EXPERIMENT Measurement of **Top Quark Production and Properties** with the ATLAS Detector

IPPP, DurhamKirika Uchida, University of BonnStandard Model @ LHC 2011on behalf ofApril 11th, 2011the ATLAS Collaboration

Why top physics?

<u>Heaviest yet fundamental particle</u> <u>Decays as a free quark</u>

New physics might affect its properties

- Examples of interesting top measurement.
 - Pair-production cross-section (QCD) Study different decay channels
 - Single top production (EWK) t-channel, Wt-channel, s-channel
 - Properties: mass, width, charge, spin
 - -Wtb vertex

W helicity, anomalous coupling

- Anomalous production Resonances, modified final state

IPPP Durham Standard Model @ LHC 20

ATLAS detector and data

Data collected in 2010 (pp collisions at $\sqrt{s} = 7$ TeV)

- Pile-up now up to $\langle n_{vtx} \rangle = 4$
- Peak lumi 2.1 x 10³² cm⁻² s⁻¹
- Single lepton triggers ~35 pb⁻¹
- Lumi. uncertainty down to 3.4%

Inner Tracking Detectors			Calorimeters				Muon Detectors			
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC
99.1	99.9	100	90.7	96.6	97.8	100	99.9	99.8	96.2	99.8

Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in pp collisions at Vs=7 TeV between March 30th and October 31st (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future.

First top quarks at LHC

universität**bonn**

ATLAS (single, di-lepton) and CMS (di-lepton) measure σ_{tt}

Essential ingredients: QCD multijet background; W,Z+jets; b-tagging calibration 4

IPPP Durham Standard Model @ LHC 2011 April 11th, 2011

1th, 2011 Kirika Uchida

History of top quark measurements at ATLAS

▶ 280 nb⁻¹

- First event display (ATLAS-CONF-2010-063)
- Background distributions (ATLAS-CONF-2010-087)
- ▶ 2.9 pb⁻¹
 - Cross section measurement publication on EPJC (arXiv:1012.1792)

▶ Production cross section (35 pb⁻¹)

- Single lepton pre-tag (ATLAS-CONF-2011-023)
- Single lepton b-tag (ATLAS-CONF-2011-035)
- Dilepton (ATLAS-CONF-2011-034)
- Combination (ATLAS-CONF-2011-040)
- Single top (ATLAS-CONF-2011-027)

Properties (35 pb⁻¹)

- Mass (ATLAS-CONF-2011-033)
- W helicity (ATLAS-CONF-2011-037)
- tt + anomalous E_T^{miss} (ATLAS-CONF-2011-036)

IPPP Durham Standard Model @ LHC 2011 April 11th, 2011 Kirika Uchida

Selecton of Top Quarks

April 11th, 2011 **IPPP Durham** Standard Model @ LHC 2011 Kirika Uchida

data driven estimation of W+jets, fake(QCD), Z+jets

W+jets in single lepton channel

• W / Z

- making use of clean Z+jets

 $W^{\geq 4jets} = W_{data}^{1jet}(Z^{\geq 4jets}/Z^{1jet}) \cdot C_{\mathrm{MC}}$

 $C_{\rm MC} = \frac{(W^{\geq 4\rm jets}/W^{1\rm jet})_{MC}}{(Z^{\geq 4\rm jets}/Z^{1\rm jet})_{MC}}$

- SR: ≥ 4 jets, CR: 1 jet

 top pairs, QCD multi-jets, and Z+jets are charge symmetric but W⁺ > W⁻ due to PDF effect.

$$N_{W^+} + N_{W^-} = \left(\frac{r_{MC} + 1}{r_{MC} - 1}\right) \left(D^+ - D^-\right)$$
$$r_{MC} \equiv \frac{\sigma(pp \to W^+)}{\sigma(pp \to W^-)}$$

	W/Z ratio	W/Z ratio	W^{+}/W^{-}	W^{+}/W^{-}
Channel	Electron	Muon	Electron	Muon
Estimated $W \rightarrow lv$	150	290	n.a.	n.a.
Estimated $W \rightarrow \tau \nu$	6	19	n.a.	n.a.
Statistical uncertainty	21%	17%	33%	27%
Purity of control samples	3%	2%		
Theoretical uncertainties	12%	9.4%	8.2%	7.0%
Jet energy scale	3%	3%	3.6%	3.6%
Total W+jets background	160 ± 40	310 ± 60	240 ± 80	380 ± 110

