Fast Computation of MadGraph amplitudes on GPU

N.Okamura (Univ.Yamanashi) Sept.09, 2011, MC-workshop@ YITP

Collaborate with K.Hagiwara, J.Kanzaki, Q.Li, D.Rainwater, T.Stelzer,

Based on EPJ C66, 477-492 (2010) EPJ C70, 513-524 (2010) and now in progress

Motivation

 Many physicists, especially in this room, have a strong desire for MC computation,

"MORE SPEED!!" "MORE TIME!!"

- Because of more interaction types involved, more complicated event topologies, our time is consumed by the calculation time.
- It is important to accelerate the computation speed for the LHC data analysis.
- Materialize the acceleration.

Contents

- Motivation
- GPU?
 - What's the GPU? / How to use? / Why so fast?
- Computation
 - Environment / Program flow / HEGET

65

- Results
 - Conditions / Processes / New GPU performance
- Conclusion
- Appendix (no time, no see)

GPU?

What's the GPU? How to use? Why so fast?

What's the GPU?

- Graphics Processing Unit.
 - Recently, most of the computers have the GPU.
 - Windows7 claims "GPU" for operation.
 - Games, MMORPG, require the "GPU".

- Some GPU can be applied to the numerical calculations. We use "\$500" GPU.
 - GPU connects HOST PC via PCI express x16 bus.

How to use?

- GPGPU (General Purpose computing on GPU)
 - two Environment / Language
 - OCUDA for NVIDIA on linux/win./mac

- OpenCL for NVIDIA, AMD, etc, on linux/win./mac
- Programing/Execution Model
 - Make programs for GPU written in CUDA/OpenCL.
 - Calling the GPU kernels from the CPU program.
 - CPU/GPU programs are compiled by gcc/nvcc.
 - GPU has own memories inside unit.
 - We need data transfer CPU ⇔ GPU.

Why so fast?

- Architecture of GPU
 - SIMD : Single Instruction Multiple Data

One core, one instruction

All cores, one instruction

 Many cores in GPU execute same instruction for different data, 1 core <> 1 phase space point.

 #cores depends on the hardware, typically one unit has 100 cores. → naively, x100 faster.

COMPUTATION

Machine

Program flow

Environment 1

Host PC

- CPU : Core i7 920 2.67GHz (cache 8M)
- Memory 6GB, Bus Speed 1.333GHz
- OS : Fedora10 (64bit)
- Compilers
 - CUDA 3.2 (nvcc 3.2) and gcc 4.4.5

• GPUs

- GTX580 ←New Architecture, "Fermi(GF100)"
- <u>GTX285</u> ← <u>G200 series</u>
- 9800GTX ←G92 series

Environment 2

	GTX580(Fermi)	GTX285(G200)
Multi Processor	16SM	30SM
Total Core	512(16cores/SM)	240(8cores/SM)
Global Mem.	1.5GB	2.0GB
Const. Mem.	64KB(1page)	64KB(1page)
Shared Mem./Block	48KB	16KB
Registers/Block	32768	16384
Clock Rate	1.54GHz	1.48GHz

Multi Processor (SM) has many cores.

#cores/SM depends on the hardware generation.
 There are many memory types.
 "Block" is unit of the execution sequence.

Program flow

1. Initialization,

- 2. generate the random number,
- 3. generate the phase space point, *p* and hel.,
- 4. computes the parton level amplitudes,
- summing up them multiplying the PDF of the initial state,
- 6. make a list of the external particles p, hel., and the cross section, and GPU \rightarrow CPU,
- 7. summing up all cross sections on CPU.

HEGET 1

- HEGET : HELAS Evaluation with GPU Enhanced Technology
 - HEGET is the subroutine package for computing the amplitude on GPU written in CUDA.
 - Naming scheme of HEGET functions follows that of HELAS subroutines.
 - Ready for all SM processes.
- Need "Phase Space Generator" on GPU.
- Need "control program" on CPU.

HEGET 2

Procedure for using

- 1. Generates the FORTRAN code by MadGraph.
- 2. Translate generated "matrix.f" to CUDA automatically for the GPU computation.
- 3. Gathering the "phase space generator", "matrix.cu", and so on written in CUDA.
- 4. Compile by using gcc/nvcc.Wait a few minutes/hours, make a cup of coffee.
- Execute the program
 Wait a few moments, sipping a cup of coffee.
- 6. Get results, have fun!!

RESULTS

Comparison Physics Conditions Results1, 2

Comparison

Accuracy check

- CPU: MG/ME4 and BASES (Fortran) with double precision.
- GPU: HEGET (CUDA)

with single precision,

without any optimizations like BASES.

