Measurements of the underlying event at the LHC

Andy Buckley University of Edinburgh for the ALICE, ATLAS, CMS & LHCb collaborations

SM@LHC 2011, IPPP Durham, UK, 2011-04-11

The underlying event

"There is no such thing as the underlying event" - R. Field, MPI@LHC, 2008

- UE is mainly a name that we give to a certain class of observables (cf. "diffraction") which are particularly sensitive to multi-parton interactions. Usually azimuthal segmentation ⇒
- Not pure MPI: includes contributions from e.g. ISR, (those are modelling statements, anyway). Not explicitly either a "soft" or "hard" phenomenon ⇒ soft/hard transition.
- The UE *does* tell us about the connection of soft QCD collective behaviours and features of "hard processes" in hadron collisions. And as an irreducible background it can be important for high-*p_T* analyses that UE is well-modelled.

Underlying event analysis topology

The LHC detectors

The LHC detectors

tracking, ECAL, HCAL, counters lumi, muon, hadron PID

ATLAS and CMS are general-purpose, fully 4π detectors.

ALICE has a central tracker comparable in η range to ATLAS and CMS.

LHCb is an entirely forward, one-sided detector, with a forward-facing tracker geometry.

Leading charged track N_{ch} and $\sum p_T$, $p_T > 500$ MeV (arXiv:1012.0791) 900 GeV 7 TeV

Leading charged track $\sigma(N_{ch})$ and $\langle p_T \rangle$, $p_T > 500$ MeV (arXiv:1012.0791) 900 GeV 7 TeV

Leading charged track $\langle p_T \rangle$ vs. N_{ch} ($p_T > 500$ MeV) and $\sum p_T$ vs. p_T^{lead} & η^{lead} ($p_T > 100$ MeV) (arXiv:1012.0791)

Leading charged track $\sum p_T(|\Delta \phi|)$, $p_T > 500$ MeV (arXiv:1012.0791)

7 TeV

Leading calo cluster $\sum p_T$ (arXiv:1103.1816)

ALICE underlying event results – PRELIMINARY

ALICE underlying event results – PRELIMINARY

Results @ 900 GeV: $\Delta \phi$ correlation

e w.r.t leading trad

ALICE underlying event results – PRELIMINARY

Track jet 7 TeV N_{ch} and $\sum p_T$ profiles — NEW! & PRELIMINARY

Track jet 900 GeV & 7 TeV N_{ch} and $\sum p_T$ profiles — NEW! & PRELIMINARY

900 GeV & 7 TeV chg. multiplicity & *p*_T spectra — NEW! & PRELIMINARY

7 TeV $N_{\rm ch}$ vs. $\Delta \phi$ — PRELIMINARY & UNCORRECTED

N.B. Pythia 8.135 is a buggy version – shouldn't be used for UE. (Problem in maximal ISR-MPI-FSR interleaving \Rightarrow too much ^{16/21} radiation.)

7 TeV "active area" UE - PRELIMINARY & UNCORRECTED

N.B. Pythia 8.135 is a buggy version – shouldn't be used for UE. (Problem in maximal ISR-MPI-FSR interleaving \Rightarrow too much radiation.)

NONE YET!

Looking forward to some flavour-blind and flavour-aware energy/particle flow analyses in 2011.

MC modelling and tunes

MC event modelling needed both for experimental understanding of QCD, *V*+jets, etc. as backgrounds to new physics, and to allow highest-tech theory/data comparisons.

UE is dominated by an interaction between perturbative (LO&NLL) showering from ISR and non-perturbative MPI. The latter in particular needs to be tuned, as the model is not *a priori* predictive.

Revelations from 2010 LHC data, combined with CDF UE data are interpreted through tuning of models, especially PYTHIA. Most activity in ATLAS: important features are colour reconnection used to balance N_{ch} and $\sum p_T$ activities, and energy evolution of MPI p_T cutoff.

Most recent tunes (ATLAS AUET2 and Perugia 2010) attempt to tune jet shapes as well as MPI: problems with simultaneous profile ramp/plateau description, resolving MB/UE, and resolving LHC vs. CDF Run II leading jets UE.

New tunes: AMBT1 (PYTHIA), AUET1 (JIMMY), Z1, Z2, AUET2 (PYTHIA and JIMMY)

New ATLAS PYTHIA and HERWIG/JIMMY tunes

Summary

ATLAS and ALICE UE measurements at 900 GeV and 7 TeV: apparent good agreement. ATLAS has first measurement of calo cluster UE: access to charged/neutral balance in UE.

CMS detector-unfolded measurements – brand new! Track jet UE is first jet-oriented UE study at the LHC. Common phase space plots not yet available, and no common MC, so consistency hard to assess.

More differential measurements (p_T binning, η dependence, different observables, correlations, ...) are really testing models. Common-phase-space plots via LPCC MB/UE working group: not officially released until next meeting (June).

Next steps: UE at 2.76 TeV, jet-based UE, identified particles in UE? forward η UE? Anything in the LHCb pipeline?

PYTHIA model is being stretched when CDF data and ISR tuning included: theoretical consistency? New tunes. ATLAS min bias / UE and CDF jets UE are difficult to reconcile. JIMMY model has gone as far as it can with AUET1, AUET2. New models for investigation in Herwig++ and Sherpa; incremented old model in Pythia 8.

Backup

CMS underlying event results 900 GeV N_{ch} and $\sum p_T$ profiles — UNCORRECTED

7 TeV N_{ch} and $\sum p_T$ profiles — PRELIMINARY & UNCORRECTED

N.B. Pythia 8.135 is a buggy version – shouldn't be used for UE.

7 TeV N_{ch} and p_T spectra — PRELIMINARY & UNCORRECTED

N.B. Pythia 8.135 is a buggy version – shouldn't be used for UE.