◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Part I: W/Z + Jets results from CMS

Lukas Vanelderen (Universiteit Gent) on behalf of the CMS Collaboration

April 13, 2011

introduction

W/Z + jets

- clean environment to probe QCD
- important bkg to searches

studies on the $36pb^{-1}$ from 2010 presented here:

- \blacktriangleright W/Z + jets
- ► Z+b
- boosted W polarization

W/Z + Jets

- combination of QCD and EWK
- interesting topology
 - jets
 - leptons
 - ► MET
- \Rightarrow important BKG in searches

- how well are these processes understood?
- how much can we rely on simulation?

W/Z + Jets

ME + PS simulation:

- tree level only
- includes non-perturbative corrections
- most common method

NLO calculations:

- recent development
- not yet widely used

Tevatron results:

 can we do better? (shown: W + jets)

W/Z candidate selection

single electron or muon trigger

first lepton

electron / muon

- tight selection
- high purity
- caused trigger

second lepton

same flavor

- loose selection
- high efficiency

$\begin{array}{rcl} 1 \text{ lepton} & \Rightarrow & \text{W} \text{ candidate} \\ 2 \text{ leptons} & \Rightarrow & \text{Z} \text{ candidate} \end{array}$

electron selection

- single electron trigger (threshold below 17 GeV)
- find first electron
 - ▶ $p_T > 20 ext{GeV}$, $|\eta| < 2.5$, $1.44 < |\eta| < 1.57$ excluded
 - matches trigger primitive
 - tight isolation, ID, conversion rejection (80% efficiency)
- search second electron
 - ▶ $p_T > 10 ext{GeV}$, $|\eta| < 2.5$, $1.44 < |\eta| < 1.57$ excluded
 - ▶ 60 < *M*_{ee} < 120GeV
- W candidates
 - no muon with $p_T > 10 \text{GeV}$ (top veto)

electron selection

- single electron trigger (threshold below 17 GeV)
- find first electron
 - ▶ p_T > 20GeV, $|\eta|$ < 2.5, 1.44 < $|\eta|$ < 1.57 excluded
 - matches trigger primitive
 - tight isolation, ID, conversion rejection (80% efficiency)
- search second electron
 - ▶ $p_T > 10$ GeV, $|\eta| < 2.5$, 1.44 $< |\eta| < 1.57$ excluded
 - $60 < M_{ee} < 120 \text{GeV}$
- W candidates
 - no muon with $p_T > 10 \text{GeV}$ (top veto)

results are quoted in this acceptance

muon selection

- single muon trigger (threshold below 15 GeV)
- find first muon
 - $p_T > 20 ext{GeV}$, $|\eta| < 2.1$
 - matches trigger primitive
 - tight isolation, ID
- search second muon
 - $p_T > 10 ext{GeV}$, $|\eta| < 2.4$
 - $60 < M_{\mu\mu} < 120 \text{GeV}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

muon selection

- single muon trigger (threshold below 15 GeV)
- find first muon
 - $p_T > 20 \text{GeV}, |\eta| < 2.1$
 - matches trigger primitive
 - tight isolation, ID
- search second muon
 - $p_T > 10 \text{GeV}, |\eta| < 2.4$
 - ▶ 60 < *M_{ee}* < 120GeV

results are quoted in this acceptance

Jets

cluster "Particle Flow" objects, Anti-kt, $\Delta R = 0.5$

- $|\eta| < 2.4$ (tracker acceptance), $E_T > 30 \text{GeV}$
- data driven jet energy calibration
- pile-up removal with FastJet
- muons from W/Z candidates: removed from particle list before clustering
- electrons from W/Z candidates: veto jets within ΔR < 0.3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Jets: data vs MC

events / 5 GeV

data/MC

events / 5 GeV

data/MC

Jets: data vs MC

number of events

signal extraction: Z

Unbinned Maximum Likelihood (UML) Fit on M_{II}

- functional forms
- \blacktriangleright parametrization in events with 0, 1, 2, 3 and >= 4 jets
- BKG params floated
- signal params floated, kept equal for all jet multiplicities

11 / 43

signal extraction: W

UML Fit on m_T and $n_{jet}^{b-tagged}$

- functional forms
- parametrization in events with 0, 1, 2, 3 and >= 4 jets

signal vs QCD

. . .