Speed check

- CPU: Prepare the same structure program (C).
- GPU: Include the transfer time (CPU⇔GPU).

Physics Conditions

- 14TeV collision
- Final state heavy particles decay as follows
 - $W^+ \rightarrow l^+ v, Z \rightarrow l^+ l^-, t \rightarrow b l^+ v, H \rightarrow \tau^+ \tau^- (\tau \text{ not decay})$
 - "b-jets" as light jets, no isolation cut.
 - Higgs mass:120GeV, $Br(H \rightarrow \tau^+ \tau^-)=0.0425$
- Event cuts
 - Jets: $|\eta|$ <5.0, p_{Ti} > 20GeV, p_{Tij} > 20GeV

 $p_{Tij} = \min(p_{Ti}, p_{Tj}) \Delta R_{ij}$ (isolation cut)

- leptons: |η|<2.5, p_T> 20GeV
- PDF:CTEQ6L1

Processes in paper

- $\odot W^+/Z + n$ -jets ($n \leq 4$) • W-W+/W+Z/ZZ +n-jets ($n \leq 3$) • $t\bar{t}$ + *n*-jets ($n \leq 3$) $\odot W^+/Z$ +Higgs +*n*-jets ($n \leq 3$) • $t\bar{t}$ +Higgs +*n*-jets ($n \leq 2$) • Higgs (via WBF) +n-jets ($n \leq 4$) • Multiple Higgs (via WBF) +n-jets $(n \leq 3 \text{ for } 2 \text{Higgs}, n \leq 2 \text{ for } 3 \text{Higgs})$
 - pure-QCD/pure-QED processes.

Results 1-1

• W^+ + n-jets ($n \leq 4$)

 $\alpha_s = 0.13$ Q= M_Z

preliminary

n	subprocess	Cross section [fb]			Process time $[\mu sec]$		
		HEGET	Bases	MG-ME		GPU	CPU
0	$u\bar{d} \rightarrow W^+$	8.549 ± 0.000	8.558 ± 0.008	8.553 ± 0.007	$\times 10^{6}$	3.89×10^{-2}	2.28×10^{0}
1	$u\bar{d} \rightarrow W^+ + g$	7.147 ± 0.002	7.133 ± 0.007	7.092 ± 0.012	$\times 10^5$	4.741×10^{-2}	4.56×10^{0}
	$ug \rightarrow W^+ + d$	1.228 ± 0.000	1.227 ± 0.004	1.224 ± 0.002	$\times 10^{6}$	4.73×10^{-2}	4.54×10^{0}
2	$u\bar{d} \rightarrow W^+ + gg$	7.506 ± 0.006	7.498 ± 0.006	7.495 ± 0.009	$\times 10^4$	5.97×10^{-2}	6.71×10^{0}
	$ug \rightarrow W^+ + dg$	6.189 ± 0.001	6.194 ± 0.001	6.154 ± 0.001	$\times 10^{6}$	5.83×10^{-2}	6.74×10^{0}
	$uu \rightarrow W^+ + ud$	3.683 ± 0.001	3.683 ± 0.003	3.657 ± 0.006	$\times 10^4$	7.65×10^{-2}	7.95×10^{0}
	$gg \rightarrow W^+ + d\bar{u}$	4.110 ± 0.005	4.109 ± 0.004	4.104 ± 0.006	$\times 10^4$	5.95×10^{-2}	6.72×10^{0}
3	$u\bar{d} \rightarrow W^+ + ggg$	1.168 ± 0.008	1.150 ± 0.002	1.138 ± 0.002	$\times 10^4$	1.20×10^{-1}	1.38×10^{1}
	$ug \rightarrow W^+ + dgg$	2.682 ± 0.006	2.685 ± 0.002	2.646 ± 0.004	$\times 10^5$	1.15×10^{-1}	1.38×10^{1}
	$uu \rightarrow W^+ + udg$	3.266 ± 0.005	3.259 ± 0.007	3.206 ± 0.004	$\times 10^4$	2.47×10^{-1}	1.80×10^{1}
	$gg \rightarrow W^+ + d\bar{u}g$	2.438 ± 0.008	2.443 ± 0.002	2.413 ± 0.003	$\times 10^4$	1.21×10^{-1}	1.39×10^{1}
4	$u\bar{d} \rightarrow W^+ + gggg$	2.524 ± 0.012	2.494 ± 0.056	2.428 ± 0.004	$\times 10^{3}$	1.19×10^{0}	6.81×10^{1}
	$ug \rightarrow W^+ + dggg$	1.215 ± 0.010	1.203 ± 0.002	1.139 ± 0.002	$\times 10^5$	1.15×10^{0}	$6.87{ imes}10^1$
	$uu \rightarrow W^+ + udgg$	2.350 ± 0.009	2.324 ± 0.015	2.166 ± 0.004	$\times 10^4$	1.93×10^{0}	8.00×10^{1}
	$gg \rightarrow W^+ + d\bar{u}gg$	1.041 ± 0.008	1.028 ± 0.002	0.968 ± 0.002	$\times 10^4$	1.71×10^{0}	6.69×10^1

Cross section: we generate 10¹⁰ events for high multiplicity.

