline{B} = B + V + I + \int (R S)$ instead of B
- ► Integration of real emission phase space done by Monte-Carlo sampling ⇒ Currently only weighted events

Radiation pattern of first emission according to real ME

- Same principle as matrix element corrections in parton showers
- Simplified summary:
 - Weight with which to correct first emission generated by POWHEG generator (with splitting kernels based on the CS dipole terms)

$$w = \left(\frac{\mathrm{R}}{\mathrm{B}}\right) / \left(\frac{8\pi \,\alpha_s \mathcal{K}}{2 \, p_i p_j}\right)$$

- Replace splitting kernels in POWHEG generator $\mathcal{K} \rightarrow \max(w)\mathcal{K}$
- Accept POWHEG emission with probability <u>w</u> <u>max(w)</u>
- ▶ Z/H splitting implemented for the case $B \rightarrow 0$

NLO accuracy in the Monte-Carlo: POWHEG				
00000000000				

NLO meets ME+PS: MENLOPS

Non-perturbative updates

Conclusions

Validation of total cross sections

			$e^+e^- \rightarrow hadrons$		$e^+p \rightarrow e^+ + j + X$					
				$E_{ m cms}$ = 91.2 GeV			$E_{\rm cms} = 300 {\rm GeV}$ $Q^2 > 150 {\rm GeV}^2$			
	$\mu = \mu_R = \mu_F$		Factor	POWHEG	NLO		POWHEG	NLO		
	$\sqrt{Q^2}$		1/2		30179(18)	30195(20))	3906(9)	3908(10)	
				1	29411(17)	29416(18)		4047(10)	4050(11)	
				2	28680(16)	28697(18	3)	4180(10)	4188(11)	
F		$p\bar{p} \rightarrow W^+ + X$		$p\bar{p} \rightarrow Z + X$		$pp \rightarrow h + X$				
		$E_{CMS} = 1.8 \text{ TeV}$ $m_{\ell_V} > 10 \text{ GeV}$		$E_{\rm CMS} = 1.96 \text{ TeV}$ 66 < $m_{\ell \ell}$ < 116 GeV		$E_{\rm cms} = 14 \text{ TeV}$ 115 < $m_{\tau\tau} < 125 \text{ GeV}$				
$\mu = \mu_R =$	$\mu_{F} = \mu_{F}$ Factor POWHEG		NLO	POWHEG		NLO	POWHEG	NLO		
$m_{\ell u}/m_{\ell\ell}$		1/2	1	1235.4(5)	1235.1(1.0)	243.96(14)		243.84(16)	2.3153(13)	2.3130(13)
		1	1	1215.0(5)	1214.9(9)	239.70(13)		239.59(16)	2.4487(12)	2.4474(13)
		2	1201.4(5)		1202.0(9)	236.72(13)	2(13) 236.77(15)		2.5811(13)	2.5786(13)
		1/2		1231.0(5)	1230.3(1.0)	243.00(14)		243.06(16)	2.2873(13)	2.2869(14)
m_{\perp}		1	1211.8(5)		1211.7(9)	239.01(13)		238.96(15)	2.4255(12)	2.4231(19)
		2	1	198.8(5)	1199.3(9)	236.23(13)		236.13(14)	2.5623(13)	2.5620(14)

Cross sections in pb for various processes as calculated in the POWHEG framework and in a conventional fixed order NLO calculation (both in Sherpa).

NLO meets ME+PS: MENLOPS 00000

Conclusions

POWHEG Drell-Yan lepton pair production

- ▶ [Sherpa ≥ 1.2.3]
- Virtual ME built-in, or from BlackHat, or from MCFM
- Good description of inclusive observables, agreement with Herwig++
- ► For anything beyond NLO (e.g. $\Delta \phi(Z, j) \rightarrow 0$) only shower approximation \Rightarrow differences between both programs