- $m_T = \sqrt{2p_T' \cdot MET \cos(\Delta \Phi(I, MET))}$,
- MET from "Particle Flow" objects
- fit in range $20 < m_T < 150$
- 0 jets: high stats, important parameters floated
- ▶ 4 jets: low stats, few params floated (electron/muon)

signal extraction: W

signal extraction: W

signal vs top

- n_{jet}^{b-tagged}
- b-tag and mistag eff measured in control samples
- top contribution floated!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

corrections

lepton efficiency

measured with tag and probe on ${\sf Z}$ events, factorizes as:

reconstruction

 $(\mathsf{cluster} \rightarrow \mathsf{electron}, \, \mathsf{track} \rightarrow \mathsf{muon})$

selection
 (differs between 1st and 2nd lepton, n_{iet} dependence)

trigger (only for 1st lepton)

fit range, $m_T > 20$

from MC, verified on data in Z events

unfolding jet multiplicity spectrum

- extract migration matrix $R(n^{RECO}, n^{GEN})$ from MC
- ▶ singular value decomposition (SVD) to "unsmear" n_{jet} distribution

15 / 43

corrections

measure ratios

 $\frac{\sigma(V+\geq njets)}{\sigma(V+\geq 0jets)}$

- \Rightarrow reduce systematics
 - partial cancelation JES
 - full cancelation luminosity
 - only lepton efficiency vs n_{jets}

 $\frac{\sigma(V+\geq njets)}{\sigma(V+\geq (n-1)jets)}$

results for W

 $p_T > 30 \text{GeV}$

- very good agreement with predictions from ME+PS
- negligible difference between tunes for $p_T > 30 \text{GeV}$

イロト イポト イヨト イヨト

• PS alone starts to fail for $n_{jet} \ge 2$

results for Z

 $p_T > 30 \text{GeV}$

- excelent agreement with expectations from ME+PS
- PS alone is also compatible with data

Berends-Giele scaling

- ▶ test scaling by fitting $C_n = \frac{\sigma_n}{\sigma_{n+1}} = \alpha + \beta n$
- take into account correlations between σ_n
- take into account migration between jet bins

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Berends-Giele scaling

reasonable agreement between ME + PS expectation

Z + b-jets

- benchmark channel for MSSM Higgs searches
- fixed vs variable flavour number schemes (LO only)

selection

- At least one Z
- At least one >25GeV jet
- $\blacktriangleright \geq 1$ secondary vertex in jet
- MET < 40GeV (top rejection)

2 ways of b-tagging

- high purity
- high efficiency

Z + b-jets

Good agreement data vs ME+PS

- no distinction between schemes
- Iow stats were schemes disagree

э

$Z{+}b/Z{+}jet \ ratio$

- Z+b purity extracted from fit on secondary vertex mass
- results compatible with MadGraph(*) and MCFM NLO calculations
- (*) Z+b and Z+c with p_T,jet > 15 GeV scaled to corresponding MCFM x-sec

Ratio $\mathcal{R} = rac{\sigma(pp ightarrow Z + b + X)}{\sigma(pp ightarrow Z + j + X)}$					
	$\mathcal{R}(extsf{Z} o extsf{ee})$ (%),	$\mathcal{R}(extsf{Z} o \mu \mu)$ (%),			
Sample	$p_{\mathcal{T}}^{e} > 25$ GeV, $ \eta^{e} < 2.5$	$p_T^\mu > 20 { m GeV}, \eta^\mu < 2.1$			
Data HE	$4.3\pm0.6(\textit{stat})\pm1.1(\textit{syst})$	$5.1\pm0.6(\textit{stat})\pm1.3(\textit{syst})$			
Data HP	$5.4 \pm 1.0(\textit{stat}) \pm 1.2(\textit{syst})$	$4.6\pm0.8(extsf{stat})\pm1.1(extsf{syst})$			
MADGRAPH	$5.1 \pm 0.2(stat) \pm 0.2(syst) \pm 0.6(th.)$	$5.3 \pm 0.1(stat) \pm 0.2(syst) \pm 0.6(th.)$			
MCFM	$4.3\pm0.5(th.)$	$4.7\pm0.5(\mathit{th.})$			

boosted W polarization

production of high p_T W bosons ($p_T > 50$ GeV) Production of high p_T W-bosons ($p_T > 50$ GeV)

