

V + Jets at the Tevatron

Stefano Camarda

IFAE - Barcelona

On behalf of the CDF and DØ Collaborations

SM @ LHC April 10-14, 2011 Durham

Motivation

- Test perturbative QCD at high Q²
- Background for rare SM processes (top, diboson) and new Physics searches
- 30% 40% uncertainty in some of the processes (boson + HF)

Stefano Camarda – SM@LHC 2011

W/Z + Jets results from the Tevatron

Measurements with associated luminosity

Dijet Invariant Mass in W + jj with 4.3 fb⁻¹ at CDF

Tevatron

- $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- Peak instantaneous luminosity
 ~ 4 x 10³² cm⁻² s⁻¹
- > 10 fb⁻¹ of delivered luminosity

DØ and CDF detectors

- Central Tracking systems
- Calorimeters
- Muon detectors

Multi purpose detectors

 Z/γ^* + jets

Angular distributions with $\mathcal{L} = 1 \text{ fb}^{-1}$

- Important background for ZH → II bb, SUSY MET + jets
- Test pQCD NLO predictions

Measurements are unfolded back to Hadron level

Updated results with $\mathcal{L} = 6 \text{ fb}^{-1}$

Data driven backgrounds

- QCD multi-jet
- W + jet
- μ and e fakes
- MC backgrounds

 Z/γ^* + jets

• Main background is $Z+\gamma$

400

200

150

50

100

250

300

350

p_t^{jet} [GeV/c]

Same kinematic region of $Z \rightarrow \mu\mu$ + jets to allow combination

First Measurement of Z + ≥4 Jets

Angular distributions

Z+jet P_{T} balance

 $L = 4.6 \text{ fb}^{-1}$

Large Z + jets sample, can be used for jets studies

- Reduce uncertainties on measured energy of hadronic jets
- Test QCD jet modeling
- Check quark-gluon composition

Nucl. Instrum. Methods Phys. A 622, 698

Ce P_T-balance definition <P_T(jet1)/P_T(Z)>

Out-of-cone radiation

Mismodeling of large angle FSR in the MC is limiting the uncertainty in hadronic jets energy

W/Z + HF jets production

Challenging theory predictions

- Large variation wrt to scale choice
- PDF uncertainties at high momentum fraction x

Measurement in agreement with NLO prediction (large uncertainties in both data and theory)

PRD 79, 052008 (2009)

MIDPOINT R = 0.5 jet P_{τ} > 20 GeV/c, $|\eta| < 2.5$

NN b tagging based on lifetimes

NLO prediction (MCFM)

$$0.0192 \pm 0.0022 (Q^2 = M_z^2)$$

PRD 83, 031105 (2011)

 σ_{Z+jet}

JETCLU R = 0.4 jet E__ > 20 GeV/c, $|\eta| < 2.0$

W + c (e channel)

 $L = 4.3 \text{ fb}^{-1}$

Charm-jet identified by soft electron tagging (SLT_e) algorithm

Probe s-content of proton at high Q^2

Exploit opposite charge correlation between W lepton and SLT electron

$$\sigma_{W+c} \times Br(W \rightarrow l v) = 21.1 \pm 7.1(stat) \pm 4.6(syst) pb$$

NLO prediction (MCFM): $11.0^{+1.4}_{-3.0} pb$

Data and NLO in reasonable agreement

V + jets as a background for rare processes

WW/WZ Cross Section in W \rightarrow lv + 2 jets final state

Phys. Rev. Lett. 104, 101801 (2010)

 $L = 4.3 \text{ fb}^{-1}$

W + *jets as background for rare SM processes*

- Fit to the Di-jet invariant mass to measure the WW/WZ production cross section
- Observed 1582 ± 275(stat.)± 107(syst.) events \rightarrow 5.2 σ significance
- Measured cross section is $\sigma(WW/WZ) = 18.1 \pm 3.3 \text{ (stat.)} \pm 2.5 \text{ (syst.) pb}$ NLO prediction 15.9 ± 0.9 pb

Some discrepancy in Di-jet Invariant Mass shape

Needed work to understand the nature of the discrepancy:

- Background mismodeling
- Real physics

Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp Collisions at $\sqrt{s} = 1.96$ TeV

ArXiv:1104.0699 Joint Experimental-Theoretical Seminar at FNAL on April-6

W + 2 Jets - Event Selection

W Selection

- Electrons $\rightarrow~$ E__ > 20 GeV, $|\eta| < 1.0$
- Muons \rightarrow P_T > 20 GeV/c, $|\eta| < 1.0$
- Missing $E_{\tau} > 25 \text{ GeV}$
- $M_T^W > 30 \text{ GeV/c}^2$

Jets Selection

- JETCLU R = 0.4
- $E_{_{T}} > 20 \rightarrow 30 \text{ GeV}$
- |η| < 2.4
- $|\Delta \eta_{ii}| < 2.5$
- 2 Jets exclusive
- P_{T,jj} > 40 GeV/c

Similar Event Selection (Except for jet E_{τ}) used to

- Measure WW/WZ diboson cross section
- Study discrepancy in Di-jet Invariant Mass

Sample Composition

• W \rightarrow Iv + jets

Main component, simulated with Alpgen + Pythia MC, normalized to data.

