

CMS Experiment at LHC, CERN Data recorded: Sun Oct 17 06:19:04 2010 CEST Run/Event: 148031 / 466240176 Lumi section: 586

Diboson Production ($\sqrt{\sqrt{\sqrt{2}}}$) in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

Yanyan Gao (Fermilab)

on behalf of the CMS/ATLAS Collaborations

Standard Model @ LHC Workshop I 3 April, 2011 IPPP, Durham

Outline

- Introduction to Diboson Production
- WW Production Cross-section Measurement
 - Analysis strategy* (signal selection and background estimation)
 - WW production cross-section determination
 - Limits on WWγ/WWZ anomalous triple gauge-boson couplings (aTGC)
- Wγ/Zγ Production Cross-section Measurements
 - Analysis strategy (signal selection and background estimation)
 - $W\gamma/Z\gamma$ production cross-section determination
 - Limits on WWY/ZZY/ZYY anomalous triple gauge-boson couplings (aTGC)
- Summary and Conclusion

* Both CMS and ATLAS adopt similar analysis strategies with minor differences in the implementation details. It will be noted in the cases when different strategies are taken.

Introduction to Diboson Production (I)

- Diboson production such as WW/WZ/Wy/Zy/ZZ in pp collisions at LHC provides important tests to SM in the EWK sector
 - The processes have much smaller rates compared to V+jets in SM. It is crucial to demonstrate our experimental understanding of them in a new energy region, even with only ~40/pb data
 - Leading order productions in SM

Introduction to Diboson Production (II)

- Precise measurement of diboson production is a prerequisite for physics searches beyond SM
 - WW production is the dominant and irreducible background to Higgs→WW searches
 - Anomalous triple-gauge-boson couplings (aTGC) from new physics would lead to different cross-section and kinematics in diboson production in WW/Wγ/Zγ compared to SM expectations
 - CMS: place limits on anomalous TGCs averaged for s-hat
 - These processes thus become the testingground to catch surprising new physics in the early LHC data

WW Cross-section

WW Candidate Selections

- Reconstruct WW candidates in fully leptonic channels, selecting events
 - passing single lepton trigger requiring the presence of at least one high pT lepton (e or μ)
 - two prompt oppositely-charged isolated leptons (electron or muon) with large pT (>20 GeV)
 - large MET (neutrinos)
 - low hadronic activity

• A number of SM processes can lead to a similar final state

process	cross-section (pb)
WW	43.0
W(Iv)+jets	31314.0
Drell-Yan (ee, μμ, ττ)	4998.0
ttbar	157.5
single-top (tW)	10.6
WZ	18.2
ZZ	5.9

- Detailed event selections are designed to maximize signal over background (see references)
- A number of data-driven techniques are used estimate the background contribution in data

Background Estimations

- $W \rightarrow I+Jets$ background can fake signal if a jet "fakes" a lepton
 - This background is reduced by the stringent lepton identification and isolation requirements
 - The remaining background in the signal region is estimated from data in both CMS/ATLAS
 - Take the CMS approach as an example
 - We extract the rate for lepton candidates passing a looser-than-analysis cut to pass the tighter analysis cut from a fake enriched sample
 - We then count the number of events in the signal region replacing tight-tight lepton selections with tight-loose selections and weight them by this rate
- Drell-Yan background contains no MET at leading order
 - This background is reduced by applying a tight cut on MET and vetoing events with dilepton mass within 15 GeV of the nominal Z mass (Z-veto)
 - The residual DY with fake MET is estimated from data-driven method (CMS) or MC (ATLAS)
- Top backgrounds (ttbar, tW) differ from signal by the presence of jets
 - This background is suppressed by vetoing events with high pT jets (jet-veto)
 - For events surviving jet-veto, CMS applies further top-veto to rejects events consistent with top-decay indicated by the presence of either additional soft muon or with jets tagged as b