• 7 TeV+high p_{τ} dominant production valence quark w/gluon

- Strong polarization effects in transverse plane
- SM: Predominant left handedness for + and -
- Unlike tevatron (pp)
 - · No CP counterparts
 - Cause for left handedness
- Robust over jet multiplicity

Expect left right polarization asymmetry in a pp collider

24

boosted W polarization

- z component ν not measured θ* not available
- use instead

$$L_P = \frac{\vec{p}_T(I) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2} \\\approx 0.5 \cos(\theta^*) + 0.5$$

 template fit to extract polarization

boosted W polarization results

 systematics dominated by MET uncertainty

• $f_L - f_R > 0 \Rightarrow mostly$ left-handed

	Combined Results		
(f _L -f _R) ⁻	0.226 ± 0.031 (stat) ± 0.050 (syst)		
f _ ⁻	0.162 ± 0.078 (stat) ± 0.136 (syst)		
$(f_L - f_R)^+$	0.300 ± 0.031 (stat) ± 0.034 (syst)		
f ₀ ⁺	0.192 ± 0.075 (stat) ± 0.089 (syst)		

4)900

Summary

- Comprehensive set of measurements on full 2010 data(36 pb⁻¹)
- Jet rates for $E_t > 30 \text{GeV}$ in agreement with ME+PS
- Direct measurement of Berends-Giele scaling agrees with expectations
- Observation of Z + b and ratio Z + b / Z + jets agrees well with NLO calculation
- Measured significant polarization of boosted W

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PART II: V+jets as bkg in searches in CMS

Lukas Vanelderen (Universiteit Gent) on behalf of the CMS collaboration

Aprils 7, 2011

CMS has developed and uses a large variety of methods to estimate V+jets bkg in searches

picking out a few of the most interesting examples from

- "razor" analysis
- multi jet + MET analysis
- ► single lepton + jets + MET analysis

Razor Analysis

inclusive search for heavy squark pair production based on 2 variables (arXiv:1006.2727) :

- ► *M_R*: "search variable"
 - \sim per event estimate for $\frac{M_{\tilde{q}}^2-M_{\tilde{\chi}}^2}{M_{\tilde{a}}}$
- *R*: cleans up bulk of QCD related to mass scale for signal, and to MET [0, ~ 1], low value → fake/low MET

hadronic box, R > 0.50

muon box, *R* > 0.45

Razor Analysis

? shape W + jets given cut on R ?

- W
 ightarrow
 u from "lepton boxes"
- bkg dominated: low R, M_R region
- fit 2 exponentials
 - exponential parameters from fit
 - contributions from fit

- slopes are linear function of R²
- \rightarrow parameters a, b for 1st and 2nd slope

) < (~

Razor Analysis

- W \rightarrow Iu with I in acceptance OK
- ► ?W → Iν with I out acceptance? calculate a MC → data conversion factor in "lepton box"

$$ho(a)_1^{
m DATA/MC} = 0.97 \pm 0.02
ho(b)_1^{
m DATA/MC} = 0.97 \pm 0.02$$

• $?Z \rightarrow \nu \nu ?$

Correct slopes in MC to slopes measured in "lepton box" with lepton treated as neutrino

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

multi jet + MET analysis

- $ho~\geq$ 3 jets (p_T > 50GeV, $|\eta| <$ 2.5)
- HT > 300GeV
 scalar sum jet p_T
- ▶ *MHT* > 150GeV

magnitude vectorial sum jets, $p_T > 30 \text{GeV}, |\eta| < 5$

muon and electron veto

V+jets bkg

- $Z \rightarrow \nu \nu$
- ▶ $W \rightarrow e\nu$, $W \rightarrow \mu\nu$, $W \rightarrow \tau\nu \rightarrow I\nu\nu$ with leptons out of acceptance

