Particle Production at the LHC

Andrew Powell

University of Oxford

SM@LHC, Durham IPPP 11th – 14th April 2011

Motivation

• The following statement sums it up:

"The 'underlying event' (UE) is an unavoidable background to most collider observables and having good understanding of it leads to more precise collider measurements" – Rick Field (2006)

- All LHC experiments dependent on generators to provide required understanding of soft QCD processes contributing to the UE
- Min. Bias results from LHC 1st data can:
 - Allow comparisons with different generators
 - Assist in their constraining (tuning)
- Interesting physics in its own right
 - New energy frontier
 - New Physics?

Relevant Min. Bias Measurements

- Particle Multiplicities & Correlations
 - See talks by Andy Buckley and Luca Perrozzi
- Particle Production
 - What are the spectra of specific particle species?
 - How do they compare with theoretical models and previous experiments?
 - Main experimental hurdles:
 - Means of identifying and distinguishing particle species
 - Ability to access production at low pT

Particle Production

- Several areas of experimental study:
 - Identified Final-State Particle (K[±], π^{\pm} , p) Spectra
 - Requires good Particle Identification (PID)
 - Particularly suited to the qualities of ALICE & LHCb
 - Strange Resonance (K⁰, Λ , ϕ , Ξ , Ω) Spectra
 - PID not necessary
 - Decays well separated from Primary Vertex (except strongly decaying $\boldsymbol{\varphi})$
 - Invariant mass sufficient as a discriminating variable (except for ϕ)
 - Accessible by all LHC experiments
 - Cross-Sections of above Processes
 - Requires good knowledge of \mathcal{L}_{INT}

The Detectors

The Detectors

• What about in a more appropriate variable? (η)

Tracking, ECAL, HCAL, lumi Counters, MUONS, Hadron PID

- Complementary detector acceptances
- Potential to compare data/models over extensive η range
- Furthermore, data at different energies: Vs = 0.9, $2.76^* \& 7.0 \text{ TeV}$

Identified Particle (K[±], π^{\pm} , p) Spectra

- Possible at ALICE & LHCb due to dedicated PID systems
- Impressive array of results from ALICE
- New and updated LHCb results imminent

Measurement	ALICE		LHCb		
	0.9 TeV	7 TeV	0.9 TeV	7 TeV	
Particle pT Spectra	arXiv:1101.4110v2		[IN PREP]		
Anti-p/p	arXiv:1006	.5432	LHCb-CONF-2010-009		
$(K^+ + K^-)/(\pi^+ + \pi^-)$	arXiv:1101.4110v2		[IN P	REP]	
(p + Anti-p)/(π ⁺ + π ⁻)	arXiv:1101.4110v2		[IN P	REP]	

ALICE Hadronic PID

- Provided via several systems:
 - Inner Tracker (ITS)
 - Time Projection (TPC)
 - Time-of_Flight (TOF)
- Combined PID over range 0.1<pT<2.5 GeV
- Kaons also identified via their 'kinked' tracks in TPC (weak decays)

LHCb Hadronic PID

- Provided via two Ring Imaging Cherenkov (RICH) Detectors:
 - RICH-1: 2<p<60 GeV
 - RICH-2 : 30<p<100+ GeV

LHCb Hadronic PID

- Provided via two Ring Imaging Cherenkov (RICH) Detectors:
 - RICH-1: 2<p<60 GeV
 - RICH-2 : 30<p<100+ GeV

LHCb Hadronic PID

- Provided via two Ring Imaging Cherenkov (RICH) Detectors:
 - RICH-1: 2<p<60 GeV
 - RICH-2 : 30<p<100+ GeV

|y| < 0.5• Spectra normalised to inelastic pp collisions (N_{ev})

- Spectra using the different ALICE PID techniques shown
 - Excellent agreement!
 - Confirms reconstruction efficiencies well reproduced by simulation
- Results from the different analyses are combined to cover full momentum range (0.1<pT<1 GeV)

|y| < 0.5 $\sqrt{s} = 0.9 \text{ TeV}$

Particle	dN/dy	$\langle p_{\rm t} \rangle$ (GeV/c)	Lowest p_t (GeV/ c)	Extrapolation	χ^2/ndf
π^+	$1.493 \pm 0.004 \pm 0.074$	$0.404 \pm 0.001 \pm 0.02$	0.10	10%	14.23/30
π^-	$1.485 \pm 0.004 \pm 0.074$	$0.404 \pm 0.001 \pm 0.02$	0.10	10%	12.46/30
\mathbf{K}^+	$0.184 \pm 0.004 \pm 0.015$	$0.657 \pm 0.006 \pm 0.05$	0.25	19%	12.59/23
K^{-}	$0.183 \pm 0.004 \pm 0.015$	$0.641 \pm 0.006 \pm 0.05$	0.25	19%	6.49/23
р	$0.080 \pm 0.002 \pm 0.006$	$0.775 \pm 0.008 \pm 0.06$	0.40	25%	12.59/20
p	$0.077 \pm 0.002 \pm 0.006$	$0.767 \pm 0.008 \pm 0.06$	0.40	25%	9.09/20