Data/Simulation Validations

 Background enriched datasets are used to validate data/simulation performance in both background normalization and kinematics

WW Candidates in the Signal Region

• CMS

Observed Events	13	
Total background	3.3 ± 0.5(stat) ± 1.1(syst)	
Dominant Backgrounds		
W+jets+QCD	1.7 ± 0.4 (stat) ± 0.7 (syst)	
top	0.8 ± 0.1 (stat) ± 0.8 (syst)	

• ATLAS

Observed Events	8		
Total background I.7 ± 0.6 (stat⊕s			
Dominant Backgrounds			
W+jets+QCD	$0.5 \pm 0.3(stat) \pm 0.2(syst)$		
top $0.6 \pm 0.1 (stat) \pm 0.3 ($			

WW Cross-section Measurement

- The number of WW events in the signal region N_{sig} is determined
 - using simple counting technique in CMS as $(N_{data} N_{bkg})$
 - through a maximum likelihood fitting method in ATLAS
- The cross-section is calculated as

$$\sigma = \frac{N_{sig}}{\varepsilon \mathcal{L}}$$

- Signal efficiencies are determined from MC, with appropriate data/MC scale factors derived from Z events to account for data/MC differences
 - Z events: trigger, lepton selection and jet-veto efficiency data/MC scale factors
- Systematic effects such as jet-veto requirements, lepton selections and luminosity uncertainties etc. are accounted for
- WW Cross-section Results (NLO prediction 43±2 pb from MCFM)
 - CMS: 41.1 ± 15.3 (stat) ± 5.8 (syst) ± 4.5 (lumi) pb
 - ATLAS: 40 (+20, -16) (stat) ± 7 (syst including lumi) pb

Anomalous TGCs

- WWZ/γ TGC vertex in s-channel WW production is sensitive to NP
 - TGCs in SM are a direct consequence of the non-Abelian nature of SU(2)⊗U(1)
 - NP involving TGCs could lead to enhancement in WW production rate and different kinematic distributions from SM
- Imposing EM/C/P and SU(2)⊗U(1) gauge invariance, the effective ∠ of a general WWZ/γ vertex can be written in HISZ Parameterization
 - The TGCs can be described in terms of the deviations of g, κ and λ from their SM expectations

$$\Delta \kappa_Z = \underbrace{\Delta g_1^Z}_{\lambda \gamma} - \underbrace{\Delta \kappa_{\gamma}}_{\lambda \gamma} \cdot \tan^2 \theta_W,$$
$$(\lambda) = \lambda_{\gamma} = \lambda_Z.$$

 CMS places limits on these aTGCs without assuming any explicit form factors, thus representing the values averaged over s-hat

Limits on Anomalous TGCs

- To extract aTGCs, CMS fits the overall WW cross-section and leading lepton pT distribution simultaneously
 - The results agree with SM and limits at 68% and 95% CL are set
 - In probing the 2D limits, the third parameter is fixed to SM values

+ SM value — 68% C.L. ---- 95% C.L.

Wy/Zy Cross-section

Wy and Zy Candidate Selections

- The dominate background in both analyses is V+jets
 - To suppress these background, select events with an isolated high pT photon with
 - pT > 10 GeV (CMS) pT >15 GeV (ATLAS)
 - $\Delta R(I,\gamma) > 0.7 \text{ (suppress FSR)}$
- Wy candidates are further selected by requiring the event to have
 - one prompt isolated high pT (> 20 GeV) lepton (electron or muon)
 - large MET (neutrinos)
 - ATLAS also requires the transverse W mass > 40 GeV
- $Z\gamma$ candidates are further selected by requiring the event to have
 - two high pT isolated leptons (electron or muon)
 - di-lepton mass M(II) > 50(40) GeV in CMS (ATLAS)
- A number of data-driven techniques are used estimate the residual background contribution in the signal region of data