•
$$W \rightarrow \tau \nu \rightarrow had + \nu \nu$$

$\begin{array}{l} \mbox{multi jet} + \mbox{MET analysis} \\ {}_{Z \rightarrow \nu \nu} \end{array}$

from $Z \rightarrow II$

clean, but low statistics

- ▶ nominal selection + lepton id + $60 \text{GeV} < M_{II} < 120 \text{GeV}$
- observed 1(2) events, muons(electrons)
- too few statistics

multi jet + MET analysis $Z \rightarrow \nu\nu$

from γ + jets

Z and γ production similar in many ways for high boson p_{T}

- ► measure γ + jets nominal selection + hard isolated photon
- derive γ to Z conversion factor
 - Z/γ correction
 MADGRAPH γ + jets and Z + jets
 uncertainty: LO vs NLO MC
 - fragmentation contribution strongly suppressed by γ isolation remainder calculated with NLO JETPHOX
 - secondary photons (neutral pions and η meson) data driven

$\underset{Z \rightarrow \nu \nu}{\mathsf{multi jet}} + \mathsf{MET analysis}$

from γ + jets

Z and γ production similar in many ways for high boson p_T

- measure γ + jets
- derive γ to Z conversion factor

		Ba	seline	High	n-MHT	Hig	sh-HT
		selection		selection		sele	ection
Z/γ correction	\pm theory	0.41	$\pm 6\%$	0.48	$\pm 6\%$	0.44	±4%
	\pm acceptance		$\pm5\%$		$\pm5\%$		±5 %
	$\pm {\sf MC}$ stat		$\pm7\%$		$\pm 13\%$		±13%
Fragmentation		0.95	$\pm 1\%$	0.95	$\pm 1\%$	0.95	$\pm 1\%$
Secondary photons		0.94	$\pm9\%$	0.97	$\pm 10\%$	0.90	±9%
Photon mistag		1.00	$\pm1\%$	1.00	$\pm 1\%$	1.00	±1%
ID data/MC ratio		1.01	$\pm 2\%$	1.01	$\pm 2\%$	1.01	±2%
Total correction		0.37	$\pm 14\%$	0.45	$\pm 18\%$	0.38	$\pm 17\%$

$\underset{Z \rightarrow \nu \nu}{\text{multi jet}} + \text{MET analysis}$

from γ + jets

Z and γ production similar in many ways for high boson p_{T}

• measure γ + jets

• derive γ to Z conversion factor

	# events in γ +jets	$\# Z \rightarrow \nu\nu$ events	$\# Z \rightarrow \nu\nu$ events
	data sample	predicted	from simulation
Baseline selection	72	26.3 ± 3.2 (stat.) ± 3.6 (syst.)	21.2 ± 1.4
High-MHT selection	16	$7.1 \pm 1.8 (stat.) \pm 1.3 (syst.)$	6.3 ± 0.8
High-HT selection	22	$8.4 \pm 1.8(\mathrm{stat.}) \pm 1.4(\mathrm{syst.})$	5.8 ± 0.7

multi jet + MET analysis $W \rightarrow e\nu, W \rightarrow \mu\nu, W \rightarrow \tau\nu \rightarrow l\nu\nu$

treated together with bkg from top

- outside acceptance
- fail trigger
- fail reconstruction, iso, ID
- nominal selection $+ \mu$, Control Selection (CS)
- reweight to events with "lost lepton"

multi jet + MET analysis $W \rightarrow e\nu, W \rightarrow \mu\nu, W \rightarrow \tau\nu \rightarrow l\nu\nu$

- identified electrons/muons failing isolation $!ISO^{e,\mu} = CS \cdot \frac{1 - \epsilon^{e,\mu}}{\epsilon^{\mu}_{ISO}}$ from TnP on Z.
- electrons or muons in acceptance, failing id !*ID*^{e,μ} = *CS* · ¹/_{ε^μ_{ISO}} ^{1-ε^{e,μ}_{ID}}/_{ε^μ_{ID}}