• Perform fit to spectra to extract yields and <pT> • Use Lévy (Tsallis) function

|y| < 0.5 $\sqrt{s} = 0.9 \text{ TeV}$

Particle	dN/dy	$\langle p_{\rm t} \rangle$ (GeV/c)	Lowes
π^+	$1.493 \pm 0.004 \pm 0.074$	$0.404 \pm 0.001 \pm 0.02$	
π^-	$1.485 \pm 0.004 \pm 0.074$	$0.404 \pm 0.001 \pm 0.02$	
K^+	$0.184 \pm 0.004 \pm 0.015$	$0.657 \pm 0.006 \pm 0.05$	
K^{-}	$0.183 \pm 0.004 \pm 0.015$	$0.641 \pm 0.006 \pm 0.05$	
р	$0.080 \pm 0.002 \pm 0.006$	$0.775 \pm 0.008 \pm 0.06$	
$\overline{\mathbf{p}}$	$0.077 \pm 0.002 \pm 0.006$	$0.767 \pm 0.008 \pm 0.06$	

High precision anti-p/p ratio studied earlier found mean value of $0.957 \pm 0.006 \pm 0.014$ and pT INDEPENDENT (more on this later)

Hadron Yields

- Comparison of charge summed distributions with models
- Pions
 - Reasonably described by Phojet, Pythia D6T, Perugia-0
- Kaons
 - Underestimated above pT of 1 GeV
- Protons
 - Underestimated also, except by Pythia D6T

arXiv:1101.4110v2

Hadron Yield Ratios

Hadron Yield Ratios

- A lot more strange mesons produced at larger pT than predicted by any model!
- Shape of curve very different from models
- Ratio appears to be independent of √s energy

Hadron Yield Ratios

- A lot more baryon production than predicted by Phojet and Perugia0
 - Pythia CSC and D6T have reasonable agreement
- Ratio appears to be independent of Vs energy at only low pT
 - Both datasets feed-down corrected.

Phys. Rev. D, 82(7):074018 (2010)

Baryon Transport (Anti-p/p Ratio)

- Conservation of baryon number associated with beam particles
- Model predictions at LHC vary greatly

Peter Skands

Phys. Rev. D, 82(7):074018 (2010)

Baryon Transport (Anti-p/p Ratio)

- Conservation of baryon number associated with beam particles
- Model predictions at LHC vary greatly

Peter Skands

ALICE LHCb

Phys Rev Lett Vol.105, No.7, (2010)

LHCb-CONF-2010-003

Anti-p/p Ratio

- Experimentally challenging measurement
 - Require <1% precision to distinguish models
- But ratio means:
 - \mathcal{L}_{INT} not required!
 - Systematics cancel to 1st order, but...
- Several areas for potential biases/systematics:
 - Differing material interaction σ for anti-p and p
 - Significantly different at low momentum
 - Accurate description of detector material budget
 - Pollution from 2nd'ary protons
 - Via weak decays and material interactions
 - Contamination from K/ π

Phys Rev Lett Vol.105, No.7, (2010)

ALICE anti-p/p Strategy

- Performed in a restrictive region of kinematic space
 - |y|<0.5,
 - Low material budget
 - -0.45<p<1.05 GeV
 - Excellent PID via TPC (no misID)
- Detector simulation package chosen that agrees best with external data:
 - FLUKA

LHCb-CONF-2010-003

LHCb anti-p/p Strategy

- Performed over all accessible rapidity
 - Minimum momentum limit of 5.0 GeV
 - Limits systematic due to anti-p, p material interaction $\boldsymbol{\sigma}$
- Use RICH PID to isolate signal
 - Corrections for hadron cross-contamination considered through calibration samples
 - Requires selecting pure samples of K, π and anti-p, p!

LHCb-CONF-2010-003

LHCb anti-p/p Strategy

- Performed over all accessible rapidity
 - Minimum momentum limit of 5.0 GeV
 - Limits systematic due to anti-p, p material interaction $\boldsymbol{\sigma}$
- Use RICH PID to isolate signal
 - Corrections for hadron cross-contamination considered through calibration samples
 - Requires selecting pure samples of K, π and anti-p, p!