Background Estimations

- Dominant background to $W(Z)\gamma$ is from W(Z)+jets
 - W(Z)+jets background fakes signal, where the photon candidate originates in a jet
 - This background is reduced first by requiring the photon to be isolated
 - The remaining contribution in the signal region can be estimated from data with various data-driven methods in both CMS and ATLAS
 - For example, one of the methods CMS uses is the "ratio method"
 - Measure Et-dependent ratio of non-isolated photon candidates to isolated ones in a QCD-enriched sample, correcting for γ +jet contamination using MC
 - Fold the Et-dependent ratio in W(Z) + non-isolated photon samples to obtain the W(Z)+jets background
 - The results are cross checked with alternative data-driven methods using shower templates and MC simulation
- Other backgrounds such as top or multi-jets are much smaller
 - Their contributions are estimated from MC

Data/Simulation Validations

 Background enriched datasets are used to validate the data/simulation performance in both background normalization and key kinematic shapes

Wy Candidates in the Signal Region

• CMS

process	Observed Events	non W+jet background	W+jet background
еνγ	452	7.7 ± 0.5	220 ± 6 ± 4
μνγ	520	16.4 ± 1.0	261 ± 19 ± 16

• ATLAS

process	Observed Events	W+jets background	non W+jet background
eVγ	95	16.9±6.4±7.3	10.1±0.8±1.2
μνγ	97	16.8±4.7±7.3	2.4±0.9± .4

 Difference in yields are mainly due to the different cuts on the photon pT (10 GeV in CMS and 15 GeV in ATLAS)

Zy Candidates in the Signal Region

• CMS

process	Observed Events	Z+jet background
eeγ	81	20.5 ± 1.7 ± 1.9
μμγ	90	27.3 ± 2.2 ± 2.3

• ATLAS

process	Observed Events	Total Background
eeγ	25	3.8 ± 3.8
μμγ	23	3.4 ± 3.4

 Difference in yields are mainly due to the different cuts on the photon pT (10 GeV in CMS and 15 GeV in ATLAS)

Wy/Zy Cross-section Measurements

• Both CMS and ATLAS measures the cross sections using a simple counting technique

$$\sigma = \frac{N_{data} - N_{bkg}}{A \cdot \epsilon \cdot \mathcal{L}},$$

- Signal efficiencies are determined from MC, with appropriate data/MC scale factors derived from Z events to account for data/MC differences
- Systematic effects such as uncertainties in trigger and $e/\mu/\gamma$ selections and luminosity σ etc. are accounted for
- Vγ cross-section are measured relative to pre-defined acceptance cuts
 - CMS: $Et(\gamma) > 10 \text{GeV}, \Delta R(I,\gamma) > 0.7 \text{ and } M(II) > 50 \text{GeV for } Z\gamma$
 - ATLAS: $Et(\gamma)>10GeV$, $\Delta R(I,\gamma)>0.5$ and a generator level isolation criteria for the photon fragmentation component from parton ISR/FSR
 - NLO predicutions are from the Baur NLO program

	Wγ→evγ (pb)	Wγ→μνγ (pb)	NLO prediction (pb)
CMS	56.7±6.9(stat)±5.1(syst)±6.2(lumi)	55.0±7.2(stat)±5.0(syst)±6.1(lumi)	49.4±3.8
ATLAS	73.9±10.5(stat)±14.6(syst)±8.1(lumi)	58.6±8.2(stat)±11.3(syst)±6.4	69.0±4.6
	Zγ→eeγ (pb)	Ζγ→μμγ (pb)	NLO prediction (pb)
CMC	0.4 + 1.4(a + a + b) + 0.7(a + a + b) + 1.0(b + a + b)	$0.2 \downarrow 1.4(atat) \downarrow 0.4(atat) \downarrow 1.0(luma;)$	
	$9.4\pm1.4(stat)\pm0.7(syst)\pm1.0(luml)$	$9.2 \pm 1.4(stat) \pm 0.6(syst) \pm 1.0(iumi)$	9.6±0.4
ATLAS	$9.4 \pm 1.4(stat) \pm 0.7(syst) \pm 1.0(luml)$ 16.4±4.5(stat)±4.3(syst)±1.8(luml)	$10.6\pm 2.6(\text{stat})\pm 2.5(\text{syst})\pm 1.2(\text{lumi})$	9.6±0.4 13.8±0.9