• tt + single top

from MC \rightarrow M_t = 172.5 GeV/c², σ (tt) = 7.5 pb and σ (single top) = 2.9 pb

- Z → II + jets Modeled with Alpgen + Pythia MC, normalized to measured cross section
- QCD multijet

Data driven technique: fake lepton templates are normalized to data by fit to the Missing E_{τ} distribution

• WW/WZ

from MC, normalized to NLO theory prediction 15.9 pb

Fitting procedure

Combined χ^2 fit to the Di-jet mass distribution in electron and muon samples 5 templates:

- W + jets
- QCD
- Z + jets
- top & single top
- WW+WZ

- \rightarrow unconstrained, normalization determined from the fit
 - $\rightarrow\,$ normalization constrained to its fraction with 25% uncertainty
 - \rightarrow normalization constrained to the measured cross section
 - $\rightarrow\,$ normalization constrained to the theoretical cross section
- $\rightarrow\,$ normalization constrained to the theoretical cross section

Gaussian assumption

- Try to estimate the significance of the excess assuming an additional gaussian component.
- Since the excess looks narrow with respect to the detector resolution, we search for a peak compatible with the detector resolution for a given dijet mass value.
- Electron and muon channels yields are left separately free

$$\sigma_{gaussian} = \sigma_W \sqrt{\frac{M_{jj}}{M_W}} = 14.3 GeV$$

Procedure to evaluate the significance:

- Fit the data without the gaussian and evaluate χ^2
- Fit the data with the gaussian and evaluate χ^2
- Verify the behavior of the 2 cases with trial factor.

 $\Delta\chi^2$ observed 20.31 that corresponds to a **statistical** significance of 3.7σ

	Electrons	Muons
Excess events	156 ± 42	97 ± 38
Excess events / expected diboson	0.60 ± 0.18	0.44 ± 0.18
Mean of the Gaussian component	$144\pm5~{\rm GeV/c^2}$	

Systematics

- Jet energy scale is moved up and down 1σ in all MC based processes
- QCD shape systematic is evaluated using different Isolation range for fake leptons
- Scale uncertainty on W+jets is evaluated varying the renormalization and factorization scale (Q²)

Affected Quantity	Source	Uncertainty (%)
Number of Excess Events	QCD shape	± 1.9
	Q^2	± 6.7
	JES	± 6.1
	Total	± 9.3

- For each possible combination of systematic effects a different $\Delta\chi^2$ distribution is evaluated
- The distribution that returns the highest p-value (lower significance) is considered → the largest p-value is 7.6 x 10⁻⁴ corresponding to a significance of 3.2 standard deviations

NLO correction

Investigate Next to Leading Order contributions to the W+2 partons prediction

- ALPGEN + PYTHIA is compared to the NLO prediction evaluated with MCFM (private communication with J.Campbell, E. Eichten, K.Lane, A.Martin)
- A correction as a function of M_j is applied to the ALPGEN + PYTHIA sample used in our background model.
- The statistical significance with the reweighted MC is 3.4σ

Flavour Composition

- The cross section times branching ratio into di-jets of a real process behind this excess would be 4 pb → not compatible with Standard Model Higgs: WH x BR(bb) = 12 fb
- Compared the fraction of events with b-jets in the sidebands to that in the excess region (120> $M_{_{\rm II}}$ >160 GeV/c²)

Tag requirement	Excess region	Sideband region
Muons		
1 tag	0.1027 ± 0.0112	0.0813 ± 0.0096
2 tag	0.0078 ± 0.0030	0.0084 ± 0.0030
Electrons		
1 tag	0.0897 ± 0.0088	0.0945 ± 0.0087
2 tag	0.0110 ± 0.0030	0.0095 ± 0.0026

Z + 2 Jets

Check MC modeling in Z + 2 Jets final state

- Same Jets selection as in W + 2 Jets study
- Z \rightarrow II reconstructed in muons and electrons channels
- ~10 times less statistics

No significant discrepancy observed

lvjj Invariant Mass

- Invariant Mass of the (l v j j) system for events with Mjj in the range 120-160 GeV/c² for electron and muon channels
- The distributions are compatible in shape with the background-only hypothesis

Scale JES of 7%

Scale the Jet Energy Scale up of 7% in the MC

Significance is always above 3σ

W + 2 Jets - Conclusions

- Significant disagreement with MC modeling in Di-jet Invariant Mass
- Challenging theory → need to understand the accuracy of MC modeling
- Compare with other experiments
- Need more work to understand if the excess is real new physics or mismodeling

Summary

- New results on Z+jets, Z+b, W + jets
- General good agreement with NLO predictions
- Interesting discrepancy in W + 2 Jets final state
- Prospects for more precise W/Z + HF measurements, Z + jets e-μ combination and W + c combination

More details at:

- http://www-cdf.fnal.gov/internal/physics/qcd/qcd.html
- http://www-d0.fnal.gov/Run2Physics/WWW/results/qcd.htm
- http://www-cdf.fnal.gov/physics/ewk/2011/wjj

BACKUP

Diboson in W + 2Jets