Analysis becomes a comprehensive particle study:

$$\begin{pmatrix} p_{Sel} \\ K_{Sel} \\ \pi_{Sel} \end{pmatrix} = \begin{pmatrix} p \to p & K \to p & \pi \to p \\ p \to K & K \to K & p \to K \\ p \to \pi & K \to p & \pi \to \pi \end{pmatrix} \begin{pmatrix} p_{True} \\ K_{True} \\ \pi_{True} \end{pmatrix}$$
$$\begin{pmatrix} p_{True} \\ K_{True} \\ \pi_{True} \end{pmatrix} = \begin{pmatrix} p \to p & K \to p & \pi \to p \\ p \to K & K \to K & p \to K \\ p \to \pi & K \to p & \pi \to \pi \end{pmatrix}^{-1} \begin{pmatrix} p_{Sel} \\ K_{Sel} \\ \pi_{Sel} \end{pmatrix}$$

- Basis for K/ π , p/ π and anti-p/p ratio results
 - Publication imminent
 - Only anti-p/p preliminary results to date

Phys Rev Lett Vol.105, No.7, (2010)

ALICE anti-p/p Results

- No pT dependance
 - Either @ √s = 0.9 or 7 TeV
- Predictions also flat
 - Except HIJING/B @ 0.9 TeV
 - Pythia6.4 best performer
 - Result at each energy averaged (vs $\Delta y = y_{beam} - y$)

Phys Rev Lett Vol.105, No.7, (2010)

ALICE anti-p/p Results

- Vs [GeV] No pT dependance
 - Either @ $\sqrt{s} = 0.9$ or 7 TeV
 - Predictions also flat
 - Except HIJING/B @ 0.9 TeV
 - Pythia6.4 best performer
 - Result at each energy averaged (vs $\Delta y = y_{beam} - y$)

 $\sqrt{s} = 0.9 \text{ TeV}$ $R_{|y|<0.5} = 0.957 \pm 0.006 \pm 0.014$ $\sqrt{s} = 7 \text{ TeV}$ $R_{|y|<0.5} = 0.991 \pm 0.005 \pm 0.014$

LHCb-CONF-2010-003

S

LHCb anti-p/p Results

- Ratio considered as a fnc. of η within bins of pT:
 - 0<pT<0.8 GeV
 - 0.8<pT<1.2 GeV

LHCb MC

Perugia 0

- Data

4

η

• pT>1.2

LHCb

Preliminary

 $\sqrt{s} = 900 \text{ GeV Data}$

 $0.8 \le p_{\tau} < 1.2 \text{ GeV/c}$

3

ا<mark>ص</mark> 1.2

0.8

0.6

0.4

0.2

LHCb-CONF-2010-003

LHCb anti-p/p Results

- Ratio considered as a fnc. of η within bins of pT:
 - 0<pT<0.8 GeV
 - 0.8<pT<1.2 GeV

LHCb MC

Perugia 0

- Data

4

5

η

• pT>1.2

LHCb

Preliminary

 $\sqrt{s} = 7$ TeV Data

 $0.8 \le p_{-} < 1.2 \text{ GeV/c}$

3

ا<mark>م</mark> 1.2

0.8

0.6

0.4

0.2

LHCb anti-p/p Results

- Cast ratio as fnc. of Δy , as done by ALICE
 - Span almost 4 units
- Results not averaged over pT
 - Possible pT dependence
- Comparison with other experimental measurements

LHCb anti-p/p Results

- Cast ratio as fnc. of Δy , as done by ALICE
 - Span almost 4 units
- Results not averaged over pT
 - Possible pT dependence
- Comparison with other experimental measurements
 - Reasonable agreement

LHCb anti-p/p Results

To come:

- Updated anti-p/p
- K/ π , p/ π ratios
- K,π,p pT spectra

- Cast ratio as fnc. of Δy , as done by ALICE
 - Span almost 4 units
- Results not averaged over pT
 - Possible pT dependence
- Comparison with other experimental measurements
 - Reasonable agreement

Strange Resonance Production

- A probe of fragmentation and hadronisation
- Variety of mesons (K⁰, φ) and baryons (Λ, Ξ, Ω) accessible by all LHC detectors
 - PID not necessary, invariant mass reconstruction sufficient
- Possible measurements:
 - pT spectra
 - Baryon Transport Ratios (e.g. Λ/Λ)
 - Baryon Suppression Ratios (e.g. Λ/K^0)
 - Cross-sections
 - Requires good knowledge of $\boldsymbol{\pounds}_{\mathrm{INT}}$
 - Achieved at LHCb with novel techniques [Nuc. Instrum. and Methods A 553 (2005) 388]

Strange Production Results

Result	ALICE		LHCb		CMS	
	0.9 TeV	7 TeV	0.9 TeV	7 TeV	0.9 TeV	7 TeV
Resonance pT	v				~	~
Baryon Transport	~		✓	✓		
Baryon Suppression	✓		✓	✓	✓	•
KS0 Cross-Section			✓			
ϕ Cross-Section				~		