 ε^{e,μ}_{ISO} and ε^{e,μ}_{ID} from TnP on Z ε^{e,μ}_{ISO} vs p^{e,μ}_T and η^{e,μ} ε^{e,μ}_{ID} vs p^{e,μ}_T and Δ*R*(*jet*)^{e,μ}
 impact other differences in η and p_T spectrum small evaluated on MC, → systematics
- muon or electrons outside acceptance ratio R_{accept} from MC same control sample corrected for isolation and ID eff

not so far off within uncertainties

Method	Baseline selectio		ction	High-MHT		High-HT			
		(stat.)	(syst.)		selection	n		selection	
Estimate from data	33.0	± 5.5	$^{+6.0}_{-5.7}$	4.8	± 1.8	$^{+0.8}_{-0.6}$	10.9	±3.0	$^{+1.7}_{-1.7}$
Estimate (PYTHIA)	22.9	± 1.3	+2.7 -2.6	3.2	± 0.4	+0.5 -0.5	7.2	± 0.7	$^{+1.1}_{-1.1}$
MC Truth (Pythia)	23.6	± 1.0		3.6	± 0.3		7.8	± 0.5	
Estimate (MADGRAPH)	20.4	± 1.5	$^{+2.6}_{-2.5}$	2.4	± 0.3	$^{+0.3}_{-0.3}$	4.8	± 0.4	$^{+0.6}_{-0.5}$
MC Truth (MADGRAPH)	21.4	± 0.7		3.0	± 0.3		5.9	±0.4	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

multi jet + MET analysis $W \rightarrow e\nu, W \rightarrow \mu\nu, W \rightarrow \tau\nu \rightarrow l\nu\nu$

uncertainties dominated by statistics

	Relativ	ve size	# events	
Statistics of control-sample	-17%	+17%	-5.5	+5.5
Iso- & id- efficiencies (statistical)	-13%	+14%	-4.1	+4.7
Kinematic differences $t\bar{t}$, W , Z-samples	-10%	+10%	-3.3	+3.3
SM background in control-region	-3%	+0%	-1.0	+0
MC use for acceptance calculation	-5%	+5%	-1.7	+1.7
Total	-24%	+25%	-7.9	+8.1

multi jet + MET analysis $W \rightarrow \tau \nu \rightarrow had + \nu \nu$

treated together with bkg from top

- same muon control sample
- replace muon by simulated tau jet

corrections

- kinematic and geometrical acceptance apply procedure on MC with and without muon selection
- muon trigger, reconstruction and isolation eff same procedure as for "lost leptons" method
- relative branching ratio

 $W \rightarrow \mu \nu$ vs $W \rightarrow \tau \nu \rightarrow had + \nu \nu$

multi jet + MET analysis $W \rightarrow \tau \nu \rightarrow had + \nu \nu$

Systematic uncertainties

	Baseline	High-MHT	High-HT
	selection	selection	selection
au response template	2%	2%	2%
Acceptance	+6%,-5%	+6%,-5%	+6%,-5%
Muon efficiency on data	1%	1%	1%
SM backgr. subtraction	5%	5%	5%

Results				
Predicted $W \ / \ t \overline{t} \rightarrow au_{hadr}$				
Baseline selection	22.3 ± 4.0 (stat.) ± 2.2 (syst.)			
High-MHT selection	6.7 ± 2.1 (stat.) ± 0.5 (syst.)			
High-HT selection 8.5 ± 2.5 (stat.) ± 0.7 (system)				

uncertainties dominated by statistics

single lepton + jets + MET analysis

- main bkg: V+jets and top
- ▶ 2 uncorrelated variables: $S_{MET} = MET / \sqrt{(H_T)}$ and H_T

42 / 43

predict bkg in signal region with ABCD method

MC: total SM in μ channel

Summary

- wide diversity of methods
- wherever possible based on measurements
- quantities measured in control region converted to signal region
 - conversion factors from measurements
 - conversion factors from MC
- predictions from MC scaled
 - scaling factors from data

assumptions based on MC, taken into account in systematics uncertainty in methods still dominated by statistics