8

universitätbon

fake (QCD) & Z+jets ▶ fake:

- - Matrix method

 $N^{\text{loose}} = N^{\text{loose}}_{\text{prompt}} + N^{\text{loose}}_{\text{non-prompt}},$ $N^{\text{tight}} = \epsilon_{\text{prompt}} N_{\text{prompt}}^{\text{loose}} + \epsilon_{\text{non-prompt}} N_{\text{non-prompt}}^{\text{loose}}$

- AntiElectron fitting method
 - Fit with fake template; AntiElectron: some electron ID is inverted.
- Z/γ*+jets : MC-assisted data-driven estimation

Ott measurement

σ_{tt} single lepton (no b-tagging) **ATLAS**

ATLAS-CONF-2011-023

Projective likelihood based on uncorrelated discriminating variables

- Three variables chosen:

Binned maximum likelihood to 4 channels (3-jets, ≥ 4-jets; e, µ)

140 e+ b a t b a t b a t b a t b a t a b a	Syst. source	Rel. unc. %
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\int Ldt = 35 \text{ pb}^{-1} \qquad \int Ldt = 35 \text{ pb}^{-1} \qquad \qquad$	et en. scale & econstruction	-6.1 / +5.7
Other Bkgd	SR/FSR	-2.1 / +6.1
	CD norm.	3.9
	CD shape	3.4
	arton shower & adronisation	3.3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 T C	otal syst.	-10.2 / +11.6

Independent of b-tagging

- avoids related systematic uncertainty at the price of a worse S/B ratio
- Relative uncertainty ~15%
- cross-checked by cut-and-count and 1d χ^2 and likelihood fits

il 11th, 2011 Kirika Uchida

σ_{tt} single lepton with b-tags

Multivariate method

- split up to six channels (3, 4, ≥5 jets, e, μ)
- Input variables
- lepton η, aplanarity, H_{T,3p}, b-tag weight
- Profile likelihood fit extracts
- 16 norm. parameters, including σ_{tt}

Kirika Uchida

universitätbonn

σ_{tt} dilepton

Cut-based method

- require 2 OS hard leptons (e, μ),
 20 GeV
- two energetic jets, 20 GeV
- Z+jets is dominating background
- ee/µµ: $E_T^{miss} > 40 \text{ GeV and } |m_{II} \cdot m_Z| > 10 \text{ GeV}$
- eµ: H_T > 130 GeV
- Events in SR are compatible with top quarks
- Profile likelihood method to combine channels
- 105 events selected, 101 ± 9 expected.
 Data well modeled by MC+DD.

160

140

120

100

80

60

40

20

Additional b-tagging requirement improves S/B but the systematics is large.

tt cross-section combination

14

universitatbo

ATLAS-CONF-2011-040

Combine single lepton and dilepton channels

choose most precise: single lepton with b-tag & dilepton w/o b-tag

- Statistical uncertainty ~4%
- Systematic uncertainty ~8%
- Luminosity uncertainty ~3%
- Agrees with QCD prediction

IPPP Durham Standard Model @ LHC 2011

011 April 11th, 2011 Kirika Uchida

 $\delta\sigma = 10\%$

Ot measurements

Single top: t-channels

cut-based (likelihood cross-check)

- 1 lepton, 1 b-jet, 1 light-jet, ET^{miss}
- bkg: QCD multi-jets, W+jets
- final cut m_{top}∈(130;210)GeV;|η_{light-jet}|>2.5

likelihood ratio adding H_T(j), cosΔΦ(I.E_T^{miss}),ΔR(b.I)

Single top: Wt-channels

cut-based

New channel!

ATLAS-CONF-2011-027

15 pb

17

- I+jets: 2-4 jets, exactly 1b-jet (against tt), $\Delta R(j1,j2) < 2.5$ (W+jets)
- dilepton: data driven Z+jets, fakes, tt (from Njets>1)
- combine channels, expect $\sigma_{Wt} < 94$ pb $\sigma_{Wt} < 158$ pb at 95%

Top mass, W helicity, $T \rightarrow tA0$,

Top quark mass

- First ATLAS measurement
 - Main aim: reduce JES uncertainty
- Template in R₃₂ = m_{jjb}(t)/m_{jj}(W)
- Systematics (b-)JES, ISR/FSR
- Cross-checked by
 - kinematic fit templates
 - 2d templates with Jet Scaling Factor