Eur. Phys. J. C 71, 1594 (2011)

$K_S^0 \& \Lambda pT$ Spectra

- pT spectra observed to be harder than models predicted
 - $pT \gtrsim 1$ GeV, particle spectra greatly underestimated by model
 - ~ factor x2 for Kshort

Eur. Phys. J. C 71, 1594 (2011)

ϕ & Ξ pT Spectra

- pT spectra observed to be harder than models predicted
 - ~ factor x 3 for hyperons (discrepancy increases with mass)
 - Discrepancy is smaller for $\boldsymbol{\varphi}$ spectrum
- [Plans at LHCb for similar measurements with Hyperons]

LHCb-CONF-2010-011

- Ratio considered as a fnc. of y
 - Unique η range of LHCb
 - Clear √s dependence
- More baryon transport than predicted
 - Ratio overestimated at √s = 0.9 TeV
 - More consistent at $\sqrt{s} =$ 7 TeV

LHCb-CONF-2010-011

- Ratio vs Δy •
 - **Consistency between** •
 - √s = 0.9 TeV
 - √s = 7 TeV
 - STAR data

Eur. Phys. J. C 71, 1594 (2011)

Baryon No. Suppression (Λ/K^0)

- Good agreement between ALICE results and STAR ($v_s = 0.2 \text{ TeV}$)
 - Implies little or no energy dependence
- UA1 & CDF distributions not 'feed-down' corrected

arXiv:1102.4282v1

- Very similar results obtained by CMS (plot contains ALICE points)
- Furthermore, Ξ/Λ ratio results obtained (look consistent) ۲

- CMS results vs |y|
- No apparent energy dependence

LHCb-CONF-2010-011 Baryon No. Suppression (Λ/K^0)

- Ratio larger than expectations
 - At both energies

LHCb-CONF-2010-014

- X-section via novel \mathcal{L}_{INT} technique (reduced syst. error)
- pT spectra observed to be harder than models predicted
 - As seen in ALICE analysis (slide 36)
- Production underestimated (again!)

LHCb-CONF-2010-014

- X-section via novel \mathcal{L}_{INT} technique (reduced syst. error)
- pT spectra observed to be harder than models predicted
 - As seen in ALICE analysis (slide 36)
- Production underestimated (again!)

Summary

- A large number of particle production results
 - Public results from ALICE, CMS & LHCb
 - Results in the pipeline from ATLAS
- Situation from Identified Particle Studies:
 - Models do not produce enough strange particles
 - p/π not correct either
- Situation from Baryon Transport/Suppression Ratios:
 - Models over estimate anti-B/B ratios (LHCb)
 - But underestimate B/meson ratios (CMS,LHCb)
 - Note enough strange produced
- Many more results currently in progress

Thanks Go To...

A big thank you to the following people who assisted me in writing this talk:

- Raluca Muresan,
- Andrea Contu,
- Guy Wilkinson,
- Emily Nurse,
- Ferenc Sikler,
- Kevin Einsweiler,
- Ermanno Vercelli

Thank you!

Phys. Lett. B 693 (2010) 69-80

- 1st LHCb result!
- Harder pT spectrum than MC
- Comparison with other experiments
 - Consistent
 - Extends knowledge at low pT

Eur. Phys. J. C 71, 1594 (2011)

Strange Particle Production

Backup MC parameters

LHCb MC is based on PYTHIA 6.421

				Enabled processes in LHCb MC:		
parameter	value	parameter	value	process number	description	
CKIN(41)	3.0	PARP(86)	0.66	11	$f + f' \rightarrow f + f'$ (QCD)	
MSTP(2)	2	PARP(89)	14000	12	$f + f \rightarrow f + f'$	
MSTP(33)	3	PARP(90)	0.238	13	f + f ightarrow g + g	
MSTP(81)	21	PARP(91)	1.0	28	$f + g \rightarrow f + g$	
MSTP(82)	3	PARP(149)	0.02	53	$g + g \rightarrow f + f$	
MSTP(52)	2	PARP(150)	0.085	68	$g + g \rightarrow g + g$	
MSTP(51)	10042	PARJ(11)	0.5	91	Single diffractive (AB \rightarrow XB)	
MSTP(142)	2	PARJ(12)	0.4	93	Single diffractive (AB \rightarrow AX)	
PARP(67)	1	PARJ(13)	0.79	94	Double diffractive	
PARP(82)	4.28	PARJ(14)	0.0	95	Low-pT scattering	
PARP(85)	0.33	PARJ(15)	0.018	421 439	Prompt charmonium	
MSTJ(26)	0	PARJ(16)	0.054	461 479	Prompt bottomonium	
PARI(33)	0.4	PARI(17)	0.131			

1 1 1 101