NLO meets ME+PS: MENLOPS 00000

ENLOPS Non-pertur 000000

urbative updates Co

Conclusions

POWHEG W boson production

NLO meets ME+PS: MENLOPS 00000

NLOPS Non-perturba 0000000

erturbative updates C

POWHEG Z pair production

NLO meets ME+PS: MENLOPS 00000

NLOPS Non-perturb 0000000

rturbative updates C

POWHEG W^+W^- production

NLO meets ME+PS: MENLOPS 00000

NLOPS Non-pertur

tes Conclusi

POWHEG $gg \to H \to \tau \tau$

Other Higgs processes

Gluon-gluon fusion

- ▶ $gg \rightarrow H \rightarrow \tau \tau$ [Sherpa ≥ 1.2.3]
- $gg \rightarrow H \rightarrow \gamma\gamma$ [Sherpa $\geq 1.3.0$]
- $gg \rightarrow H \rightarrow WW \rightarrow \ell\ell\nu\nu$ [Sherpa $\geq 1.3.0$]
- $gg \rightarrow H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$ [Sherpa $\geq 1.3.0$]

Associated VH production

- $W[\rightarrow \ell \nu]H[\rightarrow WW \rightarrow \ell \ell \nu \nu]$ [Sherpa $\geq 1.3.0$]
- $Z[\rightarrow \ell \ell]H[\rightarrow WW \rightarrow \ell \ell \nu \nu]$ [Sherpa $\geq 1.3.0$]

00000000000000

Jet production in e^+e^- collisions

Deep-inelastic lepton-nucleon scattering

NLO meets ME+PS: MENLOPS 00000

ENLOPS Non-pertu 000000

rbative updates Co

onclusions

Sneak preview: Z + 1jet

NLO meets ME+PS: MENLOPS 00000

S Non-perturbative upo 00000000000 Conclusions

Sneak preview: W + 1 jet

NLO meets ME+PS: MENLOPS 00000

ILOPS Non-perturbat 0000000 Conclusions

Sneak preview: $gg \rightarrow H + 1$ jet

What is MENLOPS?

Hamilton, Nason (2010), Höche, Krauss, Schönherr, FS (2010)

Motivation

- ► POWHEG:
 - NLO accuracy for inclusive observables
 - LO accuracy for "+1 jet"
 - shower approximation for "+2, 3, ... jets"
- Can one do better especially for the high multiplicities?
- We already know how to get LO accuracy for "+1, 2, 3, 4, 5 jets": CKKW-like ME+PS merging
- Combination of ME+PS and POWHEG: MENLOPS
 - NLO accuracy for inclusive observables
 - LO accuracy for observables sensitive to the first n jets (with n up to ≈ 5, depending on the process)

Availability

- First public availability in Sherpa 1.2.3
- Possible for all processes which are available in Sherpa's POWHEG

NLO meets ME+PS: MENLOPS 0000

ILOPS Non-perturbat

-perturbative updates

Conclusions

MENLOPS: Comparison to LEP results for $e^+e^- \rightarrow$ hadrons

MENLOPS: Comparison to HERA results for Deep-Inelastic lepton-nucleon Scattering

NLO meets ME+PS: MENLOPS

Non-perturbative updates

Conclusions

MENLOPS: Comparison to Tevatron results for $pp \rightarrow \ell \ell$

NLO meets ME+PS: MENLOPS

S Non-perturbative up

Conclusions

MENLOPS: Predictions for W^+W^- production at LHC

MPI tuning to LHC data

Sherpa 1.2.3 default MPI tune

- MPI tuned using cteq66 PDF
- Main input: Particle level distributions from Atlas measurements
- ► Tevatron UE measurements also included, but with smaller weight
- Rivet used for all analyses
- Generator response interpolated and minimised using Professor
- Main Sherpa contact for tuning: Hendrik Hoeth (thanks to Hendrik also for most of the plots in the following)

Tuned parameters

- ▶ Secondary QCD $2 \rightarrow 2$ scattering cutoff p_{\perp}^{\min} and its energy dependence exponent
- Scale factor for non-diffractive cross section
- Proton matter distribution: Gaussian parameters (mean and width)
- Intrinsic k_{\perp} (mean and width)