Limits on Anomalous TGCs (WY)

 NP involving WWγ vertex can lead to enhancement in Wγ rate and different leading photon Et distributions from SM

- To extract aTGCs, CMS fits the Wγ crosssection and leading γ Et distribution simultaneously
 - The aTGCs agree with SM expectations
 - 95% C.L. limits on aTGCs are set

Limits on Anomalous TGCs (ZY)

 NP involving ZYY or ZZY vertexes can lead to enhancement in ZY rate and different leading photon Et distributions from SM

- To extract aTGCs, CMS fits the Zγ crosssection and leading γ Et distribution simultaneously
 - The aTGCs agree with SM expectations
 - 95% C.L. limits on aTGCs are set

Summary

- Both CMS and ATLAS measured diboson production cross-sections with 36/pb LHC data in pp collisions and the results all agree with the SM expectations
 - WW production cross-section (NLO prediction 43±2 pb)
 - CMS: 41.1 ± 15.3 (stat) ± 5.8 (syst) ± 4.5 (lumi) pb
 - ATLAS: 40 (+20, -16) (stat) ± 7 (syst) pb
 - Vγ production cross-section relative to a given acceptance (slide 19)

	Wγ→evγ (pb)	Wγ→μνγ (pb)	NLO prediction (pb)
CMS	56.7±6.9(stat)±5.1(syst)±6.2(lumi)	55.0±7.2(stat)±5.0(syst)±6.1(lumi)	49.4±3.8
ATLAS	73.9±10.5(stat)±14.6(syst)±8.1(lumi)	58.6±8.2(stat)±11.3(syst)±6.4(lumi)	69.0±4.6
	Zγ→eeγ (pb)	Ζγ→μμγ (pb)	NLO prediction (pb)
CMS	9.4±1.4(stat)±0.7(syst)±1.0(lumi)	9.2±1.4(stat)±0.6(syst)±1.0(lumi)	9.6±0.4
ATLAS	16.4±4.5(stat)±4.3(syst)±1.8(lumi)	10.6±2.6(stat)±2.5(syst)±1.2(lumi)	I 3.8±0.9

• CMS performed the first search on aTGCs in $pp \rightarrow WW/WY/ZY$ decays at 7 TeV

• The aTGCs measurements all agree with SM predictions and first limits on these couplings are set

Outlook

- The WW/Wγ/Zγ results presented here are just the beginning of the EWK precision measurements from LHC using only 36/pb
 - Currently, the statistical uncertainties dominate in all measurements
- With at least 1/fb data expected for 2011, diboson production measurements in LHC will enter the precision regime
 - Measure diboson production for more final states such as WZ and ZZ
 - Extend diboson production measurements to include lepton plus jets final states
 - Set better limits on or observe anomalous TGCs
- These diboson production measurements will provide the foundations for Higgs searches in many channels such $H \rightarrow WW$ and $H \rightarrow ZZ$

Supporting Material

Reference

- This talks focuses on discussing the basic experimental strategies and results in the di-boson production measurements
- For the details, please refer to the public documents listed here
 - CMS Public Documents
 - WW Production
 - Physics Letters B 699 (2011) 25-47 (<u>http://arxiv.org/abs/1102.5429</u>)
 - $W\gamma/Z\gamma$ Production
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/VGammaEWK10008</u>
 - ATLAS Public Documents
 - WW Production
 - https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-015/
 - Wγ/Zγ Production
 - <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-013/</u>