W helicity in top decays

20

Template

method

0.36±0.10

Asymmetry

method

0.41±0.12

F

The Standard Model predicts helicity fractions of W from top

- $F_L = 0.301, F_0 = 0.698, F_R = 4.1 \cdot 10^{-4}$
- Wtb structure probed by verifying this; set limits on new physics
- Can extract directly from $\cos \theta^*$ or unfold and calculate asymmetry

tt + anomalous E^{miss}

- Search for anomalous E^{miss} in tt(I+jets) events
 - benchmark: TT pair, T→tA₀
 - A₀ dark matter candidate
 - Enhanced cross-section due to spin states
 - Signal region:
 - E_T^{miss} >80 GeV, m_T >120 GeV; dilepton veto: p_T > 15 GeV, tracks, loose electrons
 - Exclude m(T) < 275 GeV, $m(A_0) < 50 \text{ GeV}$ and m(T) < 300 GeV, $m(A_0) < 10 \text{ GeV}$ -

21

Conclusion and Outlook

The era of top physics at the LHC has just started

 with only 35 pb⁻¹ can already look into production cross-section, mass, single-top and several properties

ع_{ti} [pb]

- competitive measurements are emerging: cross-section at 10%
- Statistics limited analysis will become attractive this year
 - anticipate ~0.7 fb⁻¹ by Summer and ~2 fb⁻¹ by the end of the year

Focus to reduce systematics

 improve detector understanding; use advanced analysis techniques

▶ 2011: the year of precision top measurements at LHC

PP Durham Standard Model @ LHC 2011 April 11th, 2011 Kirika Uchida

22

universitätbonn

backup

QCD in single lepton channel

Matrix method (muon)

non prompt : QCD muon from jet : Isolated muon from W decay prompt

ε_{prompt}: Z decay ɛnon-prompt : control region

Fitting method (electron)

- QCD template built from electron sample with ID cut inversion.

Uncertainty ~50%

Standard Model @ LHC 2011 April 11th, 2011 Kirika Uchida **IPPP Durham**

Uncertainty ~30%

b-tagging

- Performance of b-tagging depends on details of detector performance
- Data-driven estimates of b-tag efficiency and mistag rate
 - 'p^{rel}': the p^T wrt jet axis of associated μ to calibrate b-tagging.

Study repeated for full 2010 data sample

- Efficiency data-to-MC scale factors $\kappa_{\epsilon b}$ are unity within ${\sim}10\%$
- $D^{\ast}\mu$ and tt for cross-check
- Mis-tag rate affects cross-section extraction less
- JetProb calibrated for ε_b= 50%, 70%
 - Average JetProb weight of two most b-like jets, w_{JP} is used as a continuous variable in the single lepton analysis

Scale Factor κ_{e_b}

Мт2

$$m_{\mathrm{T2}}^2 = \min_{p_{(1)} + p_{(2)} = E_{\mathrm{T}}^{\mathrm{miss}}} \left[\max\{m_{\mathrm{T}}^2(p_{\mathrm{T}}^{lj(1)}, p_{(1)}), m_{\mathrm{T}}^2(p_{\mathrm{T}}^{lj(2)}, p_{(2)})\} \right]$$

$$m_{\mathrm{T}}^{2}(p_{\mathrm{T}}^{lj(i)}, p_{(i)}) = m_{lj(i)}^{2} + m_{p_{(i)}}^{2} + 2[E_{\mathrm{T}}^{lj(i)}E_{\mathrm{T}}^{p_{(i)}} - \vec{p}_{\mathrm{T}}^{lj(i)}\vec{p}_{\mathrm{T}}^{p_{(i)}}]$$

with the transverse momentum of the composite object of one lepton and one jet $p_T^{lj(i)}$, of the trial neutrino $p_{(i)}$ and their transverse energy E_T and masses m. The minimization uses trial momenta for the neutrinos which only have to satisfy the measured E_T^{miss} . From the two possible combinations of leptons and highest- p_T jets the combination with the smallest m_{T2} is chosen.

C.G. Lester, D.J.Summers (1999)

26

IPPP Durham Standard Model @ LHC 2011 April 11th, 2011 Kirika Uchida

IPPP Durham Standard Model @ LHC 2011 April 11th, 2011 Kirika Uchida

27

universität**bonn**