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- MinBias events
- Sherpa simulation not inclusive enough
- Diffraction and soft QCD missing
- \Rightarrow Can it describe MB at all? Reasonable agreement in some distributions

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- MinBias events
- Sherpa simulation not inclusive enough
- Diffraction and soft QCD missing
- ⇒ Can it describe MB at all? Reasonable agreement in some distributions

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Underlying Event measurement
- Sherpa's p[⊥]_⊥(7000) ≈ 3.5 GeV
 ⇒ Turn-on effect in most plots up to p^{lead}_⊥ ≈ 6 GeV

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Underlying Event measurement
- ► Sherpa's $p_{\perp}^{\min}(7000) \approx 3.5 \text{ GeV}$
 - \Rightarrow Turn-on effect in most plots up to $p_{\perp}^{\rm lead}\approx 6~{\rm GeV}$

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Underlying Event measurement
- Sherpa's p[⊥]_⊥(7000) ≈ 3.5 GeV
 ⇒ Turn-on effect in most plots up to p^{lead}_⊥ ≈ 6 GeV

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Underlying Event measurement
- Sherpa's p[⊥]_⊥(7000) ≈ 3.5 GeV
 ⇒ Turn-on effect in most plots up to p^{lead}_⊥ ≈ 6 GeV

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Underlying Event measurement
- Sherpa's pⁱⁿ_⊥(7000) ≈ 3.5 GeV
 ⇒ Turn-on effect in most plots up to p^{lead} ≈ 6 GeV

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

Results for LHC @ 7 TeV (arXiv:1009.5908)

- Inclusive jet cross sections
- Nice agreement even in total cross section!

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

Results for LHC @ 7 TeV (arXiv:1009.5908)

Dijet mass

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Azimuthal decorrelations (figure from arXiv:1102.2696)
- Sensitive to multi-jet events

NLO meets ME+PS: MENLOPS 00000

Non-perturbative updates

Conclusions

Results for LHC @ 7 TeV (ATLAS-CONF-2010-049)

Fragmentation in anti-kt jets

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Event shapes measured by CMS
- ► Large disagreement in comparison to ME+PS by MadGraph and Alpgen
- First look with Sherpa looks reasonable

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

- Event shapes measured by CMS
- ► Large disagreement in comparison to ME+PS by MadGraph and Alpgen
- First look with Sherpa looks reasonable

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

Hadronisation update

Recent changes for Sherpa 1.3.0

- Bugfixes in hadronisation for z distribution in gluon splitting during cluster formation
- Shower parameter changed: Pre-factor for α_s scale from NLL arguments and comparison to Tevatron data for $Z p_{\perp}$ (e.g. arXiv:1006.0618)
- ⇒ New hadronisation tune necessary

Hadronisation tune using LEP data

- ► Shower infrared cut-off p²_{⊥,min}
- Parameters of cluster fragmentation
 - PT^2_0, PT_MAX
 - DECAY_OFFSET, DECAY_EXPONENT
 - STRANGE_FRACTION, BARYON_FRACTION
 - ▶ P_{QS}/P_{QQ}

NLO meets ME+PS: MENLOPS 00000 Non-perturbative updates

Conclusions

Preliminary results for Sherpa to-be-1.3.0

Summary

- Sherpa developments in perturbative physics:
 - Automated POWHEG implementation
 - Multitude of processes with simple colour structure
 - Preliminary results for more complicated processes: W/Z/H+1jet
 - Implementation of MENLOPS on top of POWHEG restores LO accuracy for higher jet multiplicities
- Tuning of non-perturbative aspects of event generation:
 - Sherpa 1.2.3 was first version to come with a default tune to LHC data
 - Used mainly corrected data from Atlas, and also Tevatron measurements
 - New hadronisation tune after bug fixes and model changes

Outlook

- POWHEG will be available for more processes especially in the Higgs sector in imminent Sherpa 1.3.0 release
- ► Finalise validation of POWHEG for *W*/*Z*/*H*+1jet
- Version 2.0 will bring new physics modules, e.g. for soft inclusive QCD
- Long term goal: CKKW merging for different jet multiplicities at NLO