• Process time : we generate 10⁸ events, [µsec/event]

Results 1-2

•
$$W^+$$
 + n-jets ($n \leq 4$)

Results 2-1

• HZ + n-jets ($n \leq 3$)

n	subprocess	Cross section [fb]				Process time $[\mu sec]$	
		HEGET	Bases	MG-ME		GPU	CPU
0	$u\bar{u} \rightarrow HZ$	3.395 ± 0.005	3.393 ± 0.004	3.376 ± 0.007	$\times 10^{-1}$	5.80×10^{-2}	4.97×10^{0}
1	$u\bar{u} \rightarrow HZ + g$	1.378 ± 0.000	1.378 ± 0.002	1.373 ± 0.003	$\times 10^{-1}$	6.74×10^{-2}	5.88×10^{0}
	$ug \to HZ + u$	7.889 ± 0.003	7.885 ± 0.014	7.882 ± 0.012	$\times 10^{-2}$	6.70×10^{-2}	5.70×10^{0}
2	$u\bar{u} \rightarrow HZ + gg$	3.988 ± 0.004	3.922 ± 0.026	2.820 ± 0.019	$\times 10^{-2}$	9.14×10^{-2}	8.66×10^{0}
	$ug \to HZ + ug$	7.205 ± 0.038	7.097 ± 0.012	6.077 ± 0.008	$\times 10^{-2}$	8.94×10^{-2}	8.54×10^{0}
	$uu \to HZ + uu$	5.038 ± 0.056	4.427 ± 0.004	4.376 ± 0.006	$\times 10^{-3}$	1.55×10^{-1}	1.40×10^{1}
	$gg \to HZ + u\bar{u}$	2.566 ± 0.002	2.570 ± 0.002	2.562 ± 0.004	$\times 10^{-3}$	9.21×10^{-2}	8.67×10^0
3	$u\bar{u} \to HZ + ggg$	1.094 ± 0.004	1.075 ± 0.017	0.496 ± 0.004	$\times 10^{-2}$	2.63×10^{-1}	2.07×10^{1}
	$ug \to HZ + ugg$	4.518 ± 0.018	4.427 ± 0.008	2.199 ± 0.009	$\times 10^{-2}$	2.53×10^{-1}	2.07×10^{1}
	$uu \to HZ + uug$	7.651 ± 0.168	3.031 ± 0.008	1.592 ± 0.007	$\times 10^{-3}$	5.93×10^{-2}	$4.14{ imes}10^2$
	$gg \to HZ + u \bar{u} g$	2.330 ± 0.006	2.318 ± 0.003	1.784 ± 0.004	$\times 10^{-3}$	2.64×10^{-1}	$2.08{ imes}10^1$

- Cross section: we generate 10¹⁰ events for high multiplicity.
- Process time : we generate 10⁸ events, [µsec/event]

 $\alpha_{s}=0.13$ Q= M_{Z}

Results 2-2

•HZ + n-jets ($n \leq 3$)

preliminary

Results of the new GPU

- New GPU, GTX580 has 512 cores.
- GTX285 has 240 cores.

preliminary

Double / Single

 New GPU, GTX580 has many unit for "double precision" computation

CONCLUSION

Conclusion

• GPU opens the "new world" for MC.

- cheap (~\$500), fast (1Tflops/unit)
- Not a super tool, but so powerful.
- HELAS(fortran) \rightarrow HEGET(CUDA)
 - Now on stage, all SM processes.
- Acceleration
 - more than x50, x100 is not a dream.
 - New GPU is more powerful, x200 is not a fiction.

......Please wait OpenCL version, now under construction......

And...

• VEGAS/BASES: J.Kanzaki, EPJ C71,1559 (2011).

- SPRING : Now Ready
- PS, PGS : preparing

APPENDIX

No time No see

What's "HEGET"

•HELAS

- Evaluation with
- •GPU
- Enhanced
- Technology

and.....

Heqet

- Heqet (Heket, Heget)
 - Goddess of Egyptian myth hieroglyph
 - Symbol of life, fertility.
- Hieroglyph of "frog" means "100,000"

"Millions of frogs were born after the annual inundation of the Nile, which brought fertility to the otherwise barren